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Outline

● MicroBooNE and LAr-TPCs, potential for physics at O(10 MeV).

● Reconstructing low energy electrons in MicroBooNE.

● Going to even lower energies.
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The MicroBooNE Experiment

Neutrino experiment at Fermilab sitting on the Booster Neutrino 
Beamline O(1 GeV) νμ beam.

Taking data since fall ‘15.

Investigate MiniBooNE’s excess of low energy electron-like neutrino 
events below 500 MeV. Neutrino oscillations?

First of 3 detectors in the Short Baseline Neutrino program studying 
potential neutrino oscillations at 1 eV2.

SBND @ 110 meters

MicroBooNE @ 470 meters
ICARUS @ 600 meters

10 meters
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What does a LAr-TPC have to offer at low energy?

Low detection thresholds and “fully-active” fine grained detector 
→  contributions to neutrino physics at tens of MeV energies in 
large-scale LAr-TPCs.

lowenergy proton candidate

few MeV photons

~20 MeV electron See MicroBooNE note on NC elastic events
www-microboone.fnal.gov/publications/publicnotes/

MICROBOONE-NOTE-1025-PUB.pdf
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3 mm wire spacing → good spatial resolution.

Pre-amplifiers in cold argon → high signal-to-noise.
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Supenova Neutrino Burst:
● 5-50 MeV neutrinos.
● 100 νe interactions / kiloton mass. 

Relevant Questions:
● How to identify low energy electrons?
● What about de-excitation photons?
● What resolution / efficiency is needed to reach physics goals?

Other interesting physics:
● neutrinos from stopped pion beam.
● cross-sections at low energies.
● Solar neutrinos.

Physics Motivation

[arXiv:1512.06148]

40K*

40K

40Ar

n 
→

 p
 ~few MeV released 

in de-excitation γs.

This talk: what are the challenges of reconstructing electrons in this energy range? With what energy resolution?
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“Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC” 

arXiv:1704.02927  accepted for publication in JINST

https://arxiv.org/abs/1704.02927
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What do Michel electrons look like?
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Michel electrons : impact of radiative energy loss

Similar contributions to energy loss from 
bremsstrahlung photons and ionization.

→ Complex topology.

Stochastic nature of bremsstrahlung photon 
production:

→ “Ionization-only” energy not sufficient 
    for good energy resolution.

  

Stochastic nature of 
brem. Production 
causes spread.
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Michel electrons : impact of radiative energy loss

Missing energy from radiative photons has a significant 
impact on the Michel energy spectrum.
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Challenges to Reconstruction

Radiative photons are challenging to identify 
because:

1) few MeV gammas require low detection 
threshold.

2) Hard to collect all far-reaching gammas, 
especially in a “busy” detector with pileup from 
cosmic-rays.

“long exposure” image due to slow electron drift → many cosmic-ray 
tracks overlap neutrino image in surface detector.
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Michel electrons : reconstruction

Analysis relies on 2D reconstruction which identifies 
Bragg peak and electron “kink” from collection-plane 
image.

Tag bremsstrahlung photons up to 80 cm from decay, 
avoid cosmic accidentals.
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Reconstruction Performance

Above: attempt to tag radiative photons.
Reconstructed spectrum still shows bias.

Attempting to recover radiative photons 
improves energy reconstruction.
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Challenges to non-beam physics

No beam trigger → require 100% live-time.

TPC challenge: large data-volumes.

● 30 GB / sec @ MicroBooNE

● 5 TB / sec @ DUNE

Solution: MicroBooNE employs dynamic zero-
suppression to reduce data-volume while remaining 
sensitive to supernova physics.

empty baseline region zero-suppressed

Charge from muon, Michel e-, and ~few 
MeV brem. Photons saved

Candidate Michel electron from MicroBooNE’s continuous-readout data-stream.
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Moving Forward

Significant advances in signal-processing over the past 
year. Signal-to-noise: > 30 on collection-plane.

“Noise Characterization and Filtering in the MicroBooNE 
Liquid Argon TPC”, JINST (12), 2017.  [arXiv:1705.07341]

MicroBooNE is leading the development of sophisticated techniques 
to face the challenges of reconstructing complex topologies in surface 
LArTPCs.

Multiple approaches to pattern-recognition:

“Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon 
Time Projection Chamber”, JINST (12), 2017.  [arXiv:1611.05531]

“The Pandora multi-algorithm approach to automated pattern recognition of  
Cosmic-ray muon and neutrino events in the MicroBooNE detector” 
 [arXiv:1708.03135]

Wire-Cell:
http://www.phy.bnl.gov/wire-cell/

             Lowering detection thresholds                                                  Pattern Recognition
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https://arxiv.org/abs/1705.07341
https://arxiv.org/pdf/1611.05531.pdf
https://arxiv.org/abs/1708.03135
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Michel electrons : summary

–  First fully-automated reconstruction of EM activity in LAr-TPC neutrino detector.

– Interesting energy range in terms of electron energy loss and topology.

– Main challenge to reconstruction are low energy, far-reaching bremsstrahlung photons.

– Photon tagging has significant impact on energy resolution, even with current simple 2D 
   reconstruction technique.

– Significant work from MicroBooNE over the past year which will benefit low-energy physics potential of    
   Lar-TPC:

– Hardware/signal processing to improve signal-to-noise + advanced pattern recognition 
   reconstruction techniques.
– Full 3D reconstruction as input to pattern-recognition → improved performance.
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Going even further?

Current large-scale LAr-TPCs aim for tens of MeV detection 
thresholds.

Lower thresholds →  Dark Matter and CEνNS physics.

Limitation: electronics signal-to-noise.

Solutions:

1) dual-phase (DarkSide dual-phase Lar-TPC)

2) charge amplification in liquid phase → LArCADe1 R&D effort at 
Fermilab, led by Angela Fava. 

Needles @ anode with locally strong E-field to induce charge-
multiplication.

End goal: micro-strip readout. 

1http://ldrd.fnal.gov/subdir/FNALLDRD2017011D1.pdf

100 µm

cathode @ voltage

Anode readout

field increase in tip proximity.
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Backup
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Scintillation Light

Ben Jones @ Univ. Texas, Arlington

David Caratelli @ Columbia University
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LArTPC Working Principle : MicroBooNE

ν

8” PMTs

isotropic UV 
scintillation light. 

Looking inside cryostat, before TPC inserted

David Caratelli @ Columbia University
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MicroBooNE Readout Electronics “timeline”

ArXiv:1308.3446v1 – D. Kaleko @ Columbia

David Caratelli @ Columbia University
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LArTPC Working Principle : MicroBooNE
David Caratelli @ Columbia University

Electronics in cold:
High signal-to-noise enables 

accurate calorimetry.
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Cold Electronics
David Caratelli @ Columbia University

“Noise Characterization and Filtering in the MicroBooNE 
Liquid Argon TPC”, JINST (12), 2017

“Noise Dependence on Temperature and LAr Fill Level in the
MicroBooNE Time Projection Chamber”
https://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1001-TECH.pdf

https://arxiv.org/pdf/1705.07341.pdf
https://arxiv.org/pdf/1705.07341.pdf
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Recombination

Birks model

Box model

Recombination depends on density of Ar+ and e-.

Affected by:

– dE/dx (more energy deposition per unit distance → 
larger ion density → more recombination) 

– E-field strength: determined timescale at which Ar+ / 
e- drift away from each other.

For electrons / photons much smaller variation in dE/dx vs. 
energy compared to muons/protons/pions.

→ significant effect, but ~constant.
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Space Charge

Positive ions in LAr drift at 10-3 the speed of 
electrons.

→ “space-charge” buildup in TPC.

Effect leads to distortions in electric field.

Local variations in E field In turn affect:

● Local drift speed → spatial “wiggles”

● Field magnitude → recomb. Effect.

Source: Study of Space Charge Effects in MicroBooNE: 
http://wwwmicroboone.fnal.gov/publications/publicnotes/MICROBOONENOTE1018PUB.pdf



26

EM activity in LAr : a summary
David Caratelli @ Columbia University

Two things to note:

1) Energy loss process depends significantly on energy. At lower energies (<100 MeV) significant contribution from primary 
ionization. Electron/photon not very “shower-like”.

2) Radiative photons can travel tens of cm before depositing their energy in TPC.

~20 cm absorption length
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Michel electrons : Radiative Photons

To recover radiative photons need to extend the search 
for charge tens of cm away from muon stopping point.

This presents challenges, especially for a surface 
detector with “dense” accidental cosmic activity. 

NIST XCOM

David Caratelli @ Columbia University
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Calorimetric Energy Reconstruction
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Argon is ionized
Wion = 23.6 eV

Ion Recombination
Impurities absorb 
drifting electrons

1) Integrate charge associated to tagged Michel electron hits.

2) Account for processes affecting energy loss and signal formation in MicroBooNE's TPC:

40% attenuation Negligible @ uBooNE

David Caratelli @ Columbia University



29

Michel electrons : Monte Carlo energy resolution studies.

no γ tagging w/ γ tagging
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Michel electrons : Monte Carlo energy resolution studies.

no γ tagging w/ γ tagging
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Michel electrons : Energy Reconstruction

Muon Bragg peak can contaminate 
clustered Michel energy

Exclusion of radiative photons 
causes shift in spectrum.

David Caratelli @ Columbia University
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Michel Electrons : Purity and Resolution
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