MuSun

Precision muon capture on the deuteron

Daniel J. Salvat Center for Experimental Nuclear Physics and Astrophysics University of Washington

Muon capture

$Z(Z_{\rm eff})$	Element	Mean-life (ns)	Capture rate $\times 10^3 (s^{-1})$	Huff factor	
	μ^+	2197.03 (4)	455.16		
1 (1.00)	$^{1}\mathrm{H}$	2194.90 (7)	0.450 (20)	1.00	
	² H	2194.53 (11)	0.470 (29)		
2 (1.98)	³ He	2186.70 (10)	2.15 (2)	1.00	
	⁴ He	2195.31 (5)	0.356 (26)		
3 (2.94)	⁶ Li	2175.3 (4)	4.68 (12)	1.00	
	⁷ Li	2186.8 (4)	2.26 (12)		
4 (3.89)	⁹ Be	2168 (3)	6.1 (6)	1.00	
5 (4.81)	^{10}B	2072 (3)	27.5 (7)	1.00	
	^{11}B (lhfs)	2089 (3)	23.5 (7)	1.00	
6 (5.72)	^{12}C	2028 (2)	37.9 (5)	1.00	
	¹³ C	2037 (8)	35.0 (20)		
7 (6.61)	¹⁴ N	1919 (15)	66 (4)	1.00	
8 (7.49)	¹⁶ O	1796 (3)	102.5 (10)	0.998	
	¹⁸ O	1844 (5)	88.0 (14)		
9 (8.32)	¹⁹ F (lhfs)	1463 (5)	229 (1)	0.998	
13 (11.48)	$^{27}A1$ (lhfs)	864 (2)	705 (3)	0.993	
14 (12.22)	²⁸ Si	758 (2)	868 (3)	0.992	
20 (16.15)	Ca	334 (2)	2546 (20)	0.985	
40 (25.61)	Zr	110.4 (10)	8630 (80)	0.940	
82 (34.18)	Pb	74.8 (4)	12985 (70)	0.844	
83 (34.00)	Bi	73.4 (4)	13240 (70)	0.840	
90 (34.73)	Th	77.3 (3)	12560 (50)	0.824	
92 (34.94)	U	77.0 (4)	12610 (70)	0.820	

Single-nucleon capture in MuCap

Single-nucleon capture in MuCap

$$\Lambda_{S}^{MuCap} = 714.9 \pm 5.4_{stat} \pm 5.1_{syst} \text{ s}^{-1}$$

- Excellent agreement with chiral perturbation theory prediction
- Leverages an ultra-high purity hydrogen time projection chamber

What else can we learn from precision muon capture?

μ -d capture and chiral effective field theory

probe of two-body axial current, relating other weak two-body reactions

The MuSun measurement

By the numbers

	method	$L_{1A} \ (\mathrm{fm}^3)$			
two-body					
	reactor $\bar{\nu} + d$	$3.6 \pm 5.5 \ [11]$			
	ES, CC, NC in SNO	$4.0 \pm 6.3 [41]$			
	MuSun proposal	± 1.25			
three-body					
22	tritium beta decay	$4.2 \pm 3.7 \; [11], 4.2 \pm 0.1 \; [41]$			
other					
	helioseismology	$4.8 \pm 6.7 \ [42]$			

The lifetime method

 $e^{-(\lambda_{\mu}+\Lambda_{D})t}$

- measure μ^{-} lifetime in D₂ gas
- compare to known free μ^{+} lifetime
- free decay 1000 times faster!
- 1.5% measurement of Λ_D requires ~10⁻⁵ precision in disappearance rate!

$$\mu^- + d \rightarrow (\nu_\mu + n + n)$$

 $t_e - t_\mu$

no charged particles in the final state It's either this, or count fast neutrons with known efficiency

μ production at the Paul Scherrer Institute

590 MeV protons on carbon target stopped pions decay into muons

$\pi E1$ at the Paul Scherrer Institute

- ~few MeV muons (*p~40* MeV/c)
- Electrostatic beam kicker for one muon at a time
- *E*×*B* separator to remove electron contamination

Muons enter the apparatus at *t*_{start}

- fast scintillator to set *t=0*
 send signal to beam
 kicker -- one µ at a time
- MWPC for beam profile
- annular scintillator for veto
- thin beryllium window to enter D₂ volume

Muons stop in D_2 gas

- 48 anode ion chamber
- reconstruct *x-y-z* position
- make fiducial cuts

Y (mm)

transverse stop position

Muons decay at t_{stop}

- 32 scint. paddles for timing
- track reconstruction using two cylindrical MWPCs

Muon kinetics in deuterium

- statistical population of μd states
- hyperfine transition to doublet state
- $d\mu d$ forms ~5% of the time (mostly from quartet), m.c.f
- most are recycled to μd to start cycle again

We want to maximize population of doublet state

Muon kinetics in deuterium

- doublet to quartet rate suppressed at low T
- resonant molecular formation (T dependence)
- density dependence

P=5 bar *T*=31 K *φ*=6%

Ultrapure cryo-TPC

- High Z materials
 - Ag cathode
 - Ag plated Cu anode
 - Ag/Au-plated W wires
- Low-noise cryo-preamps

Tracking muons

	41	42	43	44	45	46	47	48		
	33	34	35	36	37	38	39	40	45	
	25 A: 289.7 E: 272.0		27 A: 389.9 E: 413.3	28 A: 520.5 E: 536.1	29 ¥ A: 1036.9 E: 1110.4	30	31	32	35	
-	t 13020 17	t 12940 18	t 12740 19	t 12460 20	t 12180 21	22	23	24	25	
	9	10	11	12	13	14	15	16	15	
	1	2	3	4	5	6	7	8	5 0 32000	34000

hWaveformDisplayBase

Events in the TPC

Target purity

CHUPS and gas chromatography

22

Production runs and statistics

- Production runs in 2014 & 2015 •
- ~3 kHz fid. vol $\mu^- \Rightarrow \sim 10^9$ evt/week
- Have 10¹⁰ candidate events in hand!
- μ^{+} useful for systematic checks

15/09

22/09

Outlook

- MuSun offers a unique glimpse into the nucleus
 - first determination of d^R in the two-nucleon system, leading to robust understanding of solar fusion and CC v-d cross section
- with a unique experiment comes unique challenges
 - developed techniques to understand muon kinetic/fusion effects
 - path forward on constraining backgrounds, wall stops, impurities
- $\sim 12 \cdot 10^9$ events in the bag
 - potential prelim. result from 2014 soon, 2015 analysis underway

MuSunnies

UW Group P. Kammel D. Hertzog E. Muldoon M. Murray D. Prindle <u>R. Ryan</u>

