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Core-Collapse Supernovae

Cassiopeia-A

• ~ (50 yr)-1 per galaxy
• few every second in the 

observable universe
• Peak luminosity ~1010 solar
• 1048 erg EM radiation
• 1051 erg kinetic energy
• 1053 erg neutrinos

Problem: how do they explode?
Neutrinos could tell us!



Numerical Modeling

• General relativistic gravity
• Hydrodynamics
• Nuclear equation of state
• Neutrino radiation transport

No single multi-D code has everything!

• First 1D simulations Colgate & 
White 1966

• First 1D full-physics simulations 
only early 2000s

From Dolence, Burrows, et al. 2013



Fornax

• A new CCSN code

• Spherical dendritic grid

• Multi-dimensional M1 
neutrino O(v/c) transport

• Newtonian with effective 
GR potential

• 1D, 2D, and 3D

Dolence, Skinner, et al., in prep 2017



Current Efforts in Princeton*

* and collaborators at LANL, LLNL

• Explosion mechanism: crucial physical dependencies 
[Burrows, Vartanyan, …, DR 2016 — Vartanyan et al., in prep 2017]

• Low-mass progenitors: electron-capture vs regular CCSNe  
[DR, Burrows, et al. 2017]

• Neutrino detection: shock-breakout burst                                                      
[Wallace, Burrows, and Dolence 2016]

• Neutrino detection: explosion signatures                               
[Seadrow et al., in prep 2017]

• Stay tuned for 3D results!



Massive Star Explosions

Vartanyan et al., in prep 2017



Many-Body Effects

From Horowitz et al. 2017
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FIG. 2. (Color online) Axial response SA versus density n for temperatures of T = 2.5 MeV (a), 5 MeV (b), 10 MeV (c), and
15 MeV (d). The red dashed lines are our virial expansion results, Eq. (28), for the indicated proton fractions. The solid red
dots indicate where zn = 0.5. The virial expansion is most valid to the left of these points. The green dotted lines show the
original Burrows and Sawyer RPA results [7]. Finally the solid black lines show the interpolating fit Sf

A, Eq. (36).

ratory limit on gsa from a modern neutrino-nucleon scat-
tering experiment.

Finally recoil and weak magnetism corrections can be
approximately described by a factor R(E⌫/m). This is
discussed in Ref. [28] and reduces antineutrino-nucleon
scattering cross sections, while having only a modest ef-
fect on neutrino-nucleon cross sections.

III. RESULTS FOR THE AXIAL RESPONSE

In this section, we focus on results for the axial re-
sponse SA, and not on the vector response SV , for two
reasons. First, the axial response is more important for
neutrino-transport cross sections because of a large 5g2a
factor, see Eq. (35). Second, we have not included alpha
particles or other light nuclei. Preliminary calculations

suggest that spin zero alpha particles can significantly
enhance SV , but do not strongly impact SA. Therefore
we postpone a full discussion of SV to later work, where
we will explicitly include alpha particles and other light
nuclei. For the present, a reasonable approximation is to
simply set SV = 1 in Eq. (31).

In Fig. 2 we show SA for temperatures of T = 2.5
to 15 MeV. Our virial results (red dashed lines) are
valid at low densities. To evaluate SA for higher den-
sities, where zn > 0.5, one presently needs to employ a
model-dependent calculation. We consider the random
phase approximation (RPA) calculations of Burrows and
Sawyer [7], because they are simple, well known, and
have been employed in supernova simulations. We cau-
tion that these calculations may have a number of limita-
tions. First they predict that the vector response is less
than one SV < 1 while Fig. 1 shows SV > 1. Second the
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where GF is the Fermi constant, E⌫ the neutrino energy,
and ✓ the scattering angle. The axial coupling up to
strange-quark corrections is |CN

a | = |ga|/2 = 0.63 where
ga is the axial charge of the nucleon. The weak vector
charge is Cn

v = �1/2 for scattering from a neutron n and
Cp

v = 1/2 � 2 sin2 ✓W ⇡ 0 for scattering from a proton
p. Here ✓W is the weak mixing angle. The cross section
in Eq. (2) neglects corrections of order E⌫/m from weak
magnetism and other e↵ects, for details see [28].

The free cross section per unit volume for scattering
from a mixture of neutrons and protons is then given by

1

V

d�
0

d⌦
= nn

d�
0

d⌦ ⌫n
+ np

d�
0

d⌦ ⌫p
, (3)

=
G2

FE
2

⌫

16⇡2

⇣
g2a(3� cos ✓)(nn + np)

+ (1 + cos ✓)nn

⌘
. (4)

In the medium this cross section is modified by the den-
sity (vector) SV and the spind (axial) SA response. The
response of the system to density fluctuations is described
by SV , while SA describes the response of the system to
spin fluctuations. The response functions are normalized
to unity in the low-density limit SV , SA ! 1 as n ! 0.
The cross section per unit volume in the medium is then
given by
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Note that d�/d⌦ reduces to the free cross section d�
0

/d⌦
as SA, SV ! 1. In general both SV and SA depend on
momentum transfer q. However, in the limit q ! 0 we
can derive model independent virial results.

A. Virial equation of state

Next, we briefly review the virial equation of state for
a system with neutrons and protons [21]. We will use this
to calculate SV and SA. The pressure P is expanded to
second order in the fugacities of neutrons zn and protons
zp,
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Here T is the temperature, V is the volume of the system,
and Q is the grand-canonical partition function. The
fugacities are related to the neutron µn and proton µp

chemical potentials by zn = eµn/T and zp = eµp/T . Fi-
nally the second virial coe�cients bn and bpn are calcu-
lated from nucleon-nucleon elastic scattering phase shifts.
These are tabulated in Ref. [21].
The neutron nn and proton np densities follow from
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B. Vector response

The vector response SV is equal to the static structure
factor Sq, see for example, Refs. [25, 29]. For a single-
component system
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Following Ref. [7], we generalize this result to a mixture
of neutrons and protons:

SV =
Cn

v
2Snn + 2Cn

v C
p
vSnp + Cp

v
2Spp

Cn
v
2nn + Cp

v
2

np

, (12)

where

Snn = zn
@

@zn
nn = nn +

4

�3

z2nbn , (13)

Snp = zp
@

@zp
nn =

4

�3

zpznbpn , (14)

Spp = zp
@

@zp
np = np +

4

�3

z2pbn . (15)

Using Eqs. (13,14,15), we have for SV

SV = 1 +
4

�3

Cn
v
2z2nbn + 2Cn

v C
p
vznzpbpn + Cp

v
2z2pbn

Cn
v
2nn + Cp

v
2

np

.

(16)
In the limit Cp

v ⇡ 0 this reduces to the neutron-matter
result [25]
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Protoneutron Star Convection
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a b

c d
Fig. 5. Snapshots of PNS convection in Model s15_32 at 48 ms a) and 243 ms b) after bounce. The upper left quadrants of each plot depict
color-coded the absolute value of the matter velocity, the other three quadrants show for νe, ν̄e, and νx (clockwise) the ratio of the local neutrino
flux to the angle-averaged flux as measured by an observer at infinity. The diagonal black lines mark the equatorial plane of the computational grid
and the thick circular black lines denote the neutrinospheres (which have a radius larger than 60 km in figure a)). The figures c) and d) show at the
same times the relative lateral variations of lepton number and entropy (including neutrino entropy), i.e. δX ≡ (X − ⟨X⟩ϑ)/ ⟨X⟩ϑ for a quantity X.

Fig. 6. Brunt-Väisälä frequency (Eq. (5)), using Eq. (7) as stability cri-
terion, evaluated for different 1D models at 20, 30, and 40 ms after
bounce.

boundary changes only little during the simulations, whereas
the outer boundary of the convective layer moves outward in
mass as time goes on, following the ongoing accretion of mat-
ter on the PNS. Keil et al. (1996) found in their models that
PNS convection develops in an initially narrow layer, but the in-
ner edge of this layer moves continuously deeper into the PNS.

Fig. 7. Lepton number and total entropy versus enclosed mass in the
PNS for the 1D model s15s7b2 for different post-bounce times before
the onset of PNS convection in the corresponding 2D simulation.

Their models, however, were evolved until 1.3 s after bounce,
and the inward motion of the lower boundary of the convective

From Buras et al 2006
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Fig. 12. Luminosities of electron neutrinos, νe, (top) electron antineutri-
nos, ν̄e, (middle), and one kind of heavy-lepton neutrinos, νµ, ν̄µ, ντ, ν̄τ,
(denoted by νx; bottom) for the 2D models and for their corresponding
1D counterparts, evaluated at a radius of 400 km for an observer at rest.
Note that the luminosities of Model s15_32 were corrected for the dif-
ferences arising from the use of a slightly different effective relativistic
potential as described in the context of Table 1.

Eq. (28)) in excess of 40, 14, and 10 for νe, ν̄e, and νx, respec-
tively, and therefore is still well inside the neutrinosphere.

Larger neutrinospheric radii without the described convec-
tive inflow of energy would lead to lower luminosities as a
consequence of an associated decrease of the neutrinospheric
temperature Tν. This, for example, is seen in simulations with
different EoSs where the PNS radius depends on the high-
density EoS properties. A larger PNS radius correlates with
lower luminosities (Janka et al. 2005). In contrast, in our
2D models the luminosities increase. We indeed find lower Tν,
which result in lower mean neutrino energies ⟨εν⟩ (defined by the
ratio of energy to number flux), see Fig. 13. The difference can
be up to 10% for all neutrino kinds after 200 ms of PNS convec-
tion. Because of the energy transport to the neutrinospheres by
convection, however, this reduction in Tν is much weaker than
it would be in an adiabatically expanding layer. Apparently, the
larger neutrinospheric radii and only slightly lower temperatures

Fig. 13. Average energies of the radiated neutrinos (defined by the ratio
of energy to number flux) for the 2D models and for the corresponding
1D models, evaluated at a radius of 400 km for an observer at rest. The
lines are smoothed over time intervals of 5 ms. Note that the average
neutrino energies of Model s15_32 were corrected for the differences
arising from the slightly different effective relativistic gravitational po-
tential as described in the context of Table 1.

lead to a net increase of the luminosities relative to the 1D re-
sults, see Fig. 12. The effect is strongest for νx, which decouple
energetically from the medium already near the upper boundary
of the convective layer (Fig. 5b); after 200 ms of convection,
Lνx is almost 20% higher than in the 1D models. Lνe increases
only by a few percent, while Lν̄e is almost identical in 1D and
2D models, which means that the higher electron chemical po-
tentials and the effects associated with the convective energy
transport and structural changes of the PNS nearly compensate
each other.

After the onset of PNS convection the 2D models delep-
tonize faster than their 1D counterparts (Fig. 14). The lepton
number loss is enhanced after 250 ms of post-bounce evolution
by typically 8−10% (compare Fig. 14 with Fig. B.5). The evo-
lution of the total energy loss is more complex and is smaller
than in the 1D simulations for the first ∼100−140 ms of reduced
energy emission. Only afterwards the losses become stronger in
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lead to a net increase of the luminosities relative to the 1D re-
sults, see Fig. 12. The effect is strongest for νx, which decouple
energetically from the medium already near the upper boundary
of the convective layer (Fig. 5b); after 200 ms of convection,
Lνx is almost 20% higher than in the 1D models. Lνe increases
only by a few percent, while Lν̄e is almost identical in 1D and
2D models, which means that the higher electron chemical po-
tentials and the effects associated with the convective energy
transport and structural changes of the PNS nearly compensate
each other.

After the onset of PNS convection the 2D models delep-
tonize faster than their 1D counterparts (Fig. 14). The lepton
number loss is enhanced after 250 ms of post-bounce evolution
by typically 8−10% (compare Fig. 14 with Fig. B.5). The evo-
lution of the total energy loss is more complex and is smaller
than in the 1D simulations for the first ∼100−140 ms of reduced
energy emission. Only afterwards the losses become stronger in

See also Dessart, Burrows et al. 2006
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lead to a net increase of the luminosities relative to the 1D re-
sults, see Fig. 12. The effect is strongest for νx, which decouple
energetically from the medium already near the upper boundary
of the convective layer (Fig. 5b); after 200 ms of convection,
Lνx is almost 20% higher than in the 1D models. Lνe increases
only by a few percent, while Lν̄e is almost identical in 1D and
2D models, which means that the higher electron chemical po-
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transport and structural changes of the PNS nearly compensate
each other.

After the onset of PNS convection the 2D models delep-
tonize faster than their 1D counterparts (Fig. 14). The lepton
number loss is enhanced after 250 ms of post-bounce evolution
by typically 8−10% (compare Fig. 14 with Fig. B.5). The evo-
lution of the total energy loss is more complex and is smaller
than in the 1D simulations for the first ∼100−140 ms of reduced
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lead to a net increase of the luminosities relative to the 1D re-
sults, see Fig. 12. The effect is strongest for νx, which decouple
energetically from the medium already near the upper boundary
of the convective layer (Fig. 5b); after 200 ms of convection,
Lνx is almost 20% higher than in the 1D models. Lνe increases
only by a few percent, while Lν̄e is almost identical in 1D and
2D models, which means that the higher electron chemical po-
tentials and the effects associated with the convective energy
transport and structural changes of the PNS nearly compensate
each other.

After the onset of PNS convection the 2D models delep-
tonize faster than their 1D counterparts (Fig. 14). The lepton
number loss is enhanced after 250 ms of post-bounce evolution
by typically 8−10% (compare Fig. 14 with Fig. B.5). The evo-
lution of the total energy loss is more complex and is smaller
than in the 1D simulations for the first ∼100−140 ms of reduced
energy emission. Only afterwards the losses become stronger in

• PNS unstable to Ledoux convection

• Modest impact on neutrino luminosities in the first 
250 ms (especially heavy-lepton neutrinos)

• What happens over longer times?

• Check with progenitors exploding in                 
self-consistent 1D simulations

From Buras et al 2006 See also Dessart, Burrows et al. 2006
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As a specific example of a calculation, Figure 6 shows the
results of one of the 5×104 realizations of a CCSN detection
in Hyper-K for each of the distances 4, 7, and 10 kpc for the
15Me LSEOS progenitor model.

After the simulated observations are assembled, Equation (1)
is then fit to the resultant number luminosity histograms (with
error bars) using the curve_fit() function of SciPy.
curve_fit() implements the Levenberg–Marquardt algo-
rithm to fit data to a function with arbitrary parameters. The
function we fit is derived from Equation (4), as follows. First,
the energy luminosity spectrum is converted to number
luminosity spectrum, dL dEn
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Equation (13) can be substituted into Equation (4) to obtain
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where L n
n is given by Equation (1), the superscript n specifies

the use of number luminosity instead of energy luminosity, p
represents the parameter values being used in Equation (1) or
Equation (2), dN′/dEν is the normalized number spectrum, and
the other symbols have the same meanings as in Equation (4).
To use Equation (14), the distance to the SN must be known. If

the SN is visible, an independent measurement of D can be
made. If the SN is obscured, the distance will likely have to be
estimated from the neutrino signal. In our analysis, we assume
knowledge of the distance. In this analysis, we have the
advantage of knowing the energy spectrum from our models,
and that is the spectrum that is used in Equation (14) for our
analysis. An actual detection might entail the measurement of
the energy spectrum of the neutrinosand will likely have an
additional function and parameterization that will be used to fit
the spectrum. We do not perform such a full analysis in this
work, but in principle it would be straightforward. Figures 4
and 5 show that the energy distribution and average energy do
not vary appreciably over the duration of the breakout burst, so
even something as simple as assuming a constant spectrum
through the breakout burst would be reasonable. Therefore,
measurements of the spectrum could be integrated over the
time of the breakout burst to provide higher statistics in
measuring the energy spectrum than measuring a time-
dependent energy spectrum. For a given detector (which has
multiple detection channels), Equation (14) can be applied to
all the interaction channels and the results summed together.
The equation we give to the curve_fit() function to fit the
simulated data is Equation (14), while the parameters that are
being used in the fitting algorithm are those of the intrinsic
number luminosity. The Levenberg–Marquardt algorithm
requires an initial guess for the parameters, for which we
provide the values from Table 4.
After the best-fit fitting parameters are calculated, the

physical parameters are derived from the fit. We emphasize
again that it is not the fitting parametersbut rather the physical
parameters that are important to our analysis. For the main
breakout burst peak, the physical parameters calculated arethe
maximum number luminosity of breakout burst (L n

,maxen ), the
time of maximum luminosity (tmax), the width of the peak (w),
the rise time (trise,1/2), and the fall time (tfall,1/2).

6. RESULTS

We first discuss the results obtained without neutrino
oscillations taken into account, followed by the results
expected based on the neutrino oscillation scenarios due to
the NH and IH. For the purpose of this analysis, we take one
model (15Me, LSEOS) as an example. Throughout this section
(and this work), we use the 95% uncertainties as the basis for
our discussion.

6.1. Results without Neutrino Oscillations

We first consider the case of no neutrino oscillations. While
this is not likely to be the case, it provides a good baseline for
quantifying the capabilities of neutrino detectors in measuring
the properties of the νe breakout burst. This is for two reasons.
The first is that the no-oscillation case represents the case with
the largest detectable νe flux,since the νμ,τ’s to which the νe’s
oscillate, either partially (in the IH) or entirely (in the NH),
have systematically smaller interaction cross sections than do
νe’s in the detectors of our analysis. The second reason is that
any oscillations of νμ,τ’s to νe’s or ,n̄m t’s to ēn ’s openinteraction
cross sections to these species that are larger than those they
otherwise could access, and so the e xn̄ n+ background levels
increase. Thus, the no-oscillation case represents the maximum

Figure 6. Example realization of detection rates in the no-oscillation case with
1σ error bars for CCSN neutrino detections in Hyper-K at distances of 4, 7, and
10 kpc, binned in 1ms time bins. This figure not only shows the overall
increase in signal expected in Hyper-K as the distance to the SN decreasesbut
also gives a general sense of how the expected noise and error bars in each time
bin depend on D.
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luminosity (tmax,pre). The model values of these parameters are
shown in Table 2. It is the fits themselves (Equations (1) and
(2)), with the appropriate fitting parameters, that we use as our
baseline models for our analysis over the time ranges fitted by
them, not the numerical data from FORNAX. The numerical data
are used in the time ranges not fitted by Equations (1) and (2)

(i.e., the time ranges before the pre-breakout neutronization
peak and after the breakout burst).
The energy spectrum of all neutrino types varies during the

shock breakout. Figure 4 shows the νe energy spectrum as a
function of time through the breakout burst for a specific
model, the 15Me LSEOS model, derived using FORNAX. We
define the average neutrino energy E in as

E t
L E t dE

L E t E dE

,

,
. 3i

i i

i i i i

( )
( )

( )
( )ò

ò
ºn

n n n

n n n n

Figure 5 shows the average neutrino energy as a function of
time for all the models (with the zero point in time set to be the
time of maximum number luminosity). All the models show
the same general behavior. E en increases from the onset of the
breakout burst, peaks near tmax, and then decays slightly.
However, during the breakout, E en does not change radical-
lyand is similar from model to model. There is a slight trend
for the average νe energy during breakout to be slightly higher
for the lower-mass progenitors. In addition, the Shen EOS
results in a slightly higher mean νe energy than the LSEOS.
In all cases, the average energy peaks 1 ms later than the
maximum number luminosity.

3. SIGNAL EVOLUTION

In a neutrino detector, for a given neutrino detection channel,
the expected number of detected neutrinos Ndet as a function of

Figure 3. Fits to the models, using Equations (1) and(2). Left: fits to the unoscillated energy luminosity. The parameters used in the fits are in Tables 3 and 5. Right:
fits to the unoscillated number luminosity. The parameters used in these fits are in Tables 4 and 6. The numerical model data points are shown as circles, while the fits
of Equations (1) and(2) are shown as lines. For each model, the local minimum between the preshock neutronization peak and the breakout burst peak is not well fit
by either of Equations (1) and (2), and so no attempt is made to fit it in this figure.

Table 3
Breakout Peak Fit to the Energy Luminosity, L en

Model A b tc α β Lbase

(Me)
(1057

erg s−1) (ms) (ms)
(1053

erg s−1)

12 0.620 12.2 −4.69 3.06 1.09 0.360
15 1.52 20.6 −4.33 3.20 0.849 0.418
15 S 1.00e14 6.65e8 −2.49 6.26 0.182 0.345
20 1.00e14 2.33e7 −3.47 6.96 0.220 0.501
25 2.33e5 7090 −3.69 4.91 0.349 0.511

Table 4
Breakout Peak Fit to the Number Luminosity, L n

en

Model A b tc α β Lnbase
(Me) (1061 s−1) (ms) (ms) (1057 s−1)

12 3.29 16.3 −4.30 2.94 0.892 2.88
15 39.7 60.1 −3.90 3.39 0.621 3.35
15 S 1.00e10 2.71e7 −2.38 4.95 0.198 2.76
20 1.00e10 8.44e5 −3.31 5.68 0.251 3.92
25 5.18e9 4.89e5 −3.41 5.67 0.260 4.06

Table 5
Preshock Neutronization Peak Fit to the Energy Luminosity, L en

Model C σ θ μ

(Me) (1053 erg s−1)

12 3.93 0.822 1.96 2.08
15 4.28 0.809 1.79 2.12
15 S 4.78 0.790 0.925 2.08
20 5.17 0.708 0.653 2.20
25 5.41 0.682 0.404 2.22

Table 6
Preshock Neutronization Peak Fit to the Number Luminosity, L n

en

Model C σ θ μ

(Me) (1058 s−1)

12 3.74 0.834 1.72 2.26
15 3.91 0.857 1.79 2.28
15 S 4.32 0.817 0.809 2.26
20 4.63 0.754 0.596 2.33
25 4.40 0.807 1.22 2.31
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DUNE has no neutrino signal subtracted and JUNO has
neutrinos detected via IBDs and carbon NC scattering events
subtracted. For all four detectors, a cleaner peak is seen in the
IH case than in the NH case (NH case shown in Figures 14 and
15). For Hyper-K, a clear detection of the νe breakout burst
peak in the IH case should be possible at 4 kpc, is marginally
possible at 7 kpc, and is unlikely at 10 kpc. The preshock
neutronization peak is not likely to be discernible in Hyper-K at
any of these distances in the IH case.

For Super-K and JUNO, Figures 16 and 17 show that the νe
peak may be discernible in the IH case for an SN at 4 kpcbut is
not likely to be discernible at 7 or 10 kpc. The preshock
neutronization peak is not discernible at any of these distances
in the IH case.

It is the 40Ar detectors that show the greatest improvement in
measuring the νe signal in the IH case over the NH case. Since
the cross section for νe absorption on 40Ar is so large relative to
the other cross sections considered in this work, the partial
maintenance of the original νe flux makes a big difference in
the detectability of the νe signal in these detectors. Figure 17

shows, in the IH case, the expected count rate in DUNE for all
neutrinotypes, for SNe at distances of 4, 7, and 10 kpc. In the
IH case, the νe breakout burst peak should be discernible at
4 kpc, is marginally discernible at 7 kpc, and is not likely to be
discernible at 10 kpc. The pre-breakout neutronization peak is
not discernible at any of these distances.
Because the IH case allows for certain detectors to have a

discernible peak, in principle it is also possible for the
properties of the νe breakout burst peak to be measured in
the IH case for those SN distances that provide discernible
peaks. We apply the same analysis outlined in Section 5 and
used in the no-oscillation case to calculate the accuracy with
which the properties of the breakout burst can be measured by
those detectors that have the (distance-dependent) ability to
measure a clear peak in luminosity in the IH case. These
detectors include all the detectors focused on in this work,
minus IceCube. In doing this, we make no attempt to correct
for the e xn̄ n+ backgrounds. We do take into account the
partial oscillation of the νe flux into νμ,τ. Since the rising
e xn̄ n+ backgrounds dominatethe tail of the peak, we focus

Figure 16. Similar to Figure 14, but using the neutrino oscillations expected for the IH instead of the NH.

Figure 17. Similar to Figure 15, but using the neutrino oscillations expected for the IH instead of the NH.
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of the properties of the νe breakout burst in the NH case. The
preshock neutronization peak in the NH case is unlikely to be
discernible owing to the expected noise.

Based on Figures 14 and 15, the peak will not be discernible
in the NH case for either Super-K or JUNO at any of the
distances in that figure (4, 7, and 10 kpc). The preshock
neutronization peak is also indiscernible in the NH owing to the
expected noise.

40Ar detectors have as their detection channels CC absorp-
tion of νe’s and ēn ’s on the 40Ar nuclei and electron scattering.
Since, for the NH, all the original νe flux becomes νμ,τ’s, the
signal in 40Ar detectors is dominated by the νμ,τ’s that have
become νe’s. The signal of the original νe flux is lost to this
dominating νμ,τ background. This can be seen in Figure 15,
which shows, in the NH case, the expected count rate in DUNE
for all neutrino types and for SNe at distances of 4, 7, and
10 kpc. Neither the νe breakout burst peak nor the preshock

neutronization peak can be made out against the e xn̄ n+
backgrounds.

6.3. Results from Inverse Hierarchy Neutrino Oscillations

In the IH hierarchy case, ∼30% of the original νe flux
remains intact. This makes it easier to detect the νe breakout
burst against the e xn̄ n+ backgrounds than in the NH case. For
Gd-doped water-Cherenkov and scintillation detectors (in
which signals from IBDs and oxygen/carbon NC scatterings
can be subtracted), a clear peak should be discernible in an
appropriately close SN (with “appropriately close” depending
on the size of the detector). Figure 16 shows, in the IH case, the
expected count rate in Hyper-K and Super-K for all neutrino
types, with backgrounds from IBDs and oxygen NC scattering
events subtracted, for SNe at distances of 4, 7, and 10 kpc.
Figure 17 shows the same for JUNO and DUNE, except that

Figure 14. For Hyper-K (left) and Super-K (right), the expected light curve for SNe at 4, 7, and 10 kpc, incorporating the neutrino oscillations expected in the case of
the NH. Detections of neutrinos of all flavors are taken into account, with IBDs and NC scattering off of oxygen subtracted, and (for JUNO) IBDs and NC scattering
off of carbon subtracted. Each time bin shows the mean count rate in that time bin over 104 realizations, and the error bars show the standard deviation based on the
same 104 realizations.

Figure 15. Similar to Figure 14, but for JUNO (left) and DUNE (right). For JUNO, IBDs and NC scatterings off of carbon have been subtracted. For DUNE, no
signals from any detection channel have been subtracted.
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6.1.5. Detector Performance for Measuring t rise 1 2, / and tfall 1 2, /

The left panel of Figure 13 shows, in the no-oscillation case,
the 95% uncertainty in measuring trise,1/2 (the rise time of the
breakout burst luminosity) as a function of distance for the
detectors in our analysis. Table 17 shows, for each representa-
tive detector and as a function of distance, the mode of the PDF

obtained in each case for trise,1/2, as well as the errors
associated with 95% uncertainty values, in the no-oscillation
case. The values for trise,1/2, for the different progenitor masses
employing the LSEOS, are all too close to allow a measure-
ment of trise,1/2 from any of the detectors under consideration,
for any of the SN distances under consideration, to differentiate
between progenitor masses, in the no-oscillation case. How-
ever, Table 1 shows that there is a larger difference (∼0.5 ms)
in trise,1/2 between the LSEOS and the Shen EOS for the 15Me
model. In the no-oscillation case, Super-K and JUNO would
not make a measurement with this accuracy for an SN at any
distances considered here (but almost could at ∼1 kpc). DUNE
and Hyper-K would achieve this accuracy for an SN at
∼2–3 kpc.
The right panel of Figure 13 shows, in the no-oscillation

case, the 95% uncertainty in measuring tfall,1/2 (the decay time
of the breakout burst luminosity) as a function of distance for
the detectors in our analysis. Table 18 shows, for each
representative detector and as a function of distance, the mode
of the PDF obtained in each case for tfall,1/2, as well as the
errors associated with 95% uncertainty values, in the no-
oscillation case. The separation of the values for tfall,1/2 for the
LSEOS and the Shen EOS for the 15Me model is too small for
any detector or any distance considered here to have sufficient
discriminating power between these two models, in the no-
oscillation case. The difference between (for the LSEOS) the
12 and 15Me models is ∼0.4 ms, and the difference between
(for the LSEOS) the 20 and 15Me models is ∼0.9 ms. In the
no-oscillation case, DUNE and Hyper-K will be able to
measure tfall,1/2 with an accuracy of 0.4 ms for distances up to
∼1 kpc. JUNO and Super-K do not achieve this accuracy for
any distances in our study.
Measurements of trise,1/2 and tfall,1/2 could be used to show

that tfall,1/2> trise,1/2. Table 1 shows that tfall,1/2 is ∼3–4 times
larger than trise,1/2 across all the models. A measurement of
tfall,1/2> trise,1/2 would be important in verifying current
models of the νe breakout burst. In the no-oscillation case,
Super-K would be able to confirm this out to ∼2 kpc, JUNO
would be able to out to ∼3 kpc, DUNE would be able to out to
∼10 kpc, and Hyper-K would be able to out to ∼11–12 kpc.

Figure 12. Same as Figure 11, but for tmax(left) and w (right), in the no-oscillation case.

Table 15
Most Likely Value and Error for Measuring tmax for the 15 Me Model
Employing the LSEOS, Based on the 95% Error Bounds, in the No-

oscillation Case

Distance Super-K Hyper-K DUNE JUNO
(kpc) (ms) (ms) (ms) (ms)

1 0.0 0.59
0.75

-
+ 0.08 0.14

0.13
-
+ 0.06 0.17

0.16
-
+ 0.0 0.44

0.6
-
+

4 0.04 2.5
2.3

-
+ 0.05 0.51

0.56
-
+ 0.02 0.63

0.7
-
+ 0.03 1.9

1.9
-
+

7 K 0.0 0.85
1.0

-
+ −0.02 1.1

1.2
-
+ 0.05 3.9

3.2
-
+

10 K 0.0 1.2
1.3

-
+ 0.0 1.6

1.5
-
+ K

13.3 K −0.06 1.6
1.7

-
+ 0.0 2.2

1.9
-
+ K

16.7 K −0.06 2.0
2.0

-
+ 0.0 2.8

2.3
-
+ K

20 K −0.06 2.4
2.4

-
+ K K

23.3 K 0.02 2.9
2.7

-
+ K K

26.7 K 0.0 4.0
3.1

-
+ K K

30 K K K K

Table 16
Most Likely Value and Error for Measuring w for the 15 Me Model Employing
the LSEOS, Based on the 95% Error Bounds, in the No-oscillation Case

Distance Super-K Hyper-K DUNE JUNO
(kpc) (ms) (ms) (ms) (ms)

1 9.5 1.8
2.0

-
+ 9.5 0.38

0.42
-
+ 9.5 0.46

0.49
-
+ 9.5 1.4

1.5
-
+

4 8.0 3.6
11

-
+ 9.5 1.5

1.6
-
+ 9.5 1.8

2.0
-
+ 8.3 3.0

8.5
-
+

7 K 9.3 2.3
3.1

-
+ 9.2 2.6

4.0
-
+ K

10 K 9.0 2.7
4.9

-
+ 8.8 2.8

6.4
-
+ K

13.3 K 8.3 2.6
7.3

-
+ 8.2 3.1

9.0
-
+ K

16.7 K 8.0 2.9
9.4

-
+ 8.0 3.8

11
-
+ K

20 K K K K
23.3 K K K K
26.7 K K K K
30 K K K K
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luminosity) in the IH case, using the analysis outlined above.
Table 19 shows, in the IH case, for each representative detector
(except IceCube) and as a function of distance, the mode of the
PDF obtained in each case for L ,n

,maxen as well as the percent
errors associated with the 95% uncertainty values. The
uncertainties are larger at a given distance for a given detector
than in the no-oscillation case. This is attributable to the smaller
number of νe’s detected in the IH case, relative to the no-
oscillation case. In general, though, the same hierarchy in the
detectors’ ability to measure L n

,maxen is seen: for a given
distance, Hyper-K (with its larger detection mass) and DUNE
(with its larger detection cross sections) perform better than the
smaller Super-K and JUNO. Table 1 shows that a measurement
of L n

,maxen needs to have a ∼1%–2% accuracy to differentiate
between the different models employing the LSEOS. This
accuracy is not obtained in the IH case for any of the detectors
in our study for any of the distances we examine. However,
EOSs may be able to be differentiated. Table 1 shows that, for
the two 15Me models, an accuracy of 10% is needed to
differentiate between the LSEOS and the Shen EOS. Super-K
and JUNO do not obtain this accuracy even at 1 kpc for the IH
case, but DUNE should be able to make the discrimination at
1 kpc and out to ∼2 kpc, and Hyper-K can make this
discrimination out to ∼2–3 kpc.

The middle panel of Figure 22 shows, in the IH case, the
95% uncertainty in measuring tmax(the time of the maximum
luminosity of the breakout burst), using the analysis outlined

above. Table 20 shows, in the IH case, for each representative
detector (except IceCube) and as a function of distance, the
mode of the PDF obtained in each case for tmax, as well as the
errors associated with the 95% uncertainty values. Similar to
L ,n

,maxen the uncertainties are larger at a given distance for a
given detector than in the no-oscillation case. In particular, the
95% uncertainties are larger (by a factor of ∼2–3) in the IH-
oscillation case than in the no-oscillation case.
The right panel of Figure 22 shows, in the IH case, the 95%

uncertainty in measuring trise,1/2 (the rise time of the breakout

Figure 21. Same as Figure 18, but for DUNE in the IH case. For DUNE, signals have been subtracted for any detection channel.

Figure 22. Similar to Figure 11, but for L n
,maxen (left), tmax(middle),and trise,1/2(right), in the no-oscillation case. In all cases, the data for JUNO and/or Super-K are

not plotted beyond 1 kpc, and the data are shown as a single point rather than a line connecting multiple points.

Table 19
Most Likely Value and Percent Error for Measuring L n

,maxen for the 15 Me
Model Employing the LSEOS, Based on 95% Error Bounds, for the IH

Oscillation Case

Distance Super-K Hyper-K DUNE JUNO
(kpc) (1058 s−1) (1058 s−1) (1058 s−1) (1058 s−1)

1 2.1 14%
19%

-
+ 2.1 3.4%

3.8%
-
+ 2.1 4.2%

4.8%
-
+ 1.9 12%

15%
-
+

4 K 2.1 11%
16%

-
+ 2.2 13%

20%
-
+ K

7 K 2.1 18%
26%

-
+ 2.2 21%

37%
-
+ K

10 K 2.2 23%
41%

-
+ 2.3 27%

79%
-
+ K

13.3 K 2.2 28%
73%

-
+ K K

16.7 K K K K
20 K K K K
23.3 K K K K
26.7 K K K K
30 K K K K

20

The Astrophysical Journal, 817:182 (24pp), 2016 February 1 Wallace, Burrows, & Dolence

Breakout burst can provide accurate timing of core bounce

Wallace, Burrows, and Dolence 2016



Shock Breakout: Luminosity

luminosity) in the IH case, using the analysis outlined above.
Table 19 shows, in the IH case, for each representative detector
(except IceCube) and as a function of distance, the mode of the
PDF obtained in each case for L ,n

,maxen as well as the percent
errors associated with the 95% uncertainty values. The
uncertainties are larger at a given distance for a given detector
than in the no-oscillation case. This is attributable to the smaller
number of νe’s detected in the IH case, relative to the no-
oscillation case. In general, though, the same hierarchy in the
detectors’ ability to measure L n

,maxen is seen: for a given
distance, Hyper-K (with its larger detection mass) and DUNE
(with its larger detection cross sections) perform better than the
smaller Super-K and JUNO. Table 1 shows that a measurement
of L n

,maxen needs to have a ∼1%–2% accuracy to differentiate
between the different models employing the LSEOS. This
accuracy is not obtained in the IH case for any of the detectors
in our study for any of the distances we examine. However,
EOSs may be able to be differentiated. Table 1 shows that, for
the two 15Me models, an accuracy of 10% is needed to
differentiate between the LSEOS and the Shen EOS. Super-K
and JUNO do not obtain this accuracy even at 1 kpc for the IH
case, but DUNE should be able to make the discrimination at
1 kpc and out to ∼2 kpc, and Hyper-K can make this
discrimination out to ∼2–3 kpc.

The middle panel of Figure 22 shows, in the IH case, the
95% uncertainty in measuring tmax(the time of the maximum
luminosity of the breakout burst), using the analysis outlined

above. Table 20 shows, in the IH case, for each representative
detector (except IceCube) and as a function of distance, the
mode of the PDF obtained in each case for tmax, as well as the
errors associated with the 95% uncertainty values. Similar to
L ,n

,maxen the uncertainties are larger at a given distance for a
given detector than in the no-oscillation case. In particular, the
95% uncertainties are larger (by a factor of ∼2–3) in the IH-
oscillation case than in the no-oscillation case.
The right panel of Figure 22 shows, in the IH case, the 95%

uncertainty in measuring trise,1/2 (the rise time of the breakout

Figure 21. Same as Figure 18, but for DUNE in the IH case. For DUNE, signals have been subtracted for any detection channel.

Figure 22. Similar to Figure 11, but for L n
,maxen (left), tmax(middle),and trise,1/2(right), in the no-oscillation case. In all cases, the data for JUNO and/or Super-K are

not plotted beyond 1 kpc, and the data are shown as a single point rather than a line connecting multiple points.

Table 19
Most Likely Value and Percent Error for Measuring L n

,maxen for the 15 Me
Model Employing the LSEOS, Based on 95% Error Bounds, for the IH

Oscillation Case

Distance Super-K Hyper-K DUNE JUNO
(kpc) (1058 s−1) (1058 s−1) (1058 s−1) (1058 s−1)

1 2.1 14%
19%

-
+ 2.1 3.4%

3.8%
-
+ 2.1 4.2%

4.8%
-
+ 1.9 12%

15%
-
+

4 K 2.1 11%
16%

-
+ 2.2 13%

20%
-
+ K

7 K 2.1 18%
26%

-
+ 2.2 21%

37%
-
+ K

10 K 2.2 23%
41%

-
+ 2.3 27%

79%
-
+ K

13.3 K 2.2 28%
73%

-
+ K K

16.7 K K K K
20 K K K K
23.3 K K K K
26.7 K K K K
30 K K K K
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case, approach this accuracybut do not quite achieve it. More
likely is the ability to differentiate between the LSEOS and the
Shen EOS by measuring L .n

,maxen Table 1 shows that, for the
15Me model, an accuracy of ∼10% is needed to differentiate
between the two EOSs. Super-K is close to having this
accuracy at 1kpc, JUNO does obtain this accuracy for SN
distances of ∼1 kpc and smaller in the no-oscillation case, and
DUNE and Hyper-K for distances of ∼4 kpc and smaller, all in
the case of no oscillations.

6.1.3. Detector Performance for Measuring tmax

Figure 12 shows the 95% uncertainty in measuring tmax(the
time of the maximum luminosity of the breakout burst) in the
no-oscillation case as a function of distance for the detectors in
our analysis. Table 15 shows, for each representative detector
and as a function of distance, the mode of the PDF obtained in
each case for tmax, as well as the errors associated with 95%
uncertainty values, in the no-oscillation case. Hyper-K, in the

no-oscillation case, can determine tmaxto within ∼1 ms of the
model value out to a distance of ∼7 kpc. Table 15 also shows
that the value of tmaxmost likely to be measured (the mode of
the PDF of tmaxin our analysis) is displaced from the model
tmaxthrough many of the SN distances under examination.
However, this offset of the most likely measured value is only a
fraction of the error expected in a measurement of tmaxin
Hyper-K for reasonable SN distances (7 kpc) and so is less
important. DUNE can measure tmaxto an accuracy of ∼1 ms
out to ∼7 kpc in the no-oscillation case. Again, for a given
distance the measurement has a possibility of being slightly less
accurate with increasing model progenitor mass and more
accurate for the Shen EOS. JUNO and Super-K, in the no-
oscillation case, cannot make a measurement within ∼1 ms of
the model value for an SN at distances greater than ∼2 kpc. For
all distances and models, in the no-oscillation case, Hyper-K
will be the most likely to accurately measure tmax.
We have defined tmaxin such a way that it is not useful for

distinguishing between progenitor models and EOSs, but an
accurate measurement of tmaxin multiple detectors could be
useful in triangulating the position of the SN.

6.1.4. Detector Performance for Measuring w

Figure 12 shows the 95% uncertainty in measuring w (the
width of the breakout burst peak) in the no-oscillation case as a
function of distance for the detectors in our analysis. Table 16
shows, for each representative detector and as a function of
distance, the mode of the PDF obtained in each case for w, as
well as the errors associated with 95% uncertainty values, in
the no-oscillation case. To use a measurement of w to
differentiate between the 12 and 15Me models using the
LSEOS, Table 1 shows that w needs to be measured to an
accuracy of ∼0.4 ms. To differentiate between the LSEOS and
the Shen EOS for the 15Me model, an accuracy of ∼0.6 ms is
needed. However, for w there appears to be a degeneracy
between progenitor mass and EOS. For instance, the 12Me
model with LSEOS has a value of w that is close to that of the
15Me model with Shen EOS, much closer than any other two
values for the models under consideration. Thus, by itself, a
measurement of w seems unable to specify a particular
progenitor mass and EOS, but rather possible combinations
of these two.
Super-K and JUNO are unable to make a determination of w

to an accuracy of 0.4 ms (the difference between the 15and
12Me models with the LSEOS) for any distances under
consideration here, in the no-oscillation case. DUNE is close to
being able to measure this accuracy at 1 kpc, but it takes a
detector such as Hyper-K before such an accuracy can be
achieved for anSN at ∼1 kpc in the no-oscillation case. For
differentiating between the 15Me model and the 20Me or
25Me models employing the LSEOS, the accuracy needed
is ∼0.9 ms. In the no-oscillation case, Hyper-K and DUNE
would obtain such an accuracy for SNe out to ∼2 kpc, but
JUNO/Super-K would be unable to obtain this accuracy at any
distance examined in this work. We thus conclude that a
measurement of w sufficiently accurate to discriminate between
SN progenitor models is not likely to happen in the event of a
galactic SN, in the no-oscillation case, since the distances
needed to obtain a sufficiently accurate measurement only
encompass a minority fraction of the Galaxy.

Figure 11. The 95% uncertainty in measuring L n
,maxen as a function of distance

for various detectors for the 15Me LSEOS model, in the no-oscillation case.
For each detector, the lines represent the span needed to include 95% of the
L n

,maxen ’s calculated from the set of 5×104 sampled observations. When the
uncertainty values for a specific detector get either too large or too small
relative to the model value, we stop plotting the uncertainty at that distance and
greater distances. The uncertainty values for Super-K and JUNO were cut off at
7 kpc if the previous criteria were not met at 7 kpc because of the small number
of events for an SN beyond that distance.

Table 14
Most Likely Value and Percent Error for Measuring L ,n

,maxen for the 15 Me
Model Employing the LSEOS, Based on 95% Error Bounds, in the No-

oscillation Case

Distance Super-K Hyper-K DUNE JUNO
(kpc) (1058 s−1) (1058 s−1) (1058 s−1) (1058 s−1)

1 2.0 9.8%
12%

-
+ 2.0 2.3%

2.3%
-
+ 2.0 2.6%

2.6%
-
+ 2.0 7.7%

9.2%
-
+

4 2.0 31%
57%

-
+ 2.0 7.7%

9.6%
-
+ 2.0 8.9%

11%
-
+ 2.0 27%

40%
-
+

7 K 2.0 13%
18%

-
+ 2.0 15%

20%
-
+ 2.1 39%

101%
-
+

10 K 2.0 18%
25%

-
+ 2.0 20%

29%
-
+ K

13.3 K 2.0 23%
33%

-
+ 2.0 25%

43%
-
+ K

16.7 K 2.0 26%
45%

-
+ 2.0 29%

64%
-
+ K

20 K 2.0 31%
57%

-
+ 2.0 32%

98%
-
+ K

23.3 K 2.0 32%
79%

-
+ K K

26.7 K 2.0 36%
109%

-
+ K K

30 K K K K
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Conclusions

• Detailed knowledge of neutrino-matter interaction 
fundamental to understand explosion mechanism

• Neutrinos from the next galactic supernova: a unique 
probe of the central engine

• Open issues: need accurate 3D models, oscillations
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Thank you!


