

### Charged-Current Interactions at the SNS

Samuel Hedges 8/22/17







# Motivation for studying charged-current interactions

- Backgrounds induced in shielding
- Understanding supernova dynamics and nucleosynthesis
- Tests of nuclear models and excitations
- Evaluating materials for supernova and solar neutrino detection
- Limited number of similar measurements









R. Svoboda, K. Gordan, Super-K

 $\nu_{e} + n \xrightarrow{w} p + e^{-}$ 

ESA/Hubble & NAS

## Existing low-energy (1-300 MeV) v-A measurements with terrestrial neutrino sources

| Isotope          | Reaction Channel                                                   | Source                  | Experiment   | Measurement $(10^{-42} \text{ cm}^2)$           | Theory $(10^{-42} \text{ cm}^2)$              |
|------------------|--------------------------------------------------------------------|-------------------------|--------------|-------------------------------------------------|-----------------------------------------------|
| <sup>2</sup> H*  | $^{2}\mathrm{H}( u_{e},e^{-})\mathrm{pp}$                          | Stopped $\pi/\mu$       | LAMPF        | $52 \pm 18(tot)$                                | 54 (IA) (Tatara et al., 1990)                 |
| <sup>12</sup> C  | ${}^{12}{ m C}( u_e,e^-){}^{12}{ m N}_{ m g.s.}$                   | Stopped $\pi/\mu$       | KARMEN       | $9.1 \pm 0.5 ({ m stat}) \pm 0.8 ({ m sys})$    | 9.4 [Multipole](Donnelly and Peccei, 1979)    |
|                  |                                                                    | Stopped $\pi/\mu$       | E225         | $10.5 \pm 1.0 ({ m stat}) \pm 1.0 ({ m sys})$   | 9.2 [EPT] (Fukugita et al., 1988).            |
|                  |                                                                    | Stopped $\pi/\mu$       | LSND         | $8.9\pm0.3(\mathrm{stat})\pm0.9(\mathrm{sys})$  | 8.9 [CRPA] (Kolbe <i>et al.</i> , 1999b)      |
|                  |                                                                    |                         |              |                                                 |                                               |
|                  | ${}^{12}{ m C}( u_e,e^-){}^{12}{ m N}^*$                           | Stopped $\pi/\mu$       | KARMEN       | $5.1\pm0.6(\mathrm{stat})\pm0.5(\mathrm{sys})$  | 5.4-5.6 [CRPA] (Kolbe <i>et al.</i> , 1999b)  |
|                  | Stopped $\pi/\mu$                                                  |                         | E225         | $3.6\pm2.0(\mathrm{tot})$                       | 4.1 [Shell] (Hayes and S, 2000)               |
|                  |                                                                    | Stopped $\pi/\mu$       | LSND         | $4.3\pm0.4(\mathrm{stat})\pm0.6(\mathrm{sys})$  |                                               |
|                  |                                                                    |                         |              |                                                 |                                               |
|                  | ${}^{12}{ m C}( u_{\mu}, u_{\mu}){}^{12}{ m C}^{*}$                | Stopped $\pi/\mu$       | KARMEN       | $3.2\pm0.5(\mathrm{stat})\pm0.4(\mathrm{sys})$  | 2.8 [CRPA] (Kolbe <i>et al.</i> , 1999b)      |
|                  | ${}^{12}{ m C}( u, u){}^{12}{ m C}^*$                              | Stopped $\pi/\mu$       | KARMEN       | $10.5\pm1.0(\mathrm{stat})\pm0.9(\mathrm{sys})$ | 10.5 [CRPA] (Kolbe <i>et al.</i> , 1999b)     |
|                  |                                                                    |                         |              |                                                 |                                               |
|                  | $^{12}\mathrm{C}( u_{\mu},\mu^{-})\mathrm{X}$                      | Decay in Flight         | LSND         | $1060\pm30(\mathrm{stat})\pm180(\mathrm{sys})$  | 1750-1780 [CRPA] (Kolbe et al., 1999b)        |
|                  |                                                                    |                         |              |                                                 | 1380 [Shell] (Hayes and S, 2000)              |
|                  |                                                                    |                         |              |                                                 | 1115 [Green's Function] (Meucci et al., 2004) |
|                  |                                                                    |                         |              |                                                 |                                               |
|                  | $^{12}\mathrm{C}( u_{\mu},\mu^{-})^{12}\mathrm{N}_{\mathrm{g.s.}}$ | Decay in Flight         | LSND         | $56 \pm 8(\text{stat}) \pm 10(\text{sys})$      | 68-73 [CRPA] (Kolbe <i>et al.</i> , 1999b)    |
|                  |                                                                    |                         |              |                                                 | 56 [Shell] (Hayes and S, 2000)                |
| <sup>56</sup> Fe | $^{56}\mathrm{Fe}( u_e,e^-)^{56}\mathrm{Co}$                       | Stopped $\pi/\mu$       | KARMEN       | $256\pm108(\mathrm{stat})\pm43(\mathrm{sys})$   | 264 [Shell] (Kolbe <i>et al.</i> , 1999a)     |
| <sup>71</sup> Ga | $^{71}\mathrm{Ga}( u_e,e^-)^{71}\mathrm{Ge}$                       | <sup>51</sup> Cr source | GALLEX, ave. | $0.0054 \pm 0.0009(tot)$                        | 0.0058 [Shell] (Haxton, 1998)                 |
|                  |                                                                    | <sup>51</sup> Cr        | SAGE         | $0.0055 \pm 0.0007(tot)$                        |                                               |
|                  |                                                                    | <sup>37</sup> Ar source | SAGE         | $0.0055 \pm 0.0006(tot)$                        | 0.0070 [Shell] (Bahcall, 1997)                |
| $^{127}I$        | $^{127}{ m I}( u_e,e^-)^{127}{ m Xe}$                              | Stopped $\pi/\mu$       | LSND         | $284 \pm 91(\text{stat}) \pm 25(\text{sys})$    | 210-310 [Quasi-particle] (Engel et al., 1994) |

\* Many more measurements on deuterium with reactor neutrinos

#### Charged-current interactions at the SNS

- Neutrino energy at SNS comparable to supernova energies
- Timing distribution helps reduce backgrounds
- Can study both charged-current and neutral-current interactions
- High flux source of neutrinos
- Not the first to suggest these types of measurements at the SNS
- COHERENT collaboration has deployed three experiments to study these interactions



Charged-current reaction in <sup>127</sup>I

 $\nu_{\rm e} + {}^{127}\mathrm{I} \rightarrow {}^{127}\mathrm{Xe} + e^{-127}$ 

- <sup>127</sup>I as potential for a solar/supernova neutrino detector (Haxton 1988)
- Experimental test of low energy CC interactions in a medium-heavy size nucleus
- Neutrino energy threshold of 789 keV
- Radiochemical approach used at LAMPF to measure flux-averaged cross section of

$$\sigma = 2.84 \pm 0.91 (stat) \pm 0.25 (sys) \times 10^{-40} \text{ cm}^2$$

- Particle threshold in <sup>127</sup>I of 7.23 MeV
  - Can't use radiochemical approach to detect CC interaction on <sup>127</sup>I when final state not <sup>127</sup>Xe

#### LAMPF measurement

- Similar to Homestake radiochemical approach for measuring CC on <sup>37</sup>Cl from solar neutrinos
- Tank of Nal (1540kg of <sup>127</sup>l) 8.5m from beam stop, 300+ day exposure
- <sup>127</sup>Xe decays exclusively to excited <sup>127</sup>I states: <sup>127</sup>Xe  $\rightarrow$  <sup>127</sup>I \* +  $\gamma$  (203, 375 keV) <sup>127</sup>I \*  $\rightarrow$  <sup>127</sup>I +  $e^{-}$  (~0.9, 4.7 keV)
- Background processes also produce <sup>127</sup>Xe: cosmic rays, fast/slow neutrons, energetic alphas



#### Nal $\nu$ E—A 185kg prototype detector

- Development of detector was thesis project of Ben Suh
- Measures outgoing lepton in CC interactions in energy range of interest (~1-52 MeV)
  - Segmented design can give some positional information
  - No requirement on final state of <sup>127</sup>I nucleus
  - Uses timing, energy, detector multiplicity to reject backgrounds (muons)
- Running in production mode since November 2016
- 0.25 counts/crystal/month predicted
- Currently operating in self-vetoing configuration: identify muons as high-multiplicity events, look at central 8 detectors for CC interaction
  - Deployment of muon vetos will reduce backgrounds, include all 24 crystals as fiducial mass





#### Opportunities with a larger detector: Nal 2-ton

- Dual outputs allow observation of low energy CEvNS events (~3-100 keV) and higher energy charged-current events (<52.8 MeV)</li>
- Allows dual measurement of electron-neutrino process and flavor-blind process
- <sup>127</sup>Xe decays with half-life of 36.4 days, may not be useful for tagging CC events
  - Should be able to measure <sup>127</sup>Xe content from decays, but need to understand production from background sources, DAQ considerations



#### The Neutrino Cubes: CC and NC Interactions

- Designed by Grayson Rich, palletized neutrino detectors with switchable targets
- PSD capable liquid scintillators surrounded by target mass
- Look for neutrons produced in CC and NC events above particle threshold
- Muon vetos reduce backgrounds, water shielding reduces thermal neutrons





#### Charged-Current reaction in <sup>208</sup>Pb

 $\nu_{\rm e} + {}^{208}\text{Pb} \rightarrow {}^{208}\text{Bi}^* + e^-$ 

- Bi<sup>\*</sup> can de-excite via emission of gammas, neutrons, protons
- Common shielding material
- High Z, expected large CC cross-section
- Test nuclear models for heavy nucleus
- Improve understanding of SN dynamics
- Spectroscopic information about neutrino energy may be possible from number of neutrons
  - Never measured, important for existing experiments
- Neutron emission threshold of 6.9 MeV in <sup>208</sup>Bi
- Two neutron emission possible for  $\nu_{\rm e}$  > 14.98 MeV



http://www.triumf.ca/research-highlights/experimental-result/halo-operational-snolab

#### The Lead Neutrino Cube

- Nearly 1-ton of <sup>208</sup>Pb
- Data acquisition started in early 2016, ongoing
- Expect most of signal to come from CC interaction, neutrons in delayed window
- Try to reconstruct neutron spectrum, 1n vs 2n events
- COHERENT has preliminary measurement from LS cell in CsI detector's shielding

| $(T, \alpha)$                                                                                                                                                                                          | (4,0)                                                 | (6,0)                                                                                | (8,0)                                                                               | (10,0)                                          | (3,3)                                                 | (4,3)                                                 | (6.26,3)                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| $^{208}$ Pb $(\nu_e, e^-\gamma)^{208}$ Bi<br>$^{208}$ Pb $(\nu_e, e^-n)^{207}$ Bi<br>$^{208}$ Pb $(\nu_e, e^-p)^{207}$ Pb<br>$^{208}$ Pb $(\nu_e, e^-\alpha)^{204}$ Tl<br>$^{208}$ Pb $(\nu_e, e^-)$ X | 4.7 (1)<br>2.3 (2)<br>1.8 (-2)<br>2.1 (-2)<br>2.8 (2) | $\begin{array}{c} 1.3 (2) \\ 9.9 (2) \\ 1.1 (-1) \\ 2.6 (-1) \\ 1.1 (3) \end{array}$ | $\begin{array}{c} 2.5 (2) \\ 2.3 (3) \\ 3.3 (-1) \\ 1.1 (0) \\ 2.5 (3) \end{array}$ | 4.0(2)<br>4.0(3)<br>6.9(-1)<br>3.0(0)<br>4.5(3) | 3.5 (1)<br>1.2 (2)<br>7.2 (-3)<br>4.7 (-3)<br>1.6 (2) | 7.6 (1)<br>4.2 (2)<br>3.3 (-2)<br>4.1 (-2)<br>4.9 (2) | $\begin{array}{c} 2.2 (2) \\ 1.9 (3) \\ 2.3 (-1) \\ 6.0 (-1) \\ 2.1 (3) \end{array}$ |

E Kolbe, K Langanke, G Martínez-Pinedo, and P Vogel Journal of Physics G: Nuclear and Particle Physics, Volume 29, Number 11 D. Akimov, et al. COHERENT collaboration 2017





#### Charged-Current reaction in <sup>56</sup>Fe

 $\nu_{\rm e} + {}^{56}{\rm Fe} \rightarrow {}^{56}{\rm Co}^* + e^-$ 

- Co<sup>\*</sup> can de-excite via emission of gammas, neutrons, protons
- Important for supernova dynamics during core collapse
- Use as a supernova neutrino detector
  - Neutron production rate can provide information on SN neutrino energy
  - Understanding response to CC and NC interactions useful for identifying neutrino flavor
- Common shielding material
  - KARMEN saw bremsstrahlung of charged-current lepton interacting in their shielding
  - Report cross section of

```
2.51 \pm 0.83 \pm 0.42 \times 10^{-40}
```

 For CC, proton threshold of 5.85 MeV, neutron threshold of 10.08 MeV For NC, proton threshold of 10.18 MeV, neutron threshold of 11.2 MeV



ttp://insider.si.edu/2012/03/remains-of-exploded-star-indicate-supernova-turned-it-inside-out

#### The Iron Neutrino Cube

- Nearly 700kg of iron
- Liquid scintillators with PSD looking for low energy neutrons
- Partial deployment in February 2017, full configuration in July 2017
- Looking for gammas/neutrons produced in CC, NC interactions
  - May be able to see bremsstrahlung gammas for events near liquid scintillators

| (Τ, α)                                                  | (4, 0)   | (6, 0)   | (8, 0)   | (10, 0) | (3, -3)  | (4, -3)  | (6.26, -3) |
|---------------------------------------------------------|----------|----------|----------|---------|----------|----------|------------|
| $^{56}$ Fe( $\nu_e, e^-\gamma)^{56}$ Co                 | 9.8 (0)  | 3.1 (1)  | 6.1 (1)  | 1.3 (2) | 7.7 (0)  | 2.1 (1)  | 7.5 (1)    |
| ${}^{56}\text{Fe}(\nu_e, e^- n){}^{55}\text{Co}$        | 7.5 (-1) | 8.0 (0)  | 3.2 (1)  | 8.1 (1) | 2.5 (-1) | 1.7 (0)  | 2.0(1)     |
| ${}^{56}\text{Fe}(v_e, e^- p){}^{55}\text{Fe}$          | 5.4 (0)  | 3.2 (1)  | 9.7 (1)  | 1.7 (2) | 9.2 (-1) | 5.1 (0)  | 4.7 (1)    |
| $^{56}$ Fe $(\nu_e, e^-\alpha)^{52}$ Mn                 | 6.1 (-2) | 9.7 (-1) | 4.8 (0)  | 1.5 (1) | 3.0 (-2) | 2.1 (-1) | 2.9 (0)    |
| ${}^{56}\text{Fe}(\nu_e, e^-)\text{X}$                  | 1.6 (1)  | 7.2 (1)  | 1.9 (2)  | 4.0 (2) | 8.9 (0)  | 2.8 (1)  | 1.4 (2)    |
| $(T, \alpha)$                                           | (4, 0)   | (6, 0)   | (8, 0)   | (10, 0) | (3, -3)  | (4, -3)  | (6.26, -3) |
| $^{56}$ Fe $(\nu, \nu' \gamma)^{56}$ Fe                 | 2.5 (0)  | 9.8 (0)  | 1.7 (1)  | 2.8 (1) | 1.2 (0)  | 4.4 (0)  | 1.6 (1)    |
| ${}^{56}\text{Fe}(\nu, \nu' n){}^{55}\text{Fe}$         | 8.9 (-1) | 6.7 (0)  | 2.2 (1)  | 5.0(1)  | 2.8 (-1) | 1.7 (0)  | 1.4 (1)    |
| ${}^{56}\text{Fe}(\nu, \nu' \text{ p}){}^{55}\text{Mn}$ | 1.2 (-1) | 1.0 (0)  | 3.6 (0)  | 9.3 (0) | 3.4 (-2) | 2.3 (-1) | 2.2 (0)    |
| ${}^{56}\text{Fe}(\nu,\nu'\alpha){}^{52}\text{Cr}$      | 2.4 (-2) | 1.9 (-1) | 6.6 (-1) | 1.7 (0) | 6.4 (-3) | 4.4 (-2) | 4.0 (-1)   |
| $^{56}$ Fe( $\nu, \nu'$ )X                              | 3.6 (0)  | 1.8 (1)  | 4.3 (1)  | 8.9(1)  | 1.5 (0)  | 6.3 (0)  | 3.3 (1)    |





#### Future Prospects for the Neutrino Cubes

- Data collection, analysis, and simulation ongoing
  - Students at Duke, UNC, UT Knoxville
- Increase neutron detection rate with more mass and detectors
- Explore other configurations to gain information from CC lepton as well as nuclear de-excitations
- Neutrino cubes designed to have target material be switchable, cost of material and scientific relevance to dictate future measurements

#### Potential future CC measurements at the SNS

- Carbon:  $\nu_e + {}^{12}C \rightarrow {}^{12}N + e^-$ 
  - Useful for normalizing neutrino cross sections, flux
  - <sup>12</sup>N decays with half-life of 11ms via high energy positron emission
  - Neutrino energy threshold high, but possible at SNS
  - Neutral current interaction has excited state emitting 15.11 MeV gamma
- Oxygen:  $\nu_e + {}^{16}O \rightarrow {}^{16}F + e^-$ 
  - Light nuclei, useful for SN dynamics, existing/future detectors, directional information
  - <sup>16</sup>F decays with beta or beta + gamma with half-life of 7.13 seconds
  - Neutrino energy threshold high, but possible at SNS
  - In NC interaction, following particle emission (n, p) have <sup>15</sup>F or <sup>15</sup>O decay with high energy gammas
  - Sensitive to isotope abundance: 0.2% <sup>18</sup>O makes ~10% of total cross section for solar neutrinos
- Sodium:  $\nu_e + {}^{23}\text{Na} \rightarrow {}^{23}\text{Mg} + e^-$ 
  - Less theoretical work done for this, may be capable of measuring in 2-ton NaI[TI] detector
  - 11 second decay time of <sup>23</sup>Mg, ~3 MeV positron followed by annihilation—help determine detector efficiency at identifying CC produced leptons
- Argon:  $\nu_{\rm e}$  + <sup>40</sup>Ar  $\rightarrow$  <sup>40</sup>K +  $e^{-}$ 
  - Useful for DUNE

•

• • •

• See previous talks

15

#### Conclusion

- SNS an ideal source of neutrinos for CC and NC interactions near supernova energies
- Three experiments running looking at non-CEvNS neutrino interactions at the SNS
  - Neutrino cubes: Brandon Becker (UT Knoxville), Mayra Cervantes (Duke), Justin Raybern (Duke), Grayson Rich (UNC), Gleb Sinev (Duke)
  - Sodium Iodide: Abasi Brown (NCCU), Eric Erkela (UW), Shalane Hairston (NCCU), Daniel Salvat (UW), Benjamin Suh (U. Indiana)
- Many ideas for future measurements
- SNS and ORNL a big help in getting these deployed



Thank you!