

Neutrino Production at the SNS How well do we know it?

Yuri Efremenko UTK

August 20 2017, Knoxville

CEvNS has been detected

So far our accuracy in measuring CEvNS cross section is limited by:

- Statistics
- Calibration of detector (quenching)
- SNS neutrino flux

At our publication, quoted accuracy of measured cross section is 27%

SNS Layout

Proton beam energy – 1.0 GeV Intensity - 9.6 · 10¹⁵ protons/sec Pulse duration - 380ns(FWHM) Repetition rate - 60Hz Beam power up to 1.4 MW Compact Liquid Mercury target

Accumulator ring

1 GeV proton linear accelerator

Main target -

SNS-Spallation Neutrino Source

Mercury target

Mercury Inventory – 20 t Flow rate 340 kg/sec V_{max} 3.5 m/sec T_{in} 60°C T_{out} 90°C NS no change is required

Mercury lasts the entire 40 year lifetime of SNS no change is required

Stainless steel vessel should be replaced periodically

4

Some Details of Interaction in the Target for 1.3 GeV protons

Average interaction depth ~11 cm Depth of Interaction

Proton interacts near the front part of the target Neutrino sourse is very compact!!!!

DIF vs. DAR

Pion Spectra

200 MeV/c pions range in mercury is ~ 5 cm

Very few pions have a chance to decay before coming to the rest

Because of the bulk Mercury target, SNS is mostly Decay At Rest (DAR) facility !!

DIF is on the level of a 1 present and it has an angular dependent 6

Neutrino Production at the SNS

CAVEAT

There is a larger, "constant" flux of low energy electron neutrinos from beta decays of radioactive isotopes produced in the SNS target

Nobody manage to calculate this flux so far.

Neutrino Production

Each π^+ generates:

electron neutrino muon neutrino and muon antineutrino With DAR spectra

For GEANT4 we tried two physics lists. **QGSP-BERT** and **QCSP-BIC**

They gives predictions which different by a factor of two. Do not use QCSP-BIC

QGSP-BERT is based on the Bertini Phys.Rev 188(1969).

Same model was used in LAHET code for early calculations of neutrino fluxes at LANL(LSND) and ISIS(KARMEN).

Neutrino Flux Uncertainty

We adopted Bertini model. Average over SNS beam energy pion production is 0.084 pions per proton.

GENAT-3 is using Bertini as well, and gave very similar to GEANT-4 numbers.

Early calculation of Flux for SNS R.L. Burman(1997) used LAHET code with corrections based on D.R.F. Cochran(1972) and J.F. Crawford(1980)

Predictions was ~ 0.075 pions/proton

Recent global parameterization of cross sections data by J.W.Norbury(2007) is in disagreement with implemented by Burman(1997) corrections to LAHET.

Therefore we adopted average rate of 0.08 pions/proton and conservatively assigned 10% systematic uncertainty on pion production

Ultimately we like to do better than that

SNS Beam Energy is Changing but Recorded

Beam E	nergy, MeV	201-21-20	972 MeV
1000	939.5 MeV	957 MeV	and the second
950			the fill
900	And the state of the state	Contraction of the second	(the set of the
850	Mart and the second	the first	Hard Bard
800 5/3/14	8/11/14 11/19/14 2/27/15 6/7/15 9/15/15	12/24/15 4/2/16 7/1	1/16 10/19/16 1/27/17

Beam Energy MeV	Number of pions per proton, GEANT4	
939.5	0.082	
957	0.084	No.
972	0.086	
990 (from July 2017)	0.088	1215

SNS flux calibration

First way is to accurately measure pion production in Mercury for a few energy sets for protons below 1.2 GeV. Need to measure pion spectra and angular distributions as well.

HARP experiment at CERN did measure pion production at low energy, but not low enough.

Second way is to measure neutrino flux at the SNS using reaction with well known neutrino interaction cross sections.

Remember that without big capital investment, we are limited in the size of a detector

Neutrino Electron scattering Cross section are known well

Water Cherenkov Detector Nano SNSokande

Integrated over DAR cross section:

 $v_e + e^-$ → 3.0*10⁻⁴³ cm² $v_\mu + e^-$ → 4.8*10⁻⁴⁴ cm² $v_{\mu-bar} + e^-$ → 4.5*10⁻⁴⁴ cm²

For 1 t fiducial mass

 $v_e + e^-$ 20 interactions per year $v_{\mu} + e^-$ 3 interactions per year $v_{\mu-bar} + e^-$ 3 interactions per year

Need much larger detector to measure neutrino flux with a good accuracy

Neutrino Electron scattering II

Sensitivity to the electroweak angle *Electron and muon neutrinos have different trends*

Neutrino Deuteron Interaction *Cross section is known with accuracy of 2-3%*

Water Cherenkov Detector Nano SNSokande heavy

Cross sections S.Nakamura et. al. Nucl.Phys. A721(2003) 549 Prompt NC v_{μ} +d \rightarrow 1.8*10⁻⁴¹ cm² Delayed NC $v_{e\mu-bar}$ + d \rightarrow 6.0*10⁻⁴¹ cm² Delayed CC v_e + d \rightarrow 5.5*10⁻⁴¹ cm²

For 1 t fiducial mass detector

Prompt NC v_{μ} +d \rightarrow 220 interactions year⁻¹ Delayed NC $v_{e\mu-bar}$ +d \rightarrow 717 interactions year⁻¹ Delayed CC v_e +d \rightarrow 665 interactions year⁻¹

Looks Interesting !!!

This detector can benefit from resent progress in LAPPD development

ArXiv:1707.08222v2

CC reaction on Deuterium can give a handle on DIF neutrino flux

 $v_e + d \rightarrow e^- + p + p$

16

Charge Current on Carbon

 $^{12}C(v_e,e^{-})^{12}N_{gs} \rightarrow ^{12}N_{gs} \rightarrow ^{12}C + e^{+} + v_e(bar)$

Cross sections For DAR Experimental

E225 (9.3±0.4±0.8) 10⁻⁴² cm² LSND (9.1±0.4±0.9) 10⁻⁴² cm² KARMEN (9.3±0.4±0.8) 10⁻⁴² cm²

Theoretical M.Fukugita et al. Phys Lett B212(1988) 139 9.2*10⁻⁴² cm²

E.Kolbe et al., Phys RevC 49(1994) 1122 9.3*10⁻⁴² cm²

T.W.Donnelly, private communications 9.4*10⁻⁴² cm²

For 1 t fiducial mass detector (CH) CC → 70 interactions year⁻¹

To do precision test of S.M. via CEvNS we need to calibrate SNS neutrino flux Several options have been discussed Any other suggestions are very welcome!!!!

