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Fig. 1. Upper limits on the spin-independent WIMP-nucleon coupling �SI under
the standard assumptions about the Galactic halo described in the text. Most sensi-
tive limits are from cryogenic experiments (solid) CDMS44 (black), EDELWEISS-II45

(medium gray), and CRESST46 (light gray), and two-phase noble experiments (dashed)
XENON1047 (black), ZEPLIN-III48 (medium gray), and WArP49 (light gray). Current
experiments already exclude part of the parameter space of MSSM models (shaded).50

Figure made using the Dark Matter Limit Plotter.51

2.2. The WIMP recoil energy spectrum

It is illuminating to calculate the energy spectrum for the case of zero
momentum-transfer (i.e. taking F 2 ⇥ 1). Furthermore, simply multiplying
this spectrum by the energy dependence of F 2(q), rather than including
the form factor F 2 within the kinematic integral to follow, is convenient
and usually adequate.

The energy spectrum arises due to the familiar kinematics of elastic
scattering. In the center-of-momentum frame, the WIMP scatters o� a nu-
cleus through an angle �, with cos � uniformly distributed between �1 and
1 for the isotropic scattering that occurs with zero-momentum transfer.
If the WIMP’s initial energy in the lab frame Ei = M�v2/2, the nucleus
recoils with energy

ER = Eir
(1� cos �)

2
(6)

Recoil energy O(10keV)

1

HW 1

Ei =
m�v2

2
(1)

Incident energy 
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Fig. 2. Upper limits on the spin-dependent WIMP-neutron coupling �SDn (left) and
the spin-dependent WIMP-proton coupling �SDp (right) under the standard assump-
tions about the Galactic halo described in the text. The most sensitive limits on �SDn

are from the same experiments shown in Fig. 1 (with the same linetypes): XENON1052

(black dashes), ZEPLIN-III53 (medium gray dashes), and CDMS44 (black solid). Note
ZEPLIN-III limits were calculated with a scaling factor 2� smaller than that used for
XENON10. Due to the low intrinsic sensitivity of leading (Xe and Ge) experiments
to spin-dependent interactions on protons, the most sensitive limits on �SDp are from
experiments with only modest sensitivity to spin-independent interactions: PICASSO54

(6-sided stars), COUPP55 (5-pointed stars), KIMS56 (circles), and NAIAD57 (�). Limits
from indirect search experiments SuperKamiokande58 (points) and IceCube31 (dotted)
make additional assumptions about branching fractions to neutrinos. Current exper-
iments do not exclude any part of the parameter space of the same MSSM models
(shaded)50 shown in Fig. 1, despite the fact that the predicted spin-dependent cross sec-
tions are ⇥ 3000� larger than the spin-independent ones. Figure made using the Dark
Matter Limit Plotter.51

(in the lab frame), where

r � 4µ2
A

M�MA
=

4M�MA

(M� +MA)
2 (7)

is a dimensionless parameter related to the reduced mass µA. Note that
r ⇥ 1, with r = 1 only if M� = MA. For this isotropic scattering, the
recoil energy is therefore uniformly distributed between 0–Eir. As shown in
Fig. 3, the di�erential contribution to the di�erential rate for a given initial
WIMP energy

d

�
dR

dER
(ER)

⇥
=

dR(Ei)

Eir
, (8)

Max energy O(100keV)

Min velocity 

with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term ⇥0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

d⇥WN(q)

dq2
=

1

�v2
|M|2 =

⇥0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ⇥ M�MA/(M� + MA) in terms of the WIMP
mass M� and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

⇥0WN =
4µ2

A

�
[Zfp + (A� Z)fn]

2 +
32G2

Fµ
2
A

�

J + 1

J
(ap⇤Sp⌅+ an⇤Sn⌅)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are e�ective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,M�, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus ⇤Sp,n⌅ = ⇤N |Sp,n|N⌅. For free nucleons, ⇤Sp⌅ = ⇤Sn⌅= 0.5. Ta-
ble 1 from Ref. 43 lists values of ⇤Sp⌅ and ⇤Sn⌅ for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.

WIMP-Nucleus scattering cross-section

1

HW 1

Ei =
m�v2

2
Emax =

m�v2esc
2

Emin =
ER

r
(1)

q =
�

2mTER =
�

mTEir(1� cos�)

q

mN
=

⇤
2mTER

m2
N

⇥
⇥

2ERA

mN
� .01

⇤
A � 0.1

⇤n,p =
µ2
n,pf

2
n,p

⇥

which is formulated in terms of the definition for the scattering cross-section off of a single nucleon

In order to account for any momentum dependence, a form factor is introduced
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This will encode a loss of coherence at higher momentum transfer



The differential recoil rate is the primary quantity of interest

particle input astrophysics input

One must also account for the detector’s efficiency and energy resolution.

with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,
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produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-

Neutrino Energy [MeV]
-110 1 10 210

3
10

]
-1

.M
e
V

-1
.s

-2
N

e
u
tr

in
o
 F

lu
x
 [
c
m

-310

1

310

610

910

1210

1310
pp

pep

hep

7Be_384.3keV

7Be_861.3keV

8B

13N

15O

17F
dsnbflux_8

dsnbflux_5

dsnbflux_3

AtmNu_e

AtmNu_ebar

AtmNu_mu

AtmNu_mubar

Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,

2

A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,

electron capture on neutrinos from the CNO cycle

Image Credit: NASA/ESA/HEIC and The Hubble Heritage Team (STScI/AURA)
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Table 1. Nuclear reactions responsible for producing almost all of the Sun’s en-
ergy and the different “types” of solar neutrinos (nomenclature): pp-neutrinos,
pep-neutrinos, hep-neutrinos, 7Be-neutrinos, and 8B-neutrinos. ‘Termination’
refers to the fraction of interacting protons that participate in the process.

Reaction Termination Neutrino Energy Nomenclature
(%) (MeV)

p + p →2H+e+ + νe 99.96 < 0.423 pp-neutrinos

p + e− + p →2H+νe 0.044 1.445 pep-neutrinos

2H+p →3He+γ 100 – –

3He+3He→4He+p + p 85 – –

3He+4He→7Be+γ 15 – –

7Be+e− →7Li+νe 15
0.863(90%)
0.386(10%)

7Be-neutrinos

7Li+p →4He+4He – –

7Be+p →8B+γ 0.02 – –

8B→8Be∗ + e+ + νe < 15 8B-neutrinos

8Be→4He+4He – –

3He+p →4He+e+ + νe 0.00003 < 18.8 hep-neutrinos

Note: Adapted from Ref. 12. Please refer to Ref. 12 for a more detailed expla-
nation.

using a technique not dissimilar to the one which failed to see electron-type
antineutrinos from reactors. The experiment consisted of a very large tank
containing a chlorine compound. The tank was “searched” periodically
for argon atoms, which were then detected by the decay of radioactive
37Ar. In order to appreciate how challenging the experiment was, in several
cubic meters of the chlorine compound, several argon atoms were detected
— every month! Davis was awarded the 2002 Physics Nobel Prize “for
pioneering contributions to astrophysics, in particular for the detection of
cosmic neutrinos.”

The Homestake experiment continued to measure the solar neutrino
flux for over thirty years. It was followed by two different types of experi-
ments. The Kamiokande experiment (start date 1985) was a very large wa-
ter Cherenkov experiment, designed to look for proton decay. It also man-

hep pep

pp

An irreducible 
background

for direct DM searches
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A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,

Neutrino 
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A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,

Solar

2

A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,
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A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,

Atmospheric 
DSNB 
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Figure 2: Neutrino-induced nuclear recoil spectra for the different neutrino sources, for a Ge target (left) and a Xe target
(right).

and diffuse supernova neutrinos. Note that we are not
considering geoneutrinos nor reactor neutrinos in this
study. Indeed, as shown in [6], the contribution of the
geoneutrinos to the neutrino-induced recoil energy spec-
trum is at least 2 orders of magnitude below the solar
neutrino contribution over the whole energy range. The
reactor neutrinos are strongly dependent on the location
of the experiment with respect to the surrounding nuclear
reactors and on the power these reactors are working
at. While this contribution should be estimated indepen-
dently for each experiment, we are not considering them
as this is beyond the scope of this paper and will there-
fore only discuss the case of cosmic neutrinos as shown
in Fig. 1.

III. WIMP AND NEUTRINO BACKGROUND
EVENT RATE CALCULATIONS

A. WIMP-induced nuclear recoil rate calculation

Like most spiral galaxies, the Milky Way is believed to
be immersed in a halo of WIMPs which outweighs the
luminous component by at least an order of magnitude
[4, 22, 23]. The velocity distribution of dark matter in the
halo is traditionally modeled as a Maxwell-Boltzmann,
characterized by a density profile that scales as 1/r2 and
leading to the observed flat rotation curve [24]. Recent
results from N-body simulations in fact indicate that
this Maxwell-Boltzmann assumption is an oversimplifi-
cation [25–27], as there is a wider peak and there are fe-
wer particles in the tail of the distribution ; this result has
important implications for interpretation of experimental
results [28]. Further, substructures, streams, and a dark
disk may create distinct features in the velocity distribu-
tion [29–32]. Since the goal of this paper is to examine
the effects of the neutrino background on the extraction
of a WIMP signal, to make the connection to previous

experimental studies in this paper we just consider the
Maxwell-Boltzmann model, which is characterized by the
following WIMP velocity distribution in the Earth frame,

f(v⃗) =

⎧

⎨

⎩

1
Nesc(2πσ2

v)
3/2 exp

[

− (v⃗+V⃗lab)
2

2σ2
v

]

if |v⃗ + V⃗lab| < vesc

0 if |v⃗ + V⃗lab| ≥ vesc
(1)

where σv is the WIMP velocity dispersion related to
the local circular velocity v0 such that σv = v0/

√
2,

V⃗lab and vesc are respectively the laboratory and the
escape velocities with respect to the galactic rest frame,
and Nesc is the correction to the normalization of the
velocity distribution due to the velocity cutoff (vesc).

The differential recoil energy rate is then given by [24],

dR

dEr
= MT ×

ρ0σ0

2mχm2
r

F 2(Er)

∫

vmin

f(v⃗)

v
d3v (2)

where ρ0 is the local dark matter density, mχ is the
WIMP mass, mr = mχmN/(mχ + mN ) is the WIMP-
nucleus reduced mass and σ0 is the normalized to nucleus
cross section. Note that we will assume that the WIMP
couples identically to the neutrons and protons, though
generically a larger theoretical parameter space is avai-
lable [33]. F (Er) is the nuclear form factor that describes
the loss of coherence for recoil energies above ∼10 keV.
In the following, we will consider the standard Helm form
factor [24]. For the sake of comparison with running ex-
periments, we will consider the standard values of the dif-
ferent astrophysical parameters : ρ0 = 0.3 GeV/c2/cm3,
v0 = 220 km/s, Vlab = 232 km/s and vesc = 544 km/s.

Xenon

3

10
-04

10
-02

10
+00

10
+02

10
+04

10
+06

10
+08

10
+10

10
+12

 0.1  1  10  100  1000

N
eu

tr
in

o
 F

lu
x

 [
cm

-2
.s

-1
.M

eV
-1

]

Neutrino Energy [MeV]

pp

pep

hep

7Be384.3keV
7Be861.3keV

8B

13N

15O

17F

dsnbflux8
dsnbflux5
dsnbflux3
AtmNue

AtmNuebar
AtmNumu

AtmNumubar

10
-04

10
-02

10
+00

10
+02

10
+04

10
+06

10
+08

 0.001  0.01  0.1  1  10  100

E
v

en
t 

ra
te

 [
(t

o
n

.y
ea

r.
k

eV
)-1

]

Recoil energy [keV]

WIMP signal: mχ = 6 GeV/c
2
, σχ-n = 4.4x10

-45
 cm

2

pp

pep

hep
7Be384.3keV

7Be861.3keV

8B

13N

15O

17F
dsnbflux8

dsnbflux5

dsnbflux3

AtmNue

AtmNuebar

AtmNumu

AtmNumubar

total

FIG. 1: Left: Relevant neutrino fluxes to the background of direct dark matter detection experiments: Solar, atmospheric, and
di�use supernovae [22–24]. Right: Neutrino background event rates for a germanium based detector. The black dashed line
corresponds to the sum of the neutrino induced nuclear recoil event rates. Also shown is the similarity between the event rate
from a 6 GeV/c2 WIMP with a SI cross section on the nucleon of 4.4� 10�45 cm2 (black solid line) and the 8B neutrino event
rate.

neutrino-nucleus cross section with the neutrino flux as

dR�

dEr
= MT ⇥

⇤

A

fA

⌅

Emin
�

dN

dE�

d⇤(E� , Er)

dEr
dE� (4)

where dN
dE�

corresponds to the neutrino flux. As it has
been shown in Ref. [17], the neutrino-nucleon elastic
interaction is theoretically well-understood within the
Standard Model, and leads to a coherence e�ect imply-
ing a neutrino-nucleus cross section that approximately
scales as the atomic number (A) squared when the mo-
mentum transfer is below a few keV. At tree level, the
neutrino-nucleon elastic scattering is a neutral current
interaction that proceeds via the exchange of a Z boson.
The resulting di�erential neutrino-nucleus cross section
as a function of the recoil energy and the neutrino en-
ergy is given by [18]:

d⇤(E� , Er)

dEr
=

G2
f

4⇥
Q2

⇤mN

�
1� mNEr

2E2
�

⇥
F 2
SI(Er) (5)

where mN is the nucleus mass, Gf is the Fermi coupling
constant and Q⇤ = N � (1 � 4 sin2 �⇤)Z is the weak
nuclear hypercharge with N the number of neutrons, Z
the number of protons, and �⇤ the weak mixing angle.
The presence of the form factors describes the loss of
coherence at higher momentum transfer and is assumed
to be the same as for the WIMP-nucleus SI scattering.
Interestingly, as the CNS interaction only proceeds
through a neutral current, it is equally sensitive to all
active neutrino flavors.

In Fig. 1 (left panel), we present all the neutrino fluxes
that will induce relevant backgrounds to dark matter
detection searches. The di�erent neutrino sources con-
sidered in this study are the sun, which generates high
fluxes of low energy neutrinos following the pp-chain [19]

and the possible CNO cycle [20, 21], di�use supernovae
(DSNB) [22] and the interaction of cosmic rays with the
atmosphere [23] which induces low fluxes of high energy
neutrinos. As a summary of the neutrino sources used
in the following, we present in Table II the di�erent
properties of the relevant neutrino families such as: the
maximal neutrino energy, the maximum recoil energy for
a Ge target nucleus and the overall flux normalization
and uncertainty. In order to most directly compare to
the analysis of Ref. [10], we use the standard solar model
BS05(OP) and the predictions on the atmospheric and
the DSNB neutrino fluxes from [23] and [22] respectively.

The di�erent neutrino event rates are shown in Fig. 1
(right panel) for a Ge target. We can first notice that
the highest event rates are due to the solar neutrinos
and correspond to recoil energies below 6 keV. Indeed,
the 8B and hep neutrinos dominate the total neutrino
event rate for recoil energies between 0.1 and 8 keV
and above these energies, the dominant component is
the atmospheric neutrinos. Also shown, as a black solid
line, is the event rate from a 6 GeV/c2 WIMP with
a SI cross section on the nucleon of 4.4 ⇥ 10�45 cm2.
We can already notice that for this particular set of
parameters (m⇥,⇤SI), the WIMP event rate is very
similar to the one induced by the 8B neutrinos. As
discussed in the next section, this similarity will lead
to a strongly reduced discrimination power between
the WIMP and the neutrino hypotheses and therefore
dramatically a�ect the discovery potential of upcoming
direct detection experiments.

Note that in this study we do not consider neutrino-
electron scattering, even though it is predicted to pro-
vide a substantial signal in future dark matter detectors.
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Figure 2: Neutrino-induced nuclear recoil spectra for the different neutrino sources, for a Ge target (left) and a Xe target
(right).

and diffuse supernova neutrinos. Note that we are not
considering geoneutrinos nor reactor neutrinos in this
study. Indeed, as shown in [6], the contribution of the
geoneutrinos to the neutrino-induced recoil energy spec-
trum is at least 2 orders of magnitude below the solar
neutrino contribution over the whole energy range. The
reactor neutrinos are strongly dependent on the location
of the experiment with respect to the surrounding nuclear
reactors and on the power these reactors are working
at. While this contribution should be estimated indepen-
dently for each experiment, we are not considering them
as this is beyond the scope of this paper and will there-
fore only discuss the case of cosmic neutrinos as shown
in Fig. 1.

III. WIMP AND NEUTRINO BACKGROUND
EVENT RATE CALCULATIONS

A. WIMP-induced nuclear recoil rate calculation

Like most spiral galaxies, the Milky Way is believed to
be immersed in a halo of WIMPs which outweighs the
luminous component by at least an order of magnitude
[4, 22, 23]. The velocity distribution of dark matter in the
halo is traditionally modeled as a Maxwell-Boltzmann,
characterized by a density profile that scales as 1/r2 and
leading to the observed flat rotation curve [24]. Recent
results from N-body simulations in fact indicate that
this Maxwell-Boltzmann assumption is an oversimplifi-
cation [25–27], as there is a wider peak and there are fe-
wer particles in the tail of the distribution ; this result has
important implications for interpretation of experimental
results [28]. Further, substructures, streams, and a dark
disk may create distinct features in the velocity distribu-
tion [29–32]. Since the goal of this paper is to examine
the effects of the neutrino background on the extraction
of a WIMP signal, to make the connection to previous

experimental studies in this paper we just consider the
Maxwell-Boltzmann model, which is characterized by the
following WIMP velocity distribution in the Earth frame,

f(v⃗) =

⎧

⎨

⎩

1
Nesc(2πσ2

v)
3/2 exp

[

− (v⃗+V⃗lab)
2

2σ2
v

]

if |v⃗ + V⃗lab| < vesc

0 if |v⃗ + V⃗lab| ≥ vesc
(1)

where σv is the WIMP velocity dispersion related to
the local circular velocity v0 such that σv = v0/

√
2,

V⃗lab and vesc are respectively the laboratory and the
escape velocities with respect to the galactic rest frame,
and Nesc is the correction to the normalization of the
velocity distribution due to the velocity cutoff (vesc).

The differential recoil energy rate is then given by [24],

dR

dEr
= MT ×

ρ0σ0

2mχm2
r

F 2(Er)

∫

vmin

f(v⃗)

v
d3v (2)

where ρ0 is the local dark matter density, mχ is the
WIMP mass, mr = mχmN/(mχ + mN ) is the WIMP-
nucleus reduced mass and σ0 is the normalized to nucleus
cross section. Note that we will assume that the WIMP
couples identically to the neutrons and protons, though
generically a larger theoretical parameter space is avai-
lable [33]. F (Er) is the nuclear form factor that describes
the loss of coherence for recoil energies above ∼10 keV.
In the following, we will consider the standard Helm form
factor [24]. For the sake of comparison with running ex-
periments, we will consider the standard values of the dif-
ferent astrophysical parameters : ρ0 = 0.3 GeV/c2/cm3,
v0 = 220 km/s, Vlab = 232 km/s and vesc = 544 km/s.
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Standard practice has been to start with effective interaction terms, and then 
reduce in the non-relativistic limit
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2

≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(
v⃗⊥2

T ,
q⃗ 2

m2
N

,
{
cτ
i c

τ ′

j

})
W ττ ′

k (q⃗ 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity v⃗⊥

T and three-momentum transfer q⃗ = p⃗ ′ −
p⃗ = k⃗ − k⃗′, where p⃗ (p⃗ ′) is the incoming (outgoing) WIMP
three-momentum and k⃗ (k⃗′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(x⃗) = c1#̄χ (x⃗)#χ (x⃗)#̄N (x⃗)#N (x⃗), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

σ⃗ ·p⃗
E+mχ

ξ

)

∼
(

ξ
σ⃗ ·p⃗
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4S⃗χ · S⃗N ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors S⃗χ and S⃗N , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity v⃗⊥

T and three-momentum transfer q⃗ = p⃗ ′ −
p⃗ = k⃗ − k⃗′, where p⃗ (p⃗ ′) is the incoming (outgoing) WIMP
three-momentum and k⃗ (k⃗′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(x⃗) = c1#̄χ (x⃗)#χ (x⃗)#̄N (x⃗)#N (x⃗), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

σ⃗ ·p⃗
E+mχ

ξ

)

∼
(

ξ
σ⃗ ·p⃗
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4S⃗χ · S⃗N ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors S⃗χ and S⃗N , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2

≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk
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v⃗⊥2

T ,
q⃗ 2

m2
N

,
{
cτ
i c

τ ′

j

})
W ττ ′

k (q⃗ 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity v⃗⊥

T and three-momentum transfer q⃗ = p⃗ ′ −
p⃗ = k⃗ − k⃗′, where p⃗ (p⃗ ′) is the incoming (outgoing) WIMP
three-momentum and k⃗ (k⃗′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(x⃗) = c1#̄χ (x⃗)#χ (x⃗)#̄N (x⃗)#N (x⃗), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
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(
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σ⃗ ·p⃗
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)

∼
(

ξ
σ⃗ ·p⃗
2m
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, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4S⃗χ · S⃗N ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors S⃗χ and S⃗N , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity v⃗⊥

T and three-momentum transfer q⃗ = p⃗ ′ −
p⃗ = k⃗ − k⃗′, where p⃗ (p⃗ ′) is the incoming (outgoing) WIMP
three-momentum and k⃗ (k⃗′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(x⃗) = c1#̄χ (x⃗)#χ (x⃗)#̄N (x⃗)#N (x⃗), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
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E + m

2m

(
ξ

σ⃗ ·p⃗
E+mχ

ξ

)

∼
(

ξ
σ⃗ ·p⃗
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4S⃗χ · S⃗N ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors S⃗χ and S⃗N , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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incoming and outgoing WIMP momenta and by �k and �k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
�q ·�v⇥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [46]

O1 1⇤1N

O2 (�v⇥)2

O3 i�SN · ( ⌅q
mN

⇥ �v⇥)

O4 �S⇤ · �SN

O5 i�S⇤ · ( ⌅q
mN

⇥ �v⇥)

O6 ( ⌅q
mN

· �SN )( ⌅q
mN

· �S⇤)

O7 �SN · �v⇥

O8 �S⇤ · �v⇥

O9 i�S⇤ · (�SN ⇥ ⌅q
mN

)

O10 i ⌅q
mN

· �SN

O11 i ⌅q
mN

· �S⇤

O12 �S⇤ · (�SN ⇥ �v⇥)

O13 i(�S⇤ · �v⇥)( ⌅q
mN

· �SN )

O14 i(�SN · �v⇥)( ⌅q
mN

· �S⇤)

O15 �(�S⇤ · ⌅q
mN

)
�
(�SN ⇥ �v⇥) · ⌅q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)

where the coe⇥cients c�
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having di�erent couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
⇤

⇥=0,1

15⇤

i=1
c⇥

i Oit
⇥ (5)
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(two incoming and two outgoing), only two combinations are
physically relevant owing to inertial frame-independence and
momentum conservation. It is convenient to work with the
frame-invariant quantities, the momentum transfer q⃗ and the
WIMP-nucleon relative velocity,

v⃗ ≡ v⃗χ ,in − v⃗N,in. (9)

It is also useful to construct the related quantity

v⃗⊥ = v⃗ + q⃗

2µN

= 1
2

(v⃗χ ,in + v⃗χ ,out − v⃗N,in − v⃗N,out)

= 1
2

(
p⃗

mχ

+ p⃗ ′

mχ

− k⃗

mN

− k⃗ ′

mN

)

, (10)

which satisfies v⃗⊥ · q⃗ = 0 as a consequence of energy conser-
vation. Here µN is the WIMP-nucleon reduced mass. It was
shown in Ref. [8] that operators are guaranteed to be Hermitian
if they are built out of the following four three-vectors:

i
q⃗

mN

, v⃗⊥, S⃗χ , S⃗N . (11)

Here (in another departure from Ref. [8]) we have introduced
mN as a convenient scale to render q⃗/mN and the constructed
Oi dimensionless: The choice of this scale is not arbitrary, as
it leads to an EFT power counting in nuclei that is particularly
simple, as we discuss in Secs. II B and IV B. The relevant
interactions that we can construct from these three-vectors
and that can be associated with interactions involving only
spin-0 or spin-1 mediators are

O1 = 1χ1N,

O2 = (v⊥)2,

O3 = iS⃗N ·
(

q⃗

mN

× v⃗⊥
)

,

O4 = S⃗χ · S⃗N ,

O5 = iS⃗χ ·
(

q⃗

mN

× v⃗⊥
)

,

O6 =
(

S⃗χ · q⃗

mN

)(
S⃗N · q⃗

mN

)
, (12)

O7 = S⃗N · v⃗⊥,

O8 = S⃗χ · v⃗⊥,

O9 = iS⃗χ ·
(

S⃗N × q⃗

mN

)
,

O10 = iS⃗N · q⃗

mN

,

O11 = iS⃗χ · q⃗

mN

.

These 11 operators were discussed in Ref. [8]. We retain 10 of
these here, discarding O2, as this operator cannot be obtained
from the leading-order nonrelativistic reduction of a manifestly
relativistic operator (see, e.g., Table I of Sec. II C).

We classify these operators as leading order (LO), next-
to-leading order (NLO), and next-to-next-to-leading order
(N2LO), depending on the total number of momenta and
velocities they contain. We see in Sec. IV B that these
designations correspond to total cross sections that scale as
v0

T , v2
T , or v4

T , where vT is the WIMP velocity in the laboratory
frame.

In addition, one can construct the following operators that
do not arise for traditional spin-0 or spin-1 mediators

O12 = S⃗χ · (S⃗N × v⃗⊥),

O13 = i(S⃗χ · v⃗⊥)
(

S⃗N · q⃗

mN

)
,

O14 = i

(
S⃗χ · q⃗

mN

)
(S⃗N · v⃗⊥), (13)

O15 = −
(

S⃗χ · q⃗

mN

)[
(S⃗N × v⃗⊥) · q⃗

mN

]
,

O16 = −
[

(S⃗χ × v⃗⊥) · q⃗

mN

](
S⃗N · q⃗

mN

)
.

It is easy to see that O16 is linearly dependent on O12 and O15,

O16 = O15 + q⃗ 2

m2
N

O12, (14)

and so should be eliminated. OperatorO15 is cubic in velocities
and momenta, generating a total cross section of order v6

(N3LO). It is retained because it arises as the leading-order
nonrelativistic limit of certain covariant interactions (see
Sec. II C).

Each operator can have distinct couplings to protons and
neutrons. Thus, the EFT interaction we employ in this paper
takes the form

∑

α=n,p

15∑

i=1

cα
i Oα

i , cα
2 ≡ 0. (15)

One can factorize the space-spin and proton/neutron compo-
nents of Eq. (15) by introducing isospin, which is also useful
as an approximate symmetry of the nuclear wave functions.
Thus, an equivalent form for our interaction is

15∑

i=1

(
c0
i 1 + c1

i τ3
)
Oi =

∑

τ=0,1

15∑

i=1

cτ
i Oi t

τ , cτ
2 ≡ 0, (16)

where c0
i = 1

2 (cp
i + cn

i ) and c1
i = 1

2 (cp
i − cn

i ). The isospin
states are

|p⟩ =
(

1
0

)
|n⟩ =

(
0
1

)
, (17)

while the isospin operators are

t0 ≡ 1 =
(

1 0
0 1

)
t1 ≡ τ3 =

(
1 0
0 −1

)
. (18)

The EFT has a total of 28 parameters, associated with 14
space-spin operators each of which can have distinct couplings
to protons and neutrons. If we exclude operators that are
not associated with spin-0 or spin-1 mediators, 10 space-spin
operators and 20 couplings remain.
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group 1 is the SI (SD) response used in the standard
analyses, and our result agrees with previous
results [15,16].
On the other hand, the nuclear recoil spectra from many

WIMP-nucleon operators are clearly distinct from the 8B
and atmospheric-induced neutrino spectra, even when
taken at the best-fit WIMP masses. For example, as is
indicated in Figs. 1–2, the O6 (belonging to group 3) and
O10 (belonging to group 2) best-fit WIMP mass gives a
poor Δχ2 relative to the neutrino backgrounds. This
indicates that for essentially all WIMP masses and cross
sections, O6 and O10 can be distinguished from the
neutrino backgrounds. We return to this point below when
we discuss the evolution of the discovery limit.
The WIMP masses that provide the best fit to the 8B

recoil spectrum for the operators O1, O6, O10 are shown in
Fig. 3. As discussed above we assume an exposure to

produce 200 neutrino events for each target. Each point in
Fig. 3 represents either the proton or neutron coupling as
defined in Eq. (2). In Fig. 3 we have scaled the coupling by
a factor mv ¼ 246 GeV, so that the resulting quantity cım2

v
is dimensionless (the cıs as defined in Ref. [8] have
dimensions of inverse mass squared). Also shown are
the corresponding WIMP-nucleon cross sections calculated

as σi ¼
c2i μ

2

m4
v
. For Si, Ge, and Xe, the excess spin in the

nucleus is carried by the neutron, so that for a fixed number
of neutrino events the neutron coupling corresponds to a
lower cross section. For Flourine the excess spin is carried
by the proton, so in this case for a fixed number of neutrino
events the proton coupling corresponds to a lower cross
section. Note here that the O1 operator corresponds to the
standard SI interaction and is in agreement with previous
studies [15,16].

B. Grouping of operators

Although we consider 15 distinct operators, each of
which couples to protons and neutrons, the nuclear recoil
energy spectra that are induced by many of these operators
are similar. This is evident from their best-fitting WIMP
masses shown in Figs. 3 and 7 in Appendix A, which shows
the best-fitting masses for the operators that are not shown
in Fig. 3. These figures motivate a grouping of operators
based on their best-fit WIMP mass, which is shown in
Table III. Operators O1;4;7;8, O5;9;10;11;12;14 and O3;6;13;15
form group 1, 2 and 3 respectively (this is a similar
grouping to that found in [11], although O13 is in our
third group along with O15, rather than in a fourth). For the
entries in this table we have assumed a Xe target, though we
have checked that these results do not strongly depend on
the nature of the target. We again emphasize that for many
operators, the χ2 is large when comparing the neutrino-
induced spectra to the WIMP spectra, so that even these
“worst case” scenarios should be easily distinguishable
from the neutrino backgrounds, provided an experiment
can obtain a robust measurement of the recoil energy
spectrum.

TABLE III. List of NR effective operators categorized by the
best-fit mass to 8B solar neutrinos in Xenon (the other targets
follow suit). The third column gives the exposure to reach
saturation due to the neutrino background, as defined in Sec. IV.

Operator Mass (GeV) Exp. (t.y)

Group 1

O1 6 2.9
O4 6 3.5
O7 6.2 4.3
O8 6.3 3.6

q2 and q2v2T

Group 2

O5 4.8 0.43
O9 4.6 0.34
O10 4.6 0.36
O11 4.6 0.40
O12 4.6 0.44
O14 4.8 0.43

q2v2T , q
4 and q4v2T

Group 3

O3 4.2 0.27
O6 4.2 0.29
O13 4.2 0.27
O15 4.1 0.21

FIG. 3. Best-fit WIMP mass to the 8B solar neutrino-induced nuclear recoil spectrum for Xe, Ge, Si, and F targets. For each target and
each operator, we show the best-fitting WIMP mass for neutron and proton couplings, defined as in Eq. (2). The quantity on the vertical
axis of the left-hand side in each figure is dimensionless, since the cıs as defined in Ref. [8] have dimensions of inverse mass squared. An
exposure is assumed to produce 200 neutrino events for each target.
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A. Best-fit rates

We begin by matching the nuclear recoil spectra from the
various WIMP-nucleon operators described above to the
predicted solar and atmospheric neutrino-induced recoil
energy spectrum. For the solar neutrinos, we consider the
8B component. The predicted recoil energy spectra in dark
matter detectors due to these neutrinos are taken from
Refs. [14,15]. To find the best-fit WIMP masses for a given
operator we maximize the Poisson likelihood,

LPoisson ¼
Yb

i¼1

νnii e
νi

ni!
ð4Þ

where b is the number of nuclear recoil energy bins, ni is
the expected number of WIMP events and νi is the expected
number of neutrino events in the bin. We consider several
detector targets, which are indicated in Table II along with
the corresponding nuclear energy recoil range. The recoil
range is split into a low and high region, where the solar and
nonsolar neutrino backgrounds respectively dominate. For
our likelihood analysis we choose an exposure such that we
obtain 200 neutrino events for each target [15], binned into
16 energy bins.
Figure 1 shows a sample of the best-fitting WIMP-

induced recoil energy spectra when comparing to the
predicted 8B spectrum, and Fig. 2 shows a sample when
comparing to the predicted atmospheric-induced recoil
spectrum. In both figures we have used one operator
representative from each group where the groups are
defined in Table III. As is shown for several operators,
in particular O1, we find a good match to both the 8B solar
and atmospheric spectra. This is quantified by the Δχ2
indicated in Figs. 1 and 2, which is calculated as the
negative log likelihood in Eq. (4). Note that O1 (O4) from

TABLE II. List of detector targets considered in this work.

Low region (keV) High region (keV)

Xenon (Xe) 0.003–3 4.0–100
Germanium (Ge) 0.0053–7 7.9–120
Silicon (Si) 0.014–18 20–300
Flourine (F) 0.033–25 28–500

FIG. 1. Sample maximum likelihood fits to the 8B solar neutrino-induced nuclear recoil event rate spectrum in Xenon (left) and
Germanium (right). Three different operators are shown, one operator from each of the groupings in Table III.

FIG. 2. Sample maximum likelihood fits to the atmospheric neutrino-induced nuclear recoil event rate spectrum in Xenon (left) and
Germanium (right). The same operators are used here as in Fig. 1.
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where �q = �p� � �p = �k � �k� is the momentum transfer, �v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and �S⇥ and �SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by �p and �p� the
incoming and outgoing WIMP momenta and by �k and �k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
�q ·�v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [53]

O1 1⇥1N

O2 (�v⇥)2

O3 i�SN · ( ⇤q
mN

⇥ �v⇥)

O4 �S⇥ · �SN

O5 i�S⇥ · ( ⇤q
mN

⇥ �v⇥)

O6 ( ⇤q
mN

· �SN )( ⇤q
mN

· �S⇥)

O7 �SN · �v⇥

O8 �S⇥ · �v⇥

O9 i�S⇥ · (�SN ⇥ ⇤q
mN

)

O10 i ⇤q
mN

· �SN

O11 i ⇤q
mN

· �S⇥

O12 �S⇥ · (�SN ⇥ �v⇥)

O13 i(�S⇥ · �v⇥)( ⇤q
mN

· �SN )

O14 i(�SN · �v⇥)( ⇤q
mN

· �S⇥)

O15 �(�S⇥ · ⇤q
mN

)
�
(�SN ⇥ �v⇥) · ⇤q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as
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IV. DISCOVERY BOUNDS

With the nuclear recoil spectrum in nonrelativistic EFT
understood, we now move on to determine the bounds on
the discovery of WIMPs in the presence of the neutrino
background. We determine the exposure at which each
operator is maximally affected by the neutrino background.
As above we distinguish between those operators that are
most and least affected by the neutrino background.

A. Formalism

The statistical formalism that we employ follows that of
Ref. [15]. Here we review the relevant aspects for our
analysis. The discovery potential of an experiment is
defined as the smallest WIMP-nucleon cross section which
produces a 3σ fluctuation above the background 90% of the
time. To calculate this limit we use the following test
statistic for the null hypothesis and try to reject it,

q0 ¼
!−2 log Lðσ¼0;θ̂Þ

Lðσ̂; ˆ̂θÞ
σ ≥ σ̂

0 σ < σ̂;
ð5Þ

where σ is the WIMP-nucleon cross section, θ represents
the nuisance parameters (neutrino fluxes), and the hatted
parameters are maximized. By Wilks’ theorem, under
background-only experiments, q0 is chi-square distributed
and the equivalent Gaussian significance is simply

ffiffiffiffiffi
q0

p

[39]. To include the uncertainty of the neutrino flux
normalization the likelihood function is modified to include
a Gaussian term [15],

L ¼ LPoisson

Y

j

e
−1
2ð1−NjÞ2ð

ϕj
σj
Þ2
; ð6Þ

where Nj is the flux normalization and ϕj and σj are the
fluxes and their uncertainties given in Table IV. The
Poisson likelihood LPoisson is defined as in Eq. (4).
We calculate the evolution of the discovery potential for

all operators using a Xe based experiment, in the low and
high recoil energy regions as defined above. The WIMP
mass considered for each operator was taken from Table I
as this is the worst-case scenario where the WIMP spectrum
most closely resembles the neutrino background. Note that
while in the low region the best-fit WIMP mass is very
similar for the neutron and proton scattering rates; this is
not the case in the high region. Thus in the low region the
discovery potential curves remain parallel, but this is not
necessarily the case for the high region. The discovery
evolution for three of the operators from three groups is

TABLE IV. Neutrino flux components and their respective
uncertainties in the flux normalizations. For the solar components
we utilize the high metallicity solar model as outlined in Ref. [40].

Component ν flux (cm−2 s−1)

Proton-proton 5.98ð1$ 0.006Þ × 1010
7Be 5.00ð1$ 0.07Þ × 109
8B 5.58ð1$ 0.14Þ × 106

pep 1.44ð1$ 0.012Þ × 108

Diffuse supernova background 85.5$ 42.7
Atmospheric 10.5$ 2.1

FIG. 4. Discovery evolution ofO1 (left),O6 (middle), andO10 (right) operators, for the low region (top) and high region (bottom). The
blue and yellow curves show the limits for proton and neutron scattering respectively.
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group 1 is the SI (SD) response used in the standard
analyses, and our result agrees with previous
results [15,16].
On the other hand, the nuclear recoil spectra from many

WIMP-nucleon operators are clearly distinct from the 8B
and atmospheric-induced neutrino spectra, even when
taken at the best-fit WIMP masses. For example, as is
indicated in Figs. 1–2, the O6 (belonging to group 3) and
O10 (belonging to group 2) best-fit WIMP mass gives a
poor Δχ2 relative to the neutrino backgrounds. This
indicates that for essentially all WIMP masses and cross
sections, O6 and O10 can be distinguished from the
neutrino backgrounds. We return to this point below when
we discuss the evolution of the discovery limit.
The WIMP masses that provide the best fit to the 8B

recoil spectrum for the operators O1, O6, O10 are shown in
Fig. 3. As discussed above we assume an exposure to

produce 200 neutrino events for each target. Each point in
Fig. 3 represents either the proton or neutron coupling as
defined in Eq. (2). In Fig. 3 we have scaled the coupling by
a factor mv ¼ 246 GeV, so that the resulting quantity cım2

v
is dimensionless (the cıs as defined in Ref. [8] have
dimensions of inverse mass squared). Also shown are
the corresponding WIMP-nucleon cross sections calculated

as σi ¼
c2i μ

2

m4
v
. For Si, Ge, and Xe, the excess spin in the

nucleus is carried by the neutron, so that for a fixed number
of neutrino events the neutron coupling corresponds to a
lower cross section. For Flourine the excess spin is carried
by the proton, so in this case for a fixed number of neutrino
events the proton coupling corresponds to a lower cross
section. Note here that the O1 operator corresponds to the
standard SI interaction and is in agreement with previous
studies [15,16].

B. Grouping of operators

Although we consider 15 distinct operators, each of
which couples to protons and neutrons, the nuclear recoil
energy spectra that are induced by many of these operators
are similar. This is evident from their best-fitting WIMP
masses shown in Figs. 3 and 7 in Appendix A, which shows
the best-fitting masses for the operators that are not shown
in Fig. 3. These figures motivate a grouping of operators
based on their best-fit WIMP mass, which is shown in
Table III. Operators O1;4;7;8, O5;9;10;11;12;14 and O3;6;13;15
form group 1, 2 and 3 respectively (this is a similar
grouping to that found in [11], although O13 is in our
third group along with O15, rather than in a fourth). For the
entries in this table we have assumed a Xe target, though we
have checked that these results do not strongly depend on
the nature of the target. We again emphasize that for many
operators, the χ2 is large when comparing the neutrino-
induced spectra to the WIMP spectra, so that even these
“worst case” scenarios should be easily distinguishable
from the neutrino backgrounds, provided an experiment
can obtain a robust measurement of the recoil energy
spectrum.

TABLE III. List of NR effective operators categorized by the
best-fit mass to 8B solar neutrinos in Xenon (the other targets
follow suit). The third column gives the exposure to reach
saturation due to the neutrino background, as defined in Sec. IV.

Operator Mass (GeV) Exp. (t.y)

Group 1

O1 6 2.9
O4 6 3.5
O7 6.2 4.3
O8 6.3 3.6

q2 and q2v2T

Group 2

O5 4.8 0.43
O9 4.6 0.34
O10 4.6 0.36
O11 4.6 0.40
O12 4.6 0.44
O14 4.8 0.43

q2v2T , q
4 and q4v2T

Group 3

O3 4.2 0.27
O6 4.2 0.29
O13 4.2 0.27
O15 4.1 0.21

FIG. 3. Best-fit WIMP mass to the 8B solar neutrino-induced nuclear recoil spectrum for Xe, Ge, Si, and F targets. For each target and
each operator, we show the best-fitting WIMP mass for neutron and proton couplings, defined as in Eq. (2). The quantity on the vertical
axis of the left-hand side in each figure is dimensionless, since the cıs as defined in Ref. [8] have dimensions of inverse mass squared. An
exposure is assumed to produce 200 neutrino events for each target.
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TABLE I. Best fit WIMP masses, in GeV, to the 8B neu-
trino rates in germanium for various operators and mediator
masses.

Operator q dependence mediator mass (m�)
100MeV 10MeV 1MeV

O1 (Group I) 1 6.3 13 > 106

O10 (Group II) q 5.6 6.5 12
O6 (Group III) q2 5.0 5.3 6.3

groups, we find a reasonable correspondence between the
neutrino and best fitting WIMP spectra. The main out-
lier is the case of O1 with a very light mediator. When
performing the fit with O1 and a 1 MeV mediator the
best fit is found at large WIMP mass, however the likeli-
hood function plateaus in this limit. While all fits above
106 GeV maximize the likelihood, the quality of the fit
remains poor.

The recoil spectra for the best fit masses are displayed
in Figure 1. This figure shows that for the case of light
mediators, Groups I and II for m⇧ = 6 GeV are poor fits
to the 8B neutrino spectra, whereas Group III operators
can fit it well, with the exception of O15. It should be
emphasized that the deviation between the WIMP and
neutrino spectra shows up most starkly at very low recoil
energy, which provides good motivation for the develop-
ment of low threshold detector technology [25]. Since
q2 is proportional to v2, the full propagator in the nu-
merator of the operator modifies the Group I rate to no
longer be velocity independent, making it a poor fit to
the neutrino background. The opposite is true for Group
II and III, which can provide better fits to the neutrino
background at low mediator mass.

To calculate the discovery potential, we follow the sta-
tistical formalism of Ref. [13]. Recall that the discov-
ery potential of an experiment is defined as the smallest
WIMP-nucleon cross section which produces a 3⇥ fluctu-
ation above the background 90% of the time. To calculate
this limit we use the following test statistic for the null
hypothesis and try to reject it,

q0 =

�
⇤

⇥
�2log L(⇤=0,�̂)

L(⇤̂, ˆ̂�)
⇥ ⇤ ⇥̂

0 ⇥ < ⇥̂
(3)

where ⇥ is the WIMP-nucleon cross section, � represents
the nuisance parameters (neutrino fluxes), and the hat-
ted parameters are maximized. By Wilks’ theorem, un-
der background only experiments, q0 is chi-square dis-
tributed and the equivalent gaussian significance is sim-
ply ⌅

q0 [26]. To include the uncertainty of the neutrino
flux normalization the likelihood function is modified to
include a gaussian term [13]:

L = LP oissone� 1
2 (1�N� )2( ⇤�

⇥�
)2

(4)

where N⇥ is the flux normalization and ⇤⇥ = 5.58 ⇥ 106

cm�2 s�1 and ⇥⇥ = 0.14 ⇥ 106 cm�2 s�1 are the 8B

TABLE II. Summary of whether saturation in the discovery
evolution is observed for the various WIMP scattering scenar-
ios

Group light mediator heavy mediator
m� ⇥ 100MeV m� � 100MeV

Group I No Yes
Group II No No
Group III Yes No

flux and uncertainty respectively. The poisson likelihood
LP oisson is defined as in Equation 2.

The “worst case” scenario of the discovery evolution
is where the WIMP spectrum most closely resembles the
neutrino background. For combinations of operators and
mediator masses which are su⇥ciently neutrino like, the
evolution of the discovery potential exhibits saturation
when the systematic uncertainty in the neutrino flux be-
comes relevant. This saturation is then broken when the
exposure becomes large enough that small di�erences in
the WIMP and neutrino-induced recoil spectra become
distinguishable [21]. For combinations of operators and
mediator masses with recoil spectra that are su⇥ciently
di�erent than the neutrino-induced recoil spectra, no sig-
nificant saturation is observed. For these cases a weak
inflection point defines the exposure at which the satura-
tion is a maximum. The scenarios that reach an inflection
point at lower exposures are those that are most easily
distinguishable from the neutrino backgrounds. These
scenarios return to a 1/

⌅
MT evolution as the exposure

is increased.
We calculate the evolution of the discovery potential

for O1, O6 and O10 operators using a germanium based
experiment, for the best fit WIMP mass to the 8B neu-
trino background (see Table I). This discovery evolution
for O1, O6 and O10 for scattering o� protons is shown
in Figure 2. The corresponding neutron scattering evo-
lution (not shown) is scaled by a constant factor. The
discovery evolution for O1 saturates in the high mediator
mass regime, less strongly with m⌅ = 10 MeV mediator,
and hardly at all for m⌅ = 1 MeV. The reverse is observed
for O6 which does not saturate with high mediator mass,
however at low mediator mass it can mimic the neutrino
rate. The O1 operators for mediator masses 10 and 1
MeV can be distinguished from the neutrino background
by 0.1 ton years exposure using a Ge detector, whereas
the 100 MeV or larger mediator mass requires 102 ton
years exposure. The O10 operator can be distinguished
by 10 ton years exposure or less for any mediator mass.
Mediator masses of 1 MeV for O6 and 10 MeV or above
for O6 requires about 0.1 ton years exposure.

Conclusions—We have shown that the character of
the discovery potential for elastic dark matter scattering
o� of nuclei in the presence of the neutrino background
greatly depends not only on the type of interaction, but
also on the mass of the particle mediating the scattering
process. Table II details for which operators, mediator

group 1 is the SI (SD) response used in the standard
analyses, and our result agrees with previous
results [15,16].
On the other hand, the nuclear recoil spectra from many

WIMP-nucleon operators are clearly distinct from the 8B
and atmospheric-induced neutrino spectra, even when
taken at the best-fit WIMP masses. For example, as is
indicated in Figs. 1–2, the O6 (belonging to group 3) and
O10 (belonging to group 2) best-fit WIMP mass gives a
poor Δχ2 relative to the neutrino backgrounds. This
indicates that for essentially all WIMP masses and cross
sections, O6 and O10 can be distinguished from the
neutrino backgrounds. We return to this point below when
we discuss the evolution of the discovery limit.
The WIMP masses that provide the best fit to the 8B

recoil spectrum for the operators O1, O6, O10 are shown in
Fig. 3. As discussed above we assume an exposure to

produce 200 neutrino events for each target. Each point in
Fig. 3 represents either the proton or neutron coupling as
defined in Eq. (2). In Fig. 3 we have scaled the coupling by
a factor mv ¼ 246 GeV, so that the resulting quantity cım2

v
is dimensionless (the cıs as defined in Ref. [8] have
dimensions of inverse mass squared). Also shown are
the corresponding WIMP-nucleon cross sections calculated

as σi ¼
c2i μ

2

m4
v
. For Si, Ge, and Xe, the excess spin in the

nucleus is carried by the neutron, so that for a fixed number
of neutrino events the neutron coupling corresponds to a
lower cross section. For Flourine the excess spin is carried
by the proton, so in this case for a fixed number of neutrino
events the proton coupling corresponds to a lower cross
section. Note here that the O1 operator corresponds to the
standard SI interaction and is in agreement with previous
studies [15,16].

B. Grouping of operators

Although we consider 15 distinct operators, each of
which couples to protons and neutrons, the nuclear recoil
energy spectra that are induced by many of these operators
are similar. This is evident from their best-fitting WIMP
masses shown in Figs. 3 and 7 in Appendix A, which shows
the best-fitting masses for the operators that are not shown
in Fig. 3. These figures motivate a grouping of operators
based on their best-fit WIMP mass, which is shown in
Table III. Operators O1;4;7;8, O5;9;10;11;12;14 and O3;6;13;15
form group 1, 2 and 3 respectively (this is a similar
grouping to that found in [11], although O13 is in our
third group along with O15, rather than in a fourth). For the
entries in this table we have assumed a Xe target, though we
have checked that these results do not strongly depend on
the nature of the target. We again emphasize that for many
operators, the χ2 is large when comparing the neutrino-
induced spectra to the WIMP spectra, so that even these
“worst case” scenarios should be easily distinguishable
from the neutrino backgrounds, provided an experiment
can obtain a robust measurement of the recoil energy
spectrum.

TABLE III. List of NR effective operators categorized by the
best-fit mass to 8B solar neutrinos in Xenon (the other targets
follow suit). The third column gives the exposure to reach
saturation due to the neutrino background, as defined in Sec. IV.

Operator Mass (GeV) Exp. (t.y)

Group 1

O1 6 2.9
O4 6 3.5
O7 6.2 4.3
O8 6.3 3.6

q2 and q2v2T

Group 2

O5 4.8 0.43
O9 4.6 0.34
O10 4.6 0.36
O11 4.6 0.40
O12 4.6 0.44
O14 4.8 0.43

q2v2T , q
4 and q4v2T

Group 3

O3 4.2 0.27
O6 4.2 0.29
O13 4.2 0.27
O15 4.1 0.21

FIG. 3. Best-fit WIMP mass to the 8B solar neutrino-induced nuclear recoil spectrum for Xe, Ge, Si, and F targets. For each target and
each operator, we show the best-fitting WIMP mass for neutron and proton couplings, defined as in Eq. (2). The quantity on the vertical
axis of the left-hand side in each figure is dimensionless, since the cıs as defined in Ref. [8] have dimensions of inverse mass squared. An
exposure is assumed to produce 200 neutrino events for each target.
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treatment, which describes elastic ‰-N scattering due to
spin-0 or spin-1 mediator exchange up to second order in
momentum, is comprised of ten operators [10–12]. There
exist four additional operators that can also be written
down at this order which do not arise from traditional‘
single mediator exchange [12]. All fourteen of these op-
erators are written in terms of four quantities: the ex-
changed momentum, q̨, the ‰-N relative incident veloc-
ities v̨ in the form of the variable v̨‹ = v̨ + q̨/2µ

N

with
µ

N

the ‰-N reduced mass, the spin of the dark matter
S̨

‰

, and the nucleon spin S̨
N

(there are actually fifteen
operators that arise at this order, but one operator is
proportional to (v̨‹)2 which does not appear as the NR
reduction of a relativistic operator, and is not considered
here).

These fourteen operators can further be categorized
into three groups which display similar momentum and
dark matter lab frame velocity (v

T

) dependence [14, 19,
20]. Group I operators have no q2 dependence, Group
II have q2 and q2v2

T

dependence, while Group III have
q2v2

T

, q4, and q4v2
T

dependences. This momentum and
velocity dependence is obtained in the limit where the
masses of the mediator particles are large compared to
the momentum transfer of the interaction. In the pres-
ence of the neutrino backgrounds, operators from each
group display similar discovery evolution limits, and a
similar dark matter mass mimcs each group [14].

When mediator masses . |q̨| are considered, the same
group structure can be used, since their relative mo-
mentum dependences are the same. However, the im-
portant distinction is that the overall momentum depen-

dence within each group is di�erent than in the case of

heavy mediators. As we see below this has drastic conse-
quences for which group of operators can be distinguished
from the neutrino background. In the non-relativistic La-
grangian each operator has a dimensionful coupling, c

i

,
previously taken to be proportional to 1/m2

v

. To encap-
sulate the light mediator scenario we employ the replace-
ment,

c
i

æ c
i

q2 + m2
„

, (1)

where c
i

is now a dimensionless constant. Given the low
momentum transfer from WIMPs to the nuclei, a medi-
ator mass & 100 MeV will dominate over the q2 term in
the propagator. Therefore we will consider three scenar-
ios: mediators of mass 1 MeV, 10 MeV and 100 MeV,
which correspond to the scenario with q2 > m2

„

, q2 ≥ m2
„

and q2 < m2
„

.
Discovery Evolution—The distinguishability of opera-

tors in the presence of the coherent neutrino scattering
background amounts to examining whether the discovery
evolution as a function of the detection exposure (the
product of target mass and time) saturates. This cor-
responds to a situation in which increasing detector ex-
posure is ine�ective at extending the discovery reach to
lower ‰-N cross-sections [13]. Eventually enough statis-
tics could be compiled that would end the saturation ef-

fect, but once the saturation occurs it persists for sev-
eral orders of magnitude of exposure, thus nullifying any
practical chances of discovery once saturation has been
reached [21]. In the EFT framework with heavy medi-
ators, two of the three groups, equating to ten out of
the fourteen operators, do not experience such a satura-
tion e�ect, and therefore could possibly be distinguished
even in the presence of a background of coherent neutrino
scattering [14].

Here we examine the representative operators O1, O10,
and O6 from Group I (O1,4,7,8), II (O5,9,10,11,12,14), and
III (O3,6,13,15), respectively, in the case of mediators
m

„

< 100 MeV. O1 is the standard SI operator which,
along with the rest of Group I operators, exhibits a satu-
rated discovery evolution in the case of heavy mediators.
By comparison Group II and III operators do not exhibit
this saturation for heavy mediators. The O6 operator has
the NR form (S̨

‰

· q̨/m
N

)(S̨
N

· q̨/m
N

) and arises in dipole
interacting dark matter and pseudoscalar mediated inter-
actions, and O10 = iS̨

N

·q̨/m
N

also arises in pseudoscalar
mediated scattering. Note that these operators can be
connected to various scattering models [20, 22, 23].

We begin by matching the nuclear recoil spectra from
the various WIMP-nucleon operators described above to
the predicted 8B solar neutrino-induced recoil energy
spectrum, for various mediator masses. To obtain the
predicted recoil energy spectra in dark matter detectors
due to these neutrinos, we use the high metallicity stan-
dard solar model predictions, e.g. [24]. For a heavy medi-
ator, the 8B rate is well-fit by SI interacting dark matter
with a mass of m

‰

ƒ 6 GeV. To find this “best-fit” WIMP
masses for any given operator we maximize the Poisson
likelihood,

L
P oisson

=
bŸ

i=1

‹ni
i

e≠‹i

n
i

! (2)

where b is the number of nuclear recoil energy bins, n
i

is
the expected number of WIMP events and ‹

i

is the ex-
pected number of neutrino events in the bin. To demon-
strate the e�ect of light mediators on the discovery evo-
lution we consider a single germanium detector with a
threshold of 100 eV. We consider germanium as an ex-
ample because it is an appropriate target to highlight
the potential for ≥ 100 eV low threshold recoil detectors.
Our numerical results would be very similar if we were
to instead consider a xenon target. For our likelihood
analysis we choose an exposure such that we obtain 200
neutrino events for each target [13], binned into 16 energy
bins.

The resulting best fit masses are given in Table I, where
the masses are averaged between fits to neutron and pro-
ton rates (which do not di�er significantly). For most
groups, we find a reasonable correspondence between the
neutrino and best fitting WIMP spectra. The main out-
lier is the case of O1 with a very light mediator. When
performing the fit with O1 and a 1 MeV mediator the
best fit is found at large WIMP mass, however the likeli-

We repeated the previous 
analysis for light mediators 

and a low threshold (100eV) 
Ge detector
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FIG. 1. Best fit recoil spectra fitted to 8B neutrino rates in germanium for O1 (left), O10 (middle) and O6 (right). The solid
black line displays the spectrum for coherent neutrino scattering, while the other curves denote di�erent mediator masses.

FIG. 2. Discovery evolution of O1 (left), O10 (middle) and O6 (right). The curves show the limits for proton scattering only

masses and low mass dark matter particles the saturation
of the discovery evolution for �-N scattering persists, i.e.
hits a neutrino floor. Interestingly even the standard SI
and SD operators may be distinguishable for light me-
diators at a very low threshold detector, which was not
the case for heavy mediators. Conversely, some opera-
tors which were thought to be distinguishable from the
neutrino background can be rendered indistinguishable
for the same exposure when the mediator mass is su�-

ciently light.
These results demonstrate the necessity of considering

a general theoretical framework regarding dark matter
scattering when projecting future discovery potential, as
well as increased motivation for experimental progress
towards lower thresholds.
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FIG. 1. Best fit recoil spectra fitted to 8B neutrino rates in germanium for O1 (left), O10 (middle) and O6 (right). The solid
black line displays the spectrum for coherent neutrino scattering, while the other curves denote di�erent mediator masses.

FIG. 2. Discovery evolution of O1 (left), O10 (middle) and O6 (right). The curves show the limits for proton scattering only

masses and low mass dark matter particles the saturation
of the discovery evolution for �-N scattering persists, i.e.
hits a neutrino floor. Interestingly even the standard SI
and SD operators may be distinguishable for light me-
diators at a very low threshold detector, which was not
the case for heavy mediators. Conversely, some opera-
tors which were thought to be distinguishable from the
neutrino background can be rendered indistinguishable
for the same exposure when the mediator mass is su�-

ciently light.
These results demonstrate the necessity of considering

a general theoretical framework regarding dark matter
scattering when projecting future discovery potential, as
well as increased motivation for experimental progress
towards lower thresholds.
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FIG. 1. Best fit recoil spectra fitted to 8B neutrino rates in germanium for O1 (left), O10 (middle) and O6 (right). The solid
black line displays the spectrum for coherent neutrino scattering, while the other curves denote di�erent mediator masses.
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FIG. 1. Best fit recoil spectra fitted to 8B neutrino rates in germanium for O1 (left), O10 (middle) and O6 (right). The solid
black line displays the spectrum for coherent neutrino scattering, while the other curves denote di�erent mediator masses.
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momenta respectively. Energy-momentum conservation implies the orthogonality condition
�q ·�v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [53]

O1 1⇥1N

O2 (�v⇥)2

O3 i�SN · ( ⇤q
mN

⇥ �v⇥)

O4 �S⇥ · �SN

O5 i�S⇥ · ( ⇤q
mN

⇥ �v⇥)

O6 ( ⇤q
mN

· �SN )( ⇤q
mN

· �S⇥)

O7 �SN · �v⇥

O8 �S⇥ · �v⇥

O9 i�S⇥ · (�SN ⇥ ⇤q
mN

)

O10 i ⇤q
mN

· �SN

O11 i ⇤q
mN

· �S⇥

O12 �S⇥ · (�SN ⇥ �v⇥)

O13 i(�S⇥ · �v⇥)( ⇤q
mN

· �SN )

O14 i(�SN · �v⇥)( ⇤q
mN

· �S⇥)

O15 �(�S⇥ · ⇤q
mN

)
�
(�SN ⇥ �v⇥) · ⇤q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)
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structure constant) is beyond the reach of current and near future experiments, some extensions
of the Standard Model predict sizeable µ⇤ [46, 48–52], potentially close to the current 90% CL
upper limit µ⇤ < 0.32 ⇥ 10�10µB from solar and reactor neutrino experiments [53], in particu-
lar GEMMA [42].4 The di�erential neutrino–electron scattering rate through magnetic moment
interactions is given by [59]

d⇧µ(⌅e ⇧ ⌅e)

dEr
= µ2

⇤�

�
1

Er
� 1

E⇤

⇥
, (8)

and the corresponding expression for neutrino–nucleus scattering is

d⇧µ(⌅N ⇧ ⌅N)

dEr
= µ2

⇤�Z
2F 2(Er)

�
1

Er
� 1

E⇤

⇥
. (9)

Here, Z is the nuclear charge, and F (Er) is the nuclear form factor (see discussion below equa-
tion (3)). Of course, ordinary scattering through W and Z exchange, with the cross section from
equations (1)–(3) is also present. The dependence of equation (8) on the neutrino energy E⇤ and
the recoil energy Er arises from the interplay of the photon propagator and the derivative in the
magnetic moment interaction vertex, equation (7).

3.2. Gauged B � L

As we have seen in section 3.1, a magnetic moment contribution to the neutrino–electron and
neutrino–nucleus scattering cross section falls proportional to E�1

r at low recoil energy. We will
now turn our attention to scattering processes for which the recoil energy spectrum falls even more
steeply (⌃ E�2

r ), and hence a larger enhancement of the neutrino scattering rate at low energies is
possible without violating the Borexino constraint.

This can be achieved if there is a new neutrino–electron or neutrino–quark interaction mediated
by a light particle whose couplings do not contain derivatives. Let us in particular consider a
model with gauged B�L (baryon number minus lepton number) symmetry, with the corresponding
U(1)B�L gauge boson A⇥ having a mass MA� ⌅ 1 GeV:

LB�L ⇤ �gB�L ē⇥�A⇥
�e+

1

3
gB�L q̄⇥�A⇥

�q � gB�L ⌅̄⇥�A⇥
�⌅ + . . . . (10)

Here, gB�L is the U(1)B�L coupling constant and q, e and ⌅ are quark, charged lepton and neutrino
fields, respectively. We will call A⇥ a “dark photon” here and in the following.5 Note that we neglect
the possibility of kinetic mixing between the dark photon and the photon here. We will discuss
models with kinetic mixing (but with couplings to B �L) in great detail below, and we will argue
in section 7 that, in many phenomenologically relevant processes, a coupling to B�L is equivalent
to kinetic mixing.

The cross section for A⇥-mediated elastic scattering of a neutrino o� an electron or nucleus
depends mildly on the chiral structure of the A⇥ couplings. Here, for concreteness we will assume
the A⇥ to have pure vector couplings of the form ⌃̄⇥µ⌃eA⇥

µ, but spectra would look similar for other

4 Published astrophysical constraints can be up to an order of magnitude stronger [53–58], but it is di⇥cult to assess
the systematic uncertainties associated with these limits and to assign a confidence level to them.

5 In the literature, the term “dark photon” is often reserved for U(1)� gauge bosons coupling to the Standard Model
only through kinetic mixing with the photon, but we will use it in a more general context. In fact, a gauge
boson coupled to Standard Model particles only through kinetic mixing with the photon, would not have tree level
couplings to Standard Model neutrinos at all since they are electrically neutral.

Specific instance of a U(1)B-L model
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Figure 1. One neutrino event contour lines for the two types of mediators, considering a Xe target
detector. We show on the left (right) panel three examples for the vector (scalar) mediator. We also
show the SM one neutrino event contour line (in blue) for comparison. The red star is a point for
which we will show the energy spectrum. The green region is excluded by LUX at 90% of C.L. [41].

limits, defined at 90% C.L. as the curve in which we obtain 2.3 DM events for the computed

exposure:

�1⌫
�n =

2.3

E⌫(E
th

)
R
Eth

dR
dER

���
�,��n=1

dER

. (3.18)

If we now take the lowest cross-section of all limits as a function of the DM mass,

we obtain the one neutrino event contour line, corresponding to the best background-

free sensitivity achievable for each DM mass for a one neutrino event exposure. Let us

stress that the one neutrino event contour line, as defined in this section, is computed

with a 100% detector e�ciency. The e↵ect of a finite detector e�ciency will be taken

into account in Sec. 5 when we will compute how the new exotic neutrino interactions can

a↵ect the discovery potential of direct detection DM experiments. Comparing eq. (3.18)

with Eqs. (3.12) and (3.15), we see that the simplified models introduced in Sec. 2 can

modify the one neutrino event contour line. In fact, such modifications have been studied

in specific models with light new physics e.g. in [10]. We show in Fig. 1 some examples

of a modified one neutrino event contour line for our models, fixing the values of the

parameters GV and GS as specified in the legends. These parameters have been chosen to

be still allowed by current data, see sections 4 and 5. The left panel of the figure describes

changes in the one neutrino event contour line in presence of a new vector mediator. As

will be explained below, it is possible to have cancellation between SM and exotic neutrino

interactions leading to a lowering of the contour line as shown for the case of GV = 0.3. It

is also worth recollecting that GV includes the SM contribution i.e. GV = 1 is the SM case.

For the vector case the one neutrino event contour line is e↵ectively a rescaling of the SM

case. figure 1 (right panel) on the other hand shows modification of the contour line for

a scalar mediator. Note that unlike in the vector scenario, the factor GS has a di↵erent

normalization. No significant change in the one neutrino event contour line is expected in

the scalar case.
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fermions, the dijet and dilepton analyses at the LHC put important bounds, as has been

exemplified in [30, 31]. In this paper we aim to concentrate only on the constraints arising

from direct detection experiments.

3 Scattering at direct detection experiments

3.1 Neutrino and dark matter Scattering

Let us now remind the reader about the basics of CNSN. In the SM, coherent neutrino

scattering o↵ nuclei is mediated by neutral currents. The recoil energy released by the

neutrino scattering can be measured in the form of heat, light or phonons. The di↵erential

cross-section in terms of the nuclear recoil energy ER reads [7]

d�⌫

dER

����
SM

= (QSM

V )2F2(ER)
G2

FmN

4⇡

✓
1� mNER

2E2

⌫

◆
, (3.1)

with the SM coupling factor

QSM

V = N + (4s2W � 1)Z . (3.2)

Here, N and Z are the number of neutrons and protons in the target nucleus, respectively,

F(ER) the nuclear form factor, E⌫ the incident neutrino energy and mN the nucleus mass

GF is the Fermi constant and sW = sin ✓W is the sine of the weak mixing angle. In addition,

we use the nuclear form factor [32]

F(ER) = 3
j
1

(q(ER)rN )

q(ER)rN
exp

✓
�1

2
[s q(ER)]

2

◆
, (3.3)

where j
1

(x) is a spherical Bessel function, q(ER) =
p
2mn(N + Z)ER the momentum

exchanged during the scattering, mn ' 932 MeV the nucleon mass, s ⇠ 0.9 the nuclear

skin thickness and rN ' 1.14 (Z +N)1/3 is the e↵ective nuclear radius.

In the case of the vector model defined in eq. (2.1), the di↵erential cross-section gets

modified by the additional V exchange. The total cross-section should be calculated as a

coherent sum of SM Z and vector V exchange, and reads

d�⌫

dER

����
V

= G2

V

d�⌫

dER

����
SM

, with GV = 1 +

p
2

GF

QV

QSM

V

g⌫V � g⌫A
q2 �m2

V

. (3.4)

Here, the coupling factor QV of the exotic vector boson exchange is given by [33]

QV = (2Z +N)guV + (2N + Z)gdV , (3.5)

and q2 = �2mNER is the square of the momentum transferred in the scattering process. To

obtain eq. (3.4), we assumed that the neutrino production in the sun is basically una↵ected

by the presence of NP, in such a way that only LH neutrinos hit the target. As expected,

if the new vector interacts only with RH neutrinos g⌫V = g⌫A, the NP contribution vanishes

completely and no modification to the CNSN is present. On the other hand, when g⌫V 6= g⌫A,

the interference term proportional to g⌫V � g⌫A can give both constructive and destructive
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1.8 MeV we use the experimental results of Ref. [41].

We assume a detector exposure corresponding to germanium and silicon masses each of
10kg, together with a five year running time, as is realistic for the MINER experiment. As
previously mentioned, an extremely important aspect of the detector technology is the exis-
tence of low thresholds for nuclear recoils (nr), due to the expected features in CE‹NS that
arise at recoil energies below the keV scale. We assume a 100eVnr threshold for germanium
and silicon. While no current technology exists that reaches such thresholds, experimental
progress is underway which can conceivably reach these levels in the near future [42]. For
example, CDMSlite recently achieved a threshold of 56eVee (electron recoil) [37] and a few
hundred eVnr (the exact conversion factor from eVee to eVnr depends on the parameteriza-
tion for the ionization yield, which is only known to within a factor of a few). The proximity
to the reactor, while ensuring a large neutrino flux, comes with a commensurately large
neutron and gamma background. The goal for the MINER experiment is approximately 100
events per day per kg per keV, i.e. 100 dru, in the signal region. Modeling of the reactor,
detector and shielding show that this goal should be achievable [43], and thus we will use
a flat background of 100dru as a baseline. These detector specifications are summarized in
table II. In addition, we include a more optimistic future scenario (Ge/Si II), to show the
improvement that detector technology developments could yield.

TABLE II. Detector specifications

Name Target Exposure (kg.days) Eth (eV) background (dru)

Ge germanium 10,000 100 100±10

Ge II germanium 10,000 10 10 ±1

Ge II(low BG) germanium 10,000 10 (1±.1)◊10≠4

Si silicon 10,000 100 100±10

Si II silicon 10,000 20 10 ±1

CsI Caesium-Iodide 10,000 5,000 10±1

The distribution of solar neutrinos presents either large flux at low energies, or low flux
at large energies, as in table I. The highest flux rates are from the pp process, integrating to
approximately 6 ◊ 1010 cm≠2s≠1 and cutting o� around 0.4 MeV, followed by the 7Be and
pep line sources at 0.9 and 1.4 MeV with corresponding fluxes 5 ◊ 109 and 1 ◊ 108 cm≠2s≠1

12

TABLE I. Neutrino flux sources and their respective uncertainties in the flux normalizations. The

SNS flux and uncertainty was taken from [20]. The Solar components are derived from the high

metallicity Solar model as outlined in Ref. [38].

component ‹ flux (cm≠2s≠1)

TAMU reactor (at 1m) 1.50(1 ± 0.02) ◊ 1012

SNS (at 20m)

‹µ (prompt) 4.30(1 ± 0.1) ◊ 107

‹e (delayed) 4.30(1 ± 0.1) ◊ 107

‹̄µ (delayed) 4.30(1 ± 0.1) ◊ 107

Solar

pp 5.98(1 ± 0.006) ◊ 1010

7Be 5.00(1 ± 0.07) ◊ 109

8B 5.58(1 ± 0.14) ◊ 106

pep 1.44(1 ± 0.012) ◊ 108

summarized in table I.

To investigate the reach of reactor neutrino sources in probing NSI with light mediators,
we consider the Mitchell Institute Neutrino Experiment at a Reactor (MINER). As a brief
review, the MINER program has been developed with the Nuclear Science Center at Texas
A&M University (TAMU), which administrates a megawatt-class TRIGA-type pool reactor
stocked with low enriched (≥ 20%)235U. Low temperature solid state germanium and sili-
con detectors, using technology similar to that currently developed for direct dark matter
searches like SuperCDMS, will be installed at very near proximity (≥ 1 ≠ 3m) to the reactor
core. More specifics on the reactor, its properties, and the MINER program may be found
in recent works which have highlighted its physics potential for TeV scale mass Z Õ models,
sensitivity for neutrino magnetic moment searches, and sterile neutrino searches [10, 11].

The antineutrino flux can be obtained via knowledge of the reactor’s power (1.00±0.02
MW in the present work) along with the normalized antineutrino fission spectrum, which has
been measured at various sites (for a recent discussion of the current status of the spectrum
see [39]). The spectrum has not been directly measured below the 1.8 MeV inverse beta
decay threshold. For these energies we adopt the theoretical distribution in Ref. [40]. Above

11
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and the muon. Then the e↵ective charge in Eq. (3) can be written as

Q2
↵,NSI =


Z

✓
gVp +

3g2

2
p
2GF (Q2 +M2

Z0)

◆
+N

✓
gVn +

3g2

2
p
2GF (Q2 +M2

Z0)

◆�2
, (6)

where Q2 = 2MEr is the square of the momentum transfer.

To evaluate the statistical significance, we define

�2 =
X

i


N i

exp �N i
NSI(1 + ↵)

�i
stat

�2
+

✓
↵

�↵

◆2

, (7)

where N i
exp (N

i
NSI) is the number of observed (predicted) events per bin, �i

stat is the statistical

uncertainty, and the flux normalization uncertainty is �↵ = 0.28 [1]. We extract N i
exp and

�i
stat from the top right panel of Fig. 3 in Ref. [1], and consider 12 bins in the 6  PE < 30

range, and ignore the small background from prompt neutrons.

We scan over possible values of the coupling g and the mediator mass MZ0 , and show the

2� limits in the (MZ0 , g) plane in Fig. 2. The 2� allowed region that explains the discrepancy

in the anomalous magnetic moment of the muon [10] is also shown for comparison. We see

that a light mediator that can explain the discrepancy in the anomalous magnetic moment

of the muon is disfavored.

The shape of the limit curve in Fig. 2 can be understood from the propagator in Eq. (6),

in which the NSI contribution is proportional to g2

2MEr+M2
Z0
. For a very light mediator, i.e.,

MZ0 ⌧
p
2MEr ⇠ 50 MeV, the limit is only sensitive to the coupling g. Note that since the

momentum transfer in coherent forward scattering is zero, the NSI matter e↵ect for neutrino

propagation is sensitive to g2

M2
Z0

[14], and the constraint does not apply to matter NSI induced

by a very light mediator. For a heavy mediator, i.e., MZ0 �
p
2MEr, NSI do not change the

shape of the spectra, and the limit is dependent on the ratio g
MZ0

. There is also a degenerate

region that is not excluded by current data. Since the data are consistent with the SM, the

degenerate region can be understood by the relation, Q↵,NSI = �Q↵,SM, i.e.,

g2

M2
Z0

= �
4
p
2(ZgVp +NgVn )

3(Z +N)
GF , (8)

which holds for all Er bins when MZ0 �
p
2MEr. For a light mediator, the spectral shapes

are modified by NSI (see the solid lines in Fig. 1 for example), which breaks the degeneracy.
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Figure 2: The 2� exclusion region in the (MZ0 , g) plane from the COHERENT data. The

2� allowed region that explains the discrepancy in the anomalous magnetic moment of the

muon (�aµ = (29± 9)⇥ 10�10 [10]) is shown for comparison.
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muon decays, µ+ ! e+ + ⌫̄µ + ⌫e. The distribution of the total flux for each neutrino flavor

is well-known and given by [5]

�⌫µ(E⌫) = N �

✓
E⌫ �

m2
⇡ �m2

µ

2m⇡

◆
,

�⌫̄µ(E⌫) = N 64E2
⌫

m3
µ

✓
3

4
� E⌫

mµ

◆
,

�⌫e(E⌫) = N 192E2
⌫

m3
µ

✓
1

2
� E⌫

mµ

◆
, (2)

where the normalization factor is N = rNPOT

4⇡L2 . Here r = 0.08 is the number of neutrinos per

flavor that are produced for each proton on target [1]. The total number of protons delivered

to the mercury target is NPOT = 1.76 ⇥ 1023 and the distance between the source and the

CsI detector is L = 19.3 m [1].

The di↵erential cross section for a given neutrino flavor ⌫↵ in the SM is

d�↵

dEr
=

G2
F

2⇡
Q2

↵F
2(2MEr)M

✓
2� MEr

E2
⌫

◆
, (3)

whereM is the mass of the target nucleus, F (Q2) is the nuclear form factor, and the radiative

corrections are neglected. We take the nuclear form factor from Ref. [11]. The e↵ective charge

in the SM is

Q2
↵,SM =

�
ZgVp +NgVn

�2
, (4)

where Z and N are the number of protons and neutrons in the nucleus, and gVp = 1
2
�2 sin2 ✓W

and gVn = �1
2
are the SM couplings of the Z0 boson to the proton and neutron, with ✓W the

weak mixing angle.

We ignored the contribution to the cross section from the sodium dopant because of

its extremely small fractional mass (10�4 � 10�5) in the CsI detector [12]. Also, since the

responses of Cs and I to a given neutrino flavor are almost identical due to very similar

nuclear masses [12], we do not distinguish between Cs and I in our analysis. We adopt a

simple relation between the observed number of photoelectrons (PE) and the nuclear recoil

energy [1]:

nPE = 1.17

✓
Er

keV

◆
. (5)
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Summary



Coherent elastic neutrino-nucleus scattering 
will soon be a background in low threshold 
direct detection experiments.

Its measurement provides a leading search 
strategy for BSM physics, as well as 
complementary with other neutrino programs

Non-standard interactions (either DM or neutrino) 
can alter the nature of the neutrino floor


