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1 Introduction

Topological Data Analysis (TDA) is a field of applied mathematics that is useful in the
study and analysis of complex, high-dimensional data. There are numerous approaches to
data analytics, of which TDA is a relatively newer framework that uses topology to identify
and understand the underlying shape and structure of data. TDA has been applied across
a wide range of disciplines, including biology, chemistry, and finance, and there is ongoing
research in the field as new techniques continue to be developed.

The purpose of undertaking this independent study was to survey relevant topics to gain an
understanding of TDA. To achieve this goal, we have divided our studies into five sections,
which we present in this document: Basics of Topology, Complexes, Homology Groups, Per-
sistent Homology, and Applications in Data Analysis. The Basics of Topology section serves
as a foundation for understanding the key concepts from topology that are used in TDA.
In the Complexes section, we describe how we can construct topological spaces from data
sets. In the Homology Groups section we explain how to use vector spaces and linear trans-
formations to study topological spaces. In the Persistent Homology section we explain the
fundamental tool used in TDA to identify topological features that persist across various
constructions of the topological space associated to a data set. Finally, in the Applications
in Data Analysis section, we present a real-world example of how TDA has been applied to
analyze data.

2 Basics of Topology

2.1 Topological Spaces

Definition 2.1. Let X be a set. The collection of all subsets of X is called the power set
of X, and it is denoted by P(X) or 2X . If X is finite with cardinal n, then the cardinal of
P(X) is 2n.

Example: The power set of the empty set is P(∅) = {∅}, and the power set of {1, 2, 3}
is P

(
{1, 2, 3}

)
=

{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

}
.

Definition 2.2. Let X be a set, and let T ⊆ P(X) be a collection of subsets of X. We say
the pair (X, T ) is a topological space and the collection T is a topology on X if the following
axioms are satisfied:

1. ∅, X ∈ T

2. If {Oi}i∈I ⊆ T , then
⋃

i∈I Oi ∈ T , i.e. the union of an arbitrary collection of elements
in T is in T .

3. If {Oi}ni=1 ⊆ T for some n ∈ N, then
⋂n

i=1Oi ∈ T , i.e. the intersection of a finite
collection of elements in T is in T .
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Definition 2.3. Let (X, T ) be a topological space. If O ∈ T ,

• O is an open set for the topology T

• X \ O is a closed set for the topology T

A subset A of X is a closed set if and only if its complement, Ac = X\A, is open.

Intuition

We want the elements of T to behave like open intervals in R, where each open set
is a set where every point can be through of as having some ”wiggle room” within
the set in any direction. On the other hand, the complements of the elements of T
should behave like closed intervals in R.

Remark. The collection of closed sets for the topology T satisfy a dual set of axioms:

1. ∅, X are closed sets.

2. If {Ci}i∈I is a collection of closed sets, then
⋂

i∈I Ci is closed, i.e. the intersection of an
arbitrary collection of closed sets is closed.

3. If {Ci}ni=1 for some n ∈ N is a finite collection of closed sets, then
⋃n

i=1 Ci, i.e. the
union of a finite collection of closed sets is closed.

Examples:

1. Let X be a set. If T = {∅, X}, we call T the indiscrete/trivial topology. If T = P(X),
we call T the discrete topology.

2. The set of real numbers, R, with the collection of open intervals and arbitrary unions of
open intervals is known as R with the usual topology or R with the Euclidean topology.

3. The adjectives ”open” and ”closed” are not mutually exclusive. Some open sets are
also closed sets, and some sets are neither open sets nor closed sets. In fact, let
X = {1, 2, 3, 4, 5, 6} and T = {∅, X, {1}, {3, 4}, {1, 3, 4}, {2, 3, 4, 5, 6}}. Then,

• The point sets ∅ and X are both open and closed (this is true in every space
(X, T ))

• {1} and {2, 3, 4, 5, 6} are both open and closed

• {3, 4}, {1, 3, 4} are open but not closed

• {2, 3} is neither open nor closed

• {1, 5, 6} is closed but not open
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Usually, it is difficult to specify the topology on a set by describing the entire collection
of open sets. One can instead specify a smaller collection of subsets, and define the topology
in terms of that.

Definition 2.4. Let X be a set. A basis for a topology on X is a collection B ⊂ P(X)
(elements of B are called basis elements) such that

1. For each x ∈ X, there is at least one basis element B ∈ B containing x.

2. If x ∈ X belongs to the intersection of two basis elements B1 and B2, then there exists
a basis element B3, containing x, such that B3 ⊆ B1 ∩B2.

The topology T generated by B is formed as follows: Let O ⊆ X, then
O ∈ T if and only if for each x ∈ O, there is a B ∈ B such that x ∈ B and B ⊆ O.

Examples:

1. For any set X with the indiscrete topology, the collection of singletons

B =
{
{x} : x ∈ X

}
is a basis. When X = N, then this basis has a countable number of elements.

2. Consider R with the usual topology. The collection of open intervals

B =
{
(a, b) ⊂ R : a, b ∈ R and a < b

}
is a basis for the usual topology. This basis has an uncountable number of elements.

3. Let C be the collections of all interiors of circles in the plane, and letR be the collections
of all interior of rectangles (with sides parallel to the coordinate axes) in the plane.
These collections generate the same topology in R2.

Definition 2.5. Let (X, T ) be a topological space, and let Y ⊆ X be a non-empty subset
of X. The collection TY := {O ∩ Y : O ∈ T } ⊆ P(Y ) is called the subspace topology on Y
induced by T , and (Y, TY ) is said to be a subspace of (X, T ).

Example: Consider R with the usual topology and [0, 1] ⊆ R. Some elements of µ[0,1]

are {(a, b) : 0 < a < b < 1}, {[0, b) : 0 < b < 1}, and {(a, 1] : 0 < a < 1}.
As we saw in a previous example, subsets of a topological space are not necessarily open

or closed. However, the definition below tells us how to find open and closed sets related to
arbitrary subsets of a topological space.

Definition 2.6. Let (X, T ) be a topological space, and let A ⊆ X be a non-empty subset
of X.

1. The interior of A is the union of all open sets of X contained in A, and it is denoted
by Int(A).
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2. The closure of A is the intersection of all closed sets of X containing A, and it is
denoted by Cl(A).

3. The boundary of A is the set difference Bd(A) = Cl(A) \ Int(A).

Figure 1: Visual representation of closure, interior, and boundary [6].

Definition 2.7. A space is called Hausdorff if every two disjoint sets have disjoint open
sets containing them.

Example: Consider the set X = {1, 2, 3}. Define T1 as follows:

T1 = {∅, X, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

Thus, this topological space would be a Hausdorff space since every two disjoint point sets
have disjoint open sets that contain them.
However, if we now consider another topology, T2 = {∅, X, {1, 3}, {2}}, this satisfies the
properties of a topological space, however does not satisfying the properties of a Hausdorff
space. For instance, if we take the disjoint sets {1, 3} and {2}, there is no disjoint open set
containing them.

Definition 2.8. A topological space (X, T ) is disconnected if there are two disjoint non-
empty open sets U, V ∈ T so that X = U ∩ V . A topological space is therefore connected if
it is not disconnected.

Examples:

1. R with the usual topology is connected.

2. (0, 1) ∪ (2, 3) ⊆ R with the subspace topology is disconnected.

3. N with the discrete topology is disconnected.

Remark. There is a relationship between connectedness and the number of sets that are
open/closed.
X is connected if and only if the only subjects of X that are closed and open are X and ∅.

Definition 2.9. Let (X, T ) be a topological space. An open/closed cover of X is a collection
C of open/closed subsets of X s.t. X =

⋃
A∈C A.
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Definition 2.10. Let (X, T ) be a topological space. We say X is compact if for every open
cover C of X there exists a finite subcover C ′ of X.

Symbolically: ∀ C, X =
⋃

A∈C A, ∃ C ′ ⊆ C, C ′ is finite and X =
⋃

A∈C′ A

Example: Consider R with the usual topology. C = {(−∞, n) : n ∈ N} is an open cover
of R. R with the usual topology is not compact because C = {(−n, n) : n ∈ N} is an open
cover of R that cannot be reduced to a finite cover.

Intuition

Compactness can be thought of as a property having to do with the finiteness of a
space. For example, spaces like R or [0,∞) with the usual topology are ”infinitely
large” and are not compact. However, compactness is defined in terms of open sets,
so intervals like (a, b) and [a, b) are noncompact, while closed intervals [a, b] are com-
pact.

Definition 2.11. Given a topological space (X, T ) and an equivalence relation ∼ defined
on the set X, a quotient space(S,S) induced by ∼ is defined by the set S = X\ ∼ and
the quotient topology S where S := {U ⊆ S|{x : [x] ∈ U} ∈ T }.

Examples:

1. Take the square [0, 1]× [0, 1] with the equivalence relation given by (0, t) ∼ (1, 1− t)
∀ t ∈ [0, 1]. The space obtained as a quotient space is called the Möbius band :

Figure 2: The visual representation for the Möbius band is given above [1].

2. Take the square [0, 1] × [0, 1] with the equivalence relation given by (0, t) ∼ (1, t) ∀
t ∈ [0, 1] and (s, 0) ∼ (s, 1) ∀ s ∈ [0, 1]. The space obtained as a quotient space is
called the torus :

Figure 3: The visual representation for the torus is given above [1].
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3. Take the square [0, 1] × [0, 1] with the equivalence relation given by (0, t) ∼ (1, t) ∀
t ∈ [0, 1] and (s, 0) ∼ (1− s, 1) ∀ s ∈ [0, 1]. The space obtained as a quotient space is
called the Klein bottle:

Figure 4: The visual representation for the Klein bottle is given above [1].

2.2 Metric Spaces

Definition 2.12. A metric space is an ordered pair (X, d) where X is a set and d : X×X →
R+ ∪ {0} is a metric on X. In other words, d is a function such that for any x, y, and z in
X the following properties hold:

• Identity: d(x, y) = 0 if and only if x = y;

• Symmetry: d(x, y) = d(y, x);

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

The function d is typically called a distance function.

Definition 2.13. Let (X, d) be a metric space. Fix a point c ∈ X, and let r > 0. We define
the following sets:

• An open ball centered at c of radius r is the set B0(c, r) := {x ∈ X : d(x, c) < r}.

• An closed ball centered at c of radius r is the set B(c, r) := {x ∈ X : d(x, c) ≤ r}.

Given a metric space (X, d), the distance function induces a topology on X where the
collection {B0(c, r)|c ∈ X, 0 < r} and their union are the open sets of X. In this case we use
the notation (X, Td) to indicate that X is considered a topological space with the topology
induced by the metric d.

Examples:

1. The Euclidean metric on R is defined as follows

d : R× R → R+ ∪ {0}
(x, y) 7→ |x− y|.

Open balls are B0(c, r) = {x ∈ R : |x− c| < r} = (c− r, c+ r).

The topology induced by the Euclidian metric on R is the usual topology on R.
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2. The Euclidean metric on Rn is defined as follows

d : Rn × Rn → R+ ∪ {0}
(x,y) 7→

√
(x1 − y1)2 + · · ·+ (xn − yn)2,

for all x = (x1 · · · xn)
T and y = (y1 · · · yn)

T . Open balls B0(c, r) are disks centered

at c =
(
c1 · · · cn

)T
of radius r without boundary.

(Rn, Td) is known as Rn with the usual topology.

In this case, we denote open balls and closed balls centered at c = 0 = (0 . . . 0)T and
of radius r = 1 by Bn

0 and Bn, respectively.

We also define the (n− 1)-sphere centered at c of radius r as the set

S(c, r) := {x ∈ Rn : (x1 − c1)
2 + · · ·+ (xn − cn)

2 = r2},

for all x = (x1 · · · xn)
T and c = (c1 · · · cn)T . When x = 0 and r = 1, we simply write

Sn−1 and call it the (n− 1)-unit sphere.

3. Let X be a nonempty set. The discrete metric on X is defined as follows

d : X ×X → R+ ∪ {0}

(x, y) 7→

{
0, if x = y

1, if x ̸= y.

Open balls B0(c, r) = {x ∈ X : d(c, x) < r} are

B0(c, r) =

{
{c}, if 0 < r ≤ 1

X, if r > 1.

4. The infinity metric on R2 is defined as follows

d∞ : R2 × R2 → R+ ∪ {0}
(x,y) 7→ max{|x1 − y1|, |x2 − y2|},

for all x = (x1 x2)
T and y = (y1 y2)

T .

Open balls B0(c, r) = {x ∈ R2 : max{|x1 − c1|, |x2 − c2|} < r} are squares centered at
c = (c1 c2)

T of side length 2r without boundary.

5. The taxicab or Manhattan metric on R2 is defined as follows

d∞ : R2 × R2 → R+ ∪ {0}
(x,y) 7→ |x1 − y1|+ |x2 − y2|,

for all x = (x1 x2)
T and y = (y1 y2)

T .

Open balls B0(c, r) = {x ∈ R2 : |x1 − c1|+ |x2 − c2| < r}
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(a) Open ball B0(a, r) with
the Euclidean metric on R2

(b) Open ball B0(0, 1) with
the taxicab metric on R2

(c) Open ball B0(0, 1) with
the infinity metric on R2

Figure 5: Here are examples of open balls under different metrics [15].

Definition 2.14. Suppose we have some metric space (X, d). Let Q ⊆ X be a point set. A
point p ∈ X is a limit point of Q, if for every real number ϵ > 0, Q contains a point q ̸= p
such that d(p, q) < ϵ.

In other words, there is an infinite sequence of points in Q that gets progressively closer
to p, without actually being p, and gets arbitrarily close. In terms of topological spaces, a
point p ∈ X is a limit point of a set Q ⊆ X if every open set containing p intersects Q.

Definition 2.15. Let Q ⊆ X be a point set. Q is called disconnected if Q can be partitioned
into two disjoint non-empty sets U and V so that there is no point in U that is a limit point
of V , and no point in V that is a limit point of U . If no such partition exists, then Q is
connected.

Definition 2.16. Cl Q is the set containing every point in Q and every limit point of Q.
A point set Q is closed if Q = Cl Q, where Q contains all the limit points. Q is open if its
complement is closed, that is, X\Q = Cl (X\Q).

Definition 2.17. The boundary of a point set Q in a metric space X, denoted BdQ, is the
intersection of the closures of Q and its complement, i.e., BdQ = ClQ ∩ Cl(X\Q). The
interior of Q, or IntQ, is Q\BdQ = Q\Cl(X\Q).

Definition 2.18. The diameter of a point set Q is supp,q∈Q d(p, q). The set Q is bounded if
its diameter is finite, and unbounded if its diameter is infinite. A point set Q in a metric
space is compact if it is closed and bounded.

Intuition

The intuition of compactness in a metric space, like compactness of a topological
space, can be thought of similarly to the intuition of finiteness.
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2.3 Homeomorphisms and Homotopies

Definition 2.19. Let (X, TX) and (Y, TY ) be topological spaces. A function f : X → Y is
said to be continuous if for all U ∈ TY , f

−1(U) ∈ TX .

Example: Consider f : R → R given by f(x) = x, for all x ∈ R. Then for any open set
U in R, f−1(U) = U and so is open. Thus, f is continuous.

Definition 2.20. A continuous map i : X → Y is an embedding if i is injective.
X lives inside Y and dim(X) ≤ dim(Y ).
Notation: X ↪→ Y

Definition 2.21. A continuous map f : X → Y is a homeomorphism if the following
conditions are satisfied:

1. f is bijective

2. f−1 is continuous

Remark. Homeomorphisms preserve properties that depend on the topology of spaces.
Thus, connectedness, compactness, Hausdorff, dimension, # of holes, and orientability are
preserved by homeomorphisms.

Intuition

We can think of two spaces as being homeomorphic when they are related by a con-
tinuous deformation, meaning they are related by stretching and bending without
any tearing anything apart or gluing parts together.

Figure 6: One common example of a homeomorphism is the deformation of a mug into a
torus (or a coffee cup into a donut), via stretching and bending as per the intuition stated
above. [9]

Examples:
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1. Consider Rn with the Euclidean topology and Bn
0 . Then

f :Bn
0 → Rn

X 7→ X

1− ||x||
is a homeomorphism. (To verify this, need to show that f is continuous and bijective
and that f−1 is continuous.)

f−1(X) = X
1+||X||

2. The xy-plane is homeomorphic to a punctured two-dimensional sphere.

T : S3\{(0, 0, 1)} → R2

(x, y, z) 7→
(

x
1−z

, y
1−z

)
T−1 : R2 → S3\{(0, 0, 1)}

(x, y) 7→
(

2x
x2+y2+1

, 2y
x2+y2+1

, , x
2+y2−1

x2+y2+1

)
T is called the stereographic projection of S3\{(0, 0, 1)} onto the plane z = 0.

Figure 7: Here is a visual representation of the stereographic projection, mapping a sphere
(with a pole punctured) onto a plane. This homeomorphism is also demonstrated well in
this video. [23]

3. Rm and Rn are not homeomorphic if m ̸= n.

(0, 1) ̸∼= [0, 1] because (0, 1) is not compact and [0, 1] is compact.

({0, 1}, discrete) ̸∼= ({1, 2, 3}, discrete) because they have different cordinality

4. A bijective map f : X → Y can be continuous without being a homeomorphism (i.e.
2nd condition in the definition is necessary)

f : [0, 2π) → S1 defined by f(0) = (cos θ, sin θ) is continuous and bijective, but its
inverse is not continuous.

Note also that [0, 2π) (not compact) cannot be homeomorphic to S1 (compact).
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Definition 2.22. Let f, g : X → Y be continous maps. A homotopy between f and g is a
continous map H : X × [0, 1] → Y such that

1. H(x, 0) = f(x) ∀x ∈ X

2. H(x, 1) = g(x) ∀x ∈ X

Notation/Terminology: f is homotopic to g, f ≃ g

Example: A point is homotopic to a disk. Consider the maps:

f : B2 → {0} and g : {0} → B2.

Observe that f ◦ g = id{0}. Let us define a homotopy between g ◦ f and idB2 .
H : B2 × [0, 1] → B2

H(x, 0) = 0 = (g ◦ f)(x)
H(x, 1) = x

Definition 2.23. Let X and Y be topological spaces. Let f, g : X ↪→ Y be embeddings.
An isotopy between f and g is a continous map I : X × [0, 1] → Y such that

1. I(x, 0) = f(x) ∀x ∈ X

2. I(x, 1) = g(x) ∀x ∈ X

3. it : X → Y is an embedding ∀t ∈ [0, 1], where it(x) = I(x, t)

Notation/Terminology: f is isotopic to g

Definition 2.24. X and Y are homotopic if there exist maps f : X → Y and g : X → Y
such that g ◦ f ≃ idX and f ◦ g ≃ idY .

Notation/Terminology: X is homotopy equivalent to Y : X ≃ Y

Definition 2.25. Let A ⊆ X. A retraction of X to A is a map r|A = idA. A deformation
retraction of X onto A is a map R : X × [0, 1] → X such that

1. R(x, 0) = x ∀x ∈ X

2. R(x, 1) ∈ A ∀x ∈ X

3. R(a, t) = a ∀a ∈ A ∀t ∈ [0, 1]

Terminology: A is a deformation retract of X

12



2.4 Manifolds

Definition 2.26. Let X be a topological space. Given an open set U ⊆ X, a chart is a
homeomorphism ϕ : U → V , where V ⊆ Rn is an open set.

Notation/Terminology: We write (U, ϕ) for a chart, where the inverse ϕ−1 gives U a
coordinate system.

Definition 2.27. An atlas for X is a collection of charts {Ui}i∈I such that the collection is
an open cover of X.

Definition 2.28. If (Ui, ϕi) and (Uj, ϕj) are charts so that Ui ∩ Uj ̸= ∅, the map ϕj ◦ ϕ−1
i :

(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is called a transition map from ϕi to ϕj. (See Figure 14b)

(a) A chart (b) A transition map

Figure 8: Here are examples of a chart and a transition map.

Intuition

A chart can be thought of as a patch on X that looks exactly like Rn. Transition
maps describe how coordinates change as we move from chart to chart.

Definition 2.29. Let M be a topological space. M is an n-dimensional topological manifold
if:

1. M is a Hausdorff space (i.e., M has enough open sets)

2. M is a second-countable space (i.e., there is a countable number of basic open sets)

3. M is locally Euclidean of dimension n, i.e. ∀m ∈ M ∃ U open such that m ∈ U and
(U, ϕ) is a chart. In other words, there is an atlas for M .

Definition 2.30. Let M be an n-dimensional topological manifold. M is an n-dimensional
smooth manifold if the transition maps are continuous and infinitely differentiable.
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Examples:

1. Rn is an n-dim smooth manifold, covered by a single chart (Rn, id)

2. S1 is a 1-dim smooth manifold, covered by two charts. Let ϵ > 0.

U+ := {(x, y) ∈ S1 : y > ϵ− 1/2} and U− := {(x, y) ∈ S1 : y > ϵ+ 1/2}

3. The n-sphere Sn ⊆ Rn+1 is an n-dim smooth manifold for n ≥ 1, covered by two charts.

4. The torus T := ([0, 1]× [0, 1])\ ∼, (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y) is a 2-dim smooth
manifold.

5. The Möbius band M := ([0, 1] × [0, 1])\ ∼, (x, 0) ∼ (1 − x, 1) is a 2-dim smooth
manifold.

Definition 2.31. Let M be a smooth topological m-manifold. A function f : M → Rn is
smooth if ∀p ∈ M∃ a chart (U, ϕ) for M such that p ∈ U and f ◦ ϕ−1 : ϕ(U) ⊆ Rm → Rn is
smooth.

Definition 2.32. LetM be a smooth topological m-manifold. A smooth function h : M → R
is a Morse function if and only if:

1. None of f ’s critical points are degenerate

2. The critical points have distinct function values

Remark. The critical points of h are places where the inverse images of f−1(I) for I ⊆ R,
an open interval, behave in irregular ways, such as holes and points of discontinuity. Thus,
M can be characterized by the critical points of suitable continuous functions M → R.

Definition 2.33. Level Sets

1. The interval levelset of h with respect to I is the inverse image of I under h: MI :=
h−1(I) := {x ∈ M : h(x) ∈ I}

2. The sublevel set M≤a of I is if I = (−∞, a], where M≤a := h−1(I)

3. The superlevel set M≥a of I is if I = [a,∞), where M≥a := h−1(I)

4. The levelset of h at a ∈ R is if I = {a}, called h−1(a).

Example:
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Figure 9: Here is a visual representation of level sets, sublevel sets, and superlevel sets. In
this example, the level set contains two different contours, while the sublevel set and the
superlevel set only have one single connected component each [21].

Theorem 2.34. Let h : M → R be a smooth function on a manifold M . Let a, b ∈ R where
a < b. Suppose M[a,b] is compact and contains no critical points of h. Then:

1. M≤a is diffeomorphic to M≤b

2. M≤a is a deformation retract of M≤b

3. The inclusion i : M≤a ↪→ M≤b is a homotopy equivalence.

Example: Consider the height function h : M → R defined as a vertical torus. There
are four critical points of h: u (minimum), v, w (saddles), and z (maximum). Here, M≤a

is empty for a < h(u), homeomorphic to a 2-disk for h(u) < a < f(v), homeomorphic to a
cylinder for h(v) < a < h(w), homeomorphic to a compact genus-one surface with a circle
as a boundary for h(w) < a < h(z), and a full torus for a > h(z).

Figure 10: A visual representation of height function h. In (a), h is defined as a torus with
four critical points. In (b)-(f), note that passing through each index-k critical point is the
same attaching a k-cell from the homotopy point of view [6].
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2.5 Basics of Topology Exercises

1. A topological space T is called path connected if any two points x, y ∈ T can be
joined by a path, that is, there exists a continuous map f : [0, 1] → T of the secment
[0, 1] ⊂ R onto T so that f(0) = x and f(1) = y. Prove that a path connected space is
also connected but the converse may not be true; however, if T is finite, then the two
notions are equivalent.

Proof. Suppose X is not connected. Then, there exist U, V ∈ Tx such that U ∩ V = ∅
and U ∪ V = X by definition. Let x ∈ U, y ∈ V . Since X is path connected, ∃α :
[0, 1] → X that is a continuous map, where α(0) = x and α(1) = y. By hypothesis,
α−1(U) ∩ α−1(V ) = ∅ and α−1(U) ∪ α−1(V ) = [0, 1]. Also, α−1(U), α−1(V ) are open
in [0, 1] by the continuity of α, and 0 ∈ α−1(U) and 1 ∈ α−1(V ). Thus, [0, 1] is
disconnected, which is a contradiction, since α is continuous. Thus, by contradiction,
a path connected space is also connected, as required.

In order to prove the converse may not be true, take the counterexample of the topol-
ogist’s sine curve. This space is the graph of the function f(x) = sin(1/x) for x in the
interval (0, 1] with the point (0, 0). The space is connected because it is a continuous
curve that cannot be disconnected, but it is not path connected because if we try to
get from a point on the graph of f(x) to the point (0, 0), there is an infinitely long
path to approach (0, 0). Thus, the converse is not necessarily true.

Now, suppose X is a finite connected space. For x ∈ X, let Ux :=
⋂
{U ⊆ X : U open,

x ∈ U} denote the smallest open set containing x. Let A ⊆ X denote the set of points
y ∈ X for which there exists a sequence x0 = x, x1, ..., xn = y such that for each i,
either xi ∈ Uxi+1

or xi+1 ∈ Uxi
. We have that x ∈ A, and for any y ∈ A,Uy ⊆ A, hence

A is open. If z ̸∈ A, then Uz ⊆ X A, hence A is closed. Since X is connected, A = X.
Now, define β : [0, 1] → X by β(t) = x for t < 1 and β(1) = y and let x ∈ Uy. Let
U ⊆ X open, thus if y ̸∈ U , then β−1[U ] ∈ {∅, [0, 1}}, hence β−1[U ] is open. If y ∈ U ,
then Uy ⊆ U , hence x ∈ U , thus β−1[U ] = [0, 1]. Thus, β is continuous. Now, if we
take the aforementioned sequence, xi and xi+1 are connectable by a path βi. As this
is true for all i, x0 and xn are connected by a path, and so X is path connected, as
required.

2. Prove that for every subset X of a metric space Cl Cl X = Cl X. In other words,
augmenting a set with its limit points does not give it more limit points.

Proof. Take a topological space (X, Tx) and A ⊆ X. Recall by definition that Cl(A)
:=

⋂
{C ⊆ X : C is closed and A ⊆ C}. Let B := Cl(A). Then, we want to show

that Cl(B) = B, i.e. B is closed. Recall that by definition of closure, B ⊆ Cl(B). In
addition, let p be a limit point of Cl(B). We want to show that p is also a limit point
of B. Let ϵ > 0. Then, there is a point q ̸= p ∈ Cl(B), d(p, q) =: s < ϵ by definition.
Thus, either q ∈ B, or q is a limit point of B. In the latter case, the ball Br−s(q) of
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radius r− s is contained in Br(p) and intersects B, so Br(p) intersects B for any ϵ > 0.
Thus, p is also a limit point of B. Thus, Cl(B) ⊆ B. As a result, Cl(B) = B, i.e. B is
closed, as required.

3. Show that any metric on a finite set induces the discrete topology.

Proof. Let (X,d) be finite and non-empty. We want to show that {x}, a finite set, is
open ∀x ∈ X. If X={x}, then it is trivial that any metric on the finite set induces the
discrete topology. Now, let #(X) > 1. Let x ∈ X and S := {d(x, y) : ∀y ∈ X {x},
where r := min(S). Then, B0(x, r) = {x}. Thus, ∀x ∈ X, {x} is open, as required.

4. Give an example of a bijective function that is continuous, but its inverse is not.

Proof. Let X be a set and T1, T2 be two topologies on X with T2 ̸⊆ T1. Then, the identity
function from the topological space (X, T1) to (X, T2) is a continuous bijection, but the
inverse function, the identity function from (X, T2) to (X, T1) is not continuous, as
required.

5. Let f : T → U be a continuous function of a compact space T into another space U.
Prove that the image f(T) is compact.

Proof. Let f : X → Y be a continuous function of a compact space X into another
space Y. Let {Vi}i∈I be an open cover of f(X). Since f is continuous, then {f−1(Vi)}
is a collection of open sets in X. Also,

⋃
i∈I f

−1(Vi) = X because ∀x ∈ X, f(x) ∈ Y ,
and so ∃i s.t. f(x) ∈ Vi, where x ∈ f−1(Vi). Since X is compact, there exists a finite
subcover, {f−1(Vi)}i∈I′ . If y ∈ f(X),∃x ∈ X such that f(x) = y and ∃i ∈ I ′ such that
x ∈ f−1(Vi). Thus, f(x) ∈ Vi for some i ∈ I ′. Hence, {Vi}i∈I′ is a finite subcover of
f(X), which means that the image f(X) is compact, as required.

6. Deduce that homeomorphism is an equivalence relation. Show that the relation of
homotopy among maps is an equivalence relation.

Proof. In order to show that homotopy is an equivalence relation, consider the contin-
uous maps f, g : X → Y , where X, Y are topological spaces. We must verify that ∼
is reflexive, symmetric, and transitive.

(a) Reflexivity: Consider the continuous map F : X × [0, 1] → X. Then, F (x, t) =
f(x) is a homotopy from f to f , and f ∼= f .

(b) Symmetry: Consider the continuous map F : X × [0, 1] → X and suppose it is a
homotopy from f to g. Then, the map G : X × [0, 1] → X, G(x, t) = F (x, 1− t)
is a homotopy from g to f . Thus, f ∼= g ⇒ g ∼= f .
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(c) Transitivity: Consider the same continuous map F and another continuous map
G : X × [0, 1] → X, which is a homotopy from g to h. Then, the map H :
X × [0, 1] → X, defined by:

H(x, t) =

{
F (x, 2t) if 0 ≤ t ≤ 1/2

G(x, 2t− 1) if 1/2 ≤ t ≤ 1

is a homotopy from f to h since in topology two continuous functions can be pasted
together to form another continuous function. Thus, f ∼= g & g ∼= h ⇒ f ∼= h.

Since the properties of an equivalence relation have been satisfied, the relation of homo-
topy among maps is an equivalence relation, as required. Moreover, homeomorphism
can also be proven to be an equivalence relation by considering the same properties.
For any topological space X, the continuous identity map is a homeomorphism from X
toX, satisfying the reflexive property. In addition, if we let f : X → Y be a homeomor-
phism, then f−1 is a continuous bijection. Also, (f−1)−1 = f , so f−1 has a continuous
inverse. Thus, f−1 : Y → X is a homeomorphism, satisfying the symmetric property.
Finally, if we let f : X → Y and g : Y → Z be homeomorphisms, f ◦ g : X → Z is
also a homeomorphism, since (f−1 ◦ g−1) ◦ (g ◦ f) = idX and (g ◦ f) ◦ (f−1 ◦ g−1) = idZ ,
and so f ◦ g is a bijection, and since this is a composition of continuous functions, it
is also continuous , and since f−1 ◦ g−1 is a composition of continuous functions, it
is also continuous; thus, satisfying the transitive property. Thus, we can deduce that
homeomorphism is an equivalence relation, as required.

3 Complexes

Simplicial complexes are spaces constructed from building blocks called simplices, which are
points, line segments, filled-in triangles, and solid tetrahedra that provide a useful way to
construct topological spaces from sets of points. There are different types of complexes that
algorithmically allow us to construct topological spaces and view their geometric realizations,
and each are useful in their own ways, especially when the original topological space is
unknown.

3.1 Simplicial Complexes

Definition 3.1. Suppose {x0, x1, ..., xk} ⊆ Rn satisfy the condition that the set of vectors
{x1 − x0, x2 − x0, ..., xk − x0} in Rn are linearly independent. The k-simplex spanned by
{x0, x1, ..., xk} is the set of all points

z =
∑k

i=0 aixi such that a1, a2, ..., ak ∈ R+ and
∑k

i=0 ai = 1.

For a given point z, we refer to ai as the i-th barycentric coordinate.

Example: We can geometrically describe simplices as follows:

1. A 0-simplex is a point where {x0} ⊆ Rn.
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2. A 1-simplex is a line segment with endpoints x0 and x1.

3. A 2-simplex is a filled-in triangle with vertices x0, x1 and x2.

4. A 3-simplex is a solid tetrahedron with vertices x0, x1, x2 and x3.

Figure 11: From left to right: 0-simplex, 1-simplex, 2-simplex, 3-simplex [8].

Definition 3.2. Let S be a k-simplex spanned by {x0, x1, ..., xk} ⊆ Rn.

1. A face of S is any simplex spanned by a subset of {x0, x1, ..., xk}. Any k-simplex has
k + 1 faces of dimension (k − 1).

2. The interior of S is the subset of S where ai > 0 for all barycentric coordinates ai, we
denote it by Int(S).

3. The boundary of S is Bd(S) := S \ Int(S).

Definition 3.3. A simplicial complex X in Rn is a set of simplices in Rn such that

1. every face of a simplex in X is also a simplex in K, and

2. for any two simplices σ, τ ∈ X, their intersection σ∩τ is either empty or a face of both
σ and τ .

Terminology:

1. We say X has dimension k if k is the maximum dimension among all simplices in X.

2. We say X is finite if X has finitely many simplices.

3. The collection of simplices of dimension at most L is referred to as the l-skeleton of
the simplicial complex; we denote it by Xl.

4. The geometric realization |X| of a finite simplicial complex X is the topological space
given by the union of simplices in X, given the subspace topology.

Definition 3.4. Let X be a simplicial complex. Any subset X ′ ⊆ X that is itself a simplcial
complex is called a subcomplex of X.
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Example: Consider the l-skeleton consisting of all simplices of dimension l or less, such
that X ′ = {σ ∈ X| dimσ ≤ l}. X ′ is a subcomplex of X since the union of simplices of
dimension l or less forms a simplicial complex.

Definition 3.5. Let X and Y be simplicial complexes. A simplicial map f : X → Y is
specified by a map f0 : X0 → Y0 such that whenever {x0, ..., xk} ⊆ X0 span a simplex of X,
{f(x0), ..., f(xk)} ⊆ Y0 span a simplex of Y .

The map f : X → Y is an isomorphism of simplicial complexes if:

1. f0 is a bijection, and

2. ∀ k > 1 {x0, ..., xk} is a simplex of X if and only if {f(x0), ..., f(xk)} is a simplex of Y.

Example: Consider the simplicial map f : [0, 1]2 → T2 below:

Figure 12: The simplicial map from the square to the torus [8].

This simplicial map glues the simplices of the triangulation of the square to obtain a tri-
angulation of the torus. If we then take the vertex map f0 : Vert([0, 1]2) →Vert(T2), we
observe that f0 is bijective since every vertex that spans the triangulation of the square also
spans the triangulation of the torus. In addition, if we take the inverse map of f0, it is also
a vertex map, and thus induces a simplicial isomorphism between the square and the torus.

Definition 3.6. An abstract simplicial complex is a collection K of nonempty finite sets
such that if σ ∈ K, then every nonempty subset of σ is in K.

1. Elements of K are called simplices.

2. The dimension of σ ∈ K is dimσ := #(σ) − 1 where #(σ) is the number of elements
of the set σ.

3. Any non-empty subset of a simplex σ is called a face of σ.

4. The vertices of K are the one-point sets in K.

5. The n-skeleton of K is the subset of K consisting of set of cardinality ≤ n+1, we write
Kl.
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6. The map f : K → L is amap of abstract simplicial complexes if there is a map f0 : K0 →
L0 such that whenever {k0, ..., kk} ⊆ K0 span a simplex of K, {f(k0), ..., f(kk)} ⊆ L0

span a simplex of Y .

7. The map f : K → L is an isomorphism of abstract simplicial complexes if: f0 is a
bijection, and ∀ k > 1 {k0, ..., kk} is a simplex of K if and only if {f(k0), ..., f(kk)} is
a simplex of L.

3.2 Nerves & Čech, Vietoris-Rips, and Delaunay Complexes

Definition 3.7. A nerve is the simplicial complex N(U) such that if we take the finite
collection of sets U = {Ui}ni=0, then:

1. N(U)0 = {x0, ..., xn}, and

2. ∀{i0, ..., ik} ⊆ {0, 1, ..., n}, {xi0 , ..., xik} ⊆ N(U)0 spans a k-simplex in N(U), which
occurs if and only if Ui0 ∩ Ui1 ∩ ... ∩ Uik ̸= ∅.

3. If U is a cover of a topological space, we call N(U) the nerve of a cover.

Figure 13: Here is an example of two spaces (a), open covers of them (b), and their nerves
(c). [6].
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Intuition

From Figure 13, we can see that practically, every cover gives a vertex, a double in-
tersection of covers gives an edge, a triple intersection of covers gives a triangle with
its interior, and a quadruple intersection of covers gives a tetrahedron with its inte-
rior.

Theorem 3.8. Let U be a finite cover of a metric space X. If every non-empty intersection⋂k
i=0 Uαi

of elements of U is contractible, then X ≃ |N(U)|.

Definition 3.9. Let (X, d) be a finite metric space, and r > 0 be a real number. Then, we
can form topological spaces from distances in a set of points using the following two methods:

1. The Čech complex Cr(X) is the abstract simplicial complex with:

• vertices the points of X, and

• a k-simplex when a set of points {x0, x1, ..., xk} ⊆ X satisfy
⋂k

i=0B(xi, r) ̸= ∅.

2. The Vietoris-Rips complex V Rr(X) is the abstract simplicial complex with:

• vertices the points of X, and

• a k-simplex when a set of points {x0, x1, ..., xk} when d(xi, xj) ≤ 2r ∀ 0 ≤ i, j ≤ k.

Proposition 3.10. Let (X, d) be a finite metric space. For all r > 0, Cr(X) ⊆ V Rr(X) ⊆
C2r(X).

Proof. If there is a point x′ ∈
⋂k

i=0B(xi, r), then for every pair (i, j), d(xi, xj) ≤ 2r ∀ 0 ≤
i, j ≤ k. Thus, every simplex {x0, x1, ..., xk} ∈ Cr(X) ⊆ V Rr(X). In addition, let us
consider another simplex {x0, x1, ..., xk} ∈ V Rr(X). Since by definition of Vietoris-Rips
complex d(xi, x0) ≤ 2r ∀ 0 ≤ i ≤ k, we have that

⋂k
i=0B(xi, 2r) ⊃ x0 ̸= ∅. Thus, by

definition, {x0, x1, ..., xk} is also a simplex in C2r(X), as required.

Definition 3.11. Let X ⊆ Rn be a finite set with given points {x0, x1, ..., xk}. Assume that
these points satisfy the condition that the set of vectors {x1 − x0, x2 − x0, ..., xk − x0} in Rn

are linearly independent, where for α1, α2, ..., αk ∈ R: if α1(x1 − x0) + α2(x2 − x0) + ... +
αk(xk − x0) = 0, then α1 = α2 = ... = αk = 0. Also, let d be a metric on X.

1. The Voronoi diagram Vor(X) of X is the tessellation of Rn into convex cells Vx for
x ∈ X called Voronoi cells where all the points in Rn are closer to x than to any other
x′ ∈ X, such that: Vx := {z ∈ Rn : d(x, z) ≤ d(x′, z)∀x′ ∈ X}.

2. The Delaunay complex Del(X) is the simplicial complex obtained as the nerve of the
cover of Rn by Voronoi cells, where Del(X) = N({Vx}x∈X).
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(a) Euclidean distance (b) Taxicab distance

Figure 14: Voronoi diagrams of 20 points in R2 using two different metrics [24].

3. The Alpha complex Dα
x is a subcomplex of the Delaunay complex containing all sim-

plices in Del(X) that have a circumscribing ball of radius at most α, where for each
x ∈ X, we let B(x, α) be denoted as a closed ball of radius α centering x, such that:
Dα

x := {p ∈ B(x, α) : d(p, x) ≤ d(p, x′)∀x′ ∈ X}.

Figure 15: Here is an example of the union of balls decomposed into convex cells Vx by the
Voronoi cells, with the corresponding alpha complex superimposed. Weighed alpha com-
plexes, where we permit balls of different sizes, are also useful in modeling biomolecules,
where each radius reflects the intermolecular forces of specific atom types [7].

4. The Witness complex W(W,L) is a simplicial complex intended to behave like a Delau-
nay triangulation but with two point sets, W called witnesses and L called landmarks,
built with vertices in the landmarks and the remaining points determining which sim-
plices occur in the complex. Thus, W(W,L) is defined as the collection of all simplices
whose faces are all weakly witnessed by a point in W \ L.
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If we let W be a point set with a real-valued function on pairs d : W ×W → R and
L ⊆ W be a finite subset, a simplex σ = {l1, ..., lk} with li ∈ L is weakly witnessed by
x ∈ W \ L if d(l, x) ≤ d(w, x) for every l ∈ {l1, ..., lk} and w ∈ L \ {l1, ..., lk}.

Figure 16: A Delaunay complex is shown to the left and a witness complex is shown to
the right, constructed out of the points from the left figure, where landmarks are the black
dots and the witness points are the hollow dots. The witnesses for five edges and the tri-
angle are the centers of the six circles. For example, the triangle q1q2q3 and the edge q1q3
are weakly witnessed by the points p1 and p2, respectively [6].

5. The graph induced complex (GIC) retains the simplicity of the Vietoris-Rips complex,
the sparsity of the witness complex, and the similarity of the Delaunay triangulation.
Given a graph G on (X, d) and subset Y ⊆ X, a simplex is in the complex if and only
if its vertex set V ⊆ Y has the property that a set of points in X, each being closest
to exactly one vertex in V , forms a clique in G, which is an all-to-all connected set of
vertices such that every two distinct vertices in the clique are adjacent.

Figure 17: A graph induced complex is shown to the left and the input graph is shown
to the right. Subsets of points are the darker vertices, and input points are grouped ac-
cording to the proximity to the darker vertices, indicated by the superimposed Voronoi
cells. The enlarged triangle to the right is in the GIC since there is a 3-clique in the graph
whose 3 vertices have 3 different closest points in the subset [6].
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3.3 Comparison of Complexes

Much of our interest in understanding topology and its application to data analysis is taking
a finite set of points X and organizing these points in a topological space X. By choosing
a metric on the set X, we attempt to create these various spaces using various algorithmic
complexes with given metrics. Each of these complexes have various benefits in terms of our
objective: if we attempt to build a simplicial complex K from a sample of points from given
space X, it is desirable to construct if it satisfies the following conditions:

I. The homology of the simplicial complex approximates the homology of the space
(meaning that the simplicial complex resembles in structure the topological space X,
see section 3 for further detail on homology)

II. The simplicial complex does not have many simplices, especially in high dimensions

See below for a more detailed comparison of the primary complexes mathematicians use
to compute simplicial complexes of higher dimensional data:

Complex
K

Satisfies (I)? Satisfies (II)?
Worst-case computa-
tional time of K

Čech
Equal by Nerve Theo-
rem

No 2O(N), N = |K0|

Vietoris-
Rips

Approximates Čech Yes, in dim ≤ 3 2O(N), N = |K0|

Alpha
Equal by Nerve Theo-
rem

Yes, in dim 2 NO(⌈d/2⌉), N points ∈ Rd

Witness
For curves and surfaces
in Euclidean space

Yes, in dim ≤ 2
2O(|L|), L set of landmark
points

GIC
Approximates Vietoris-
Rips

Yes 2O(|Q|), Q subsample set

Note: The Delaunay complex is used to satisfy condition (II) in order to avoid computational
problems for the Čech and Vietoris-Rips complexes. [17]

3.4 Algorithms of Complexes

In order to compute the aforementioned complexes, we must further develop and utilize
computer algorithms. The below references provide initial frameworks for computations:

1. Čech algorithm [4]

2. Vietoris-Rips algorithm [25]

3. Delaunay algorithm [14]
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4. Alpha algorithm [22]

5. Witness algorithm [2]

6. Graph Induced Complex (GIC) algorithm [5]

4 Homology Groups

The study of homology is the practice of associating a sequence of algebraic objects, such as
groups and modules, with other mathematical objects, primarily topological spaces. Homol-
ogy groups are algebraic tools used to quantify topological features in a space. By considering
the homology of simplicial complexes, such as their path-connected components, loops, voids,
and holes, we can better translate the shapes formed by simplicial complexes into a rigorous
study of algebra, studying particular numerical structures and symmetries amongst topo-
logical spaces, without ever having a clear geometric representation of the topological space
itself.

4.1 Chains, Cycles and Boundaries

Definition 4.1. Let G be an abelian group. G is free if ∃A ⊆ G such that every element of
G can be written uniquely as a linear combination

∑r
i=1 niai for some r ∈ N, ni ∈ Z, ai ∈ A.

We call A a basis of G, and its cardinality is called the rank of G, written as G = Z[A] or G
= < A >. When uniqueness is not a condition, we say A generates G.

Definition 4.2. Let R be a commutative ring with identity, and let M be an abelian
group. We say M is an R-module if there is an operation · : R × M → M such that
∀r, s ∈ R ∀m,n ∈ M

1. r · (m+ n) = r ·m+ r · n

2. (r + s) ·m = r ·m+ s ·m

3. (rs) ·m = r · (s ·m)

4. 1R ·m = m

Terminology: When R is a field, we say M is an R-vector space.

Definition 4.3. LetM andN beR-modules. A function φ : M → N is anR-homomosphism
if ∀r ∈ R and ∀m,n ∈ M

1. φ(m+ n) = φ(m) + φ(n)

2. φ(r ·m) = r · φ(m)

Examples:
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1. Let M be a smooth manifold. The set C∞(M) := {f : M → R | f is a smooth map}
is a ring under additiona and multiplication of function. Then, C∞(M) is an R-vector
space.

Proof. Since C∞(M) is a ring, then in particular it is an abelian group. ∀r ∈ R ∀f ∈
C∞(M), define r · f ∈ C∞(M) as:

r · f : M → R, where (r · f)(m) = rf(m), which is multiplication in R.

Now that we have defined an operation, we must check the axioms from the definition
of an R-module, as follows:

(a) We must confirm that r · (f + g) = (r · f) + (r · g), where f, g ∈ C∞(M). Observe
that ∀m ∈ M :

(r ·(f+g))(m) = r((f+g)(m)) = r(f(m)+g(m)) = rf(m)+rg(m) = (r ·f)(m)+
(r · g)(m), as required.

(b) We must confirm that (r + s) · f = (r · f) + (s · f), where r, s ∈ R. Observe that
∀m ∈ M :

((r+ s) ·f)(m) = (r+ s)f(m) = rf(m)+ sf(m) = r ·f(m)+ s ·f(m), as required.

(c) We must confirm that (rs) · f = r · (s · f), where r, s ∈ R. Observe that ∀m ∈ M :

((rs) · f)(m) = (rs)f(m) = rs · f(m) = r · s · f(m) = r · (s · f(m)), as required.

(d) We must confirm that 1R · f = f . Observe that ∀m ∈ M :

1R · f(m) = (1Rf(m)) = f(m) = f , as required.

Thus, since R is a field, and C∞(M) satisfies the axioms to be considered a R-module,
then C∞(M) is an R-vector space.

2. Building off of the previous example, now suppose we have

V := {X : C∞(M) → C∞(M)|X is a linear transformation over R, and
X(fg) = fX(g) +X(f)g ∀r ∈ R, f, g ∈ C∞(M)}.

Then, V is a C∞(M)-module.

Proof. By hypothesis, we know that X is a linear transformation over R. By definition,
this means that X(f + g) = X(f) +X(g) and X(r · f) = r ·X(f).
Now, we must first prove that V is an abelian group, as follows:
Define: X + Y : C∞(M) → C∞(M), where (X + Y )(f) = X(f) + Y (f). Since X + Y
is a linear transformation by definition and also a derivation, X + Y ∈ V .
Now, let us define scalar multiplication. Take α ∈ C∞(M), X ∈ V .
Define α ·X : C∞(M) → C∞(M), where (α ·X)(f) = αX(f), such that (αX(f))(m) =
α(m) ·X(f)(m)∀m ∈ C∞(M), which is multiplication in R. Now that we have defined
an operation, we must check the axioms from the definition of an R-module, as follows:
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(a) We must confirm that α · (X + Y ) = α ·X + α · Y , where X, Y ∈ V :

α ·(X+Y ) = α(X+Y )(f) = α(X(f)+Y (f)) = α ·X(f)+α ·Y (f) = α ·X+α ·Y ,
as required.

(b) We must confirm that (α+ β) ·X = α ·X + β ·X, where X ∈ V, α, β ∈ C∞(M):

(α+ β) ·X = (α+ β) ·X(f) = α ·X(f) + β ·X(f) = α ·X + β ·X, as required.

(c) We must confirm that (αβ) ·X = α · (β ·X), where X ∈ V, α, β ∈ C∞(M):

(αβ) ·X = (αβ) ·X(f) = X(αβ · f) = α ·X(β · f) = α · (β ·X(f)) = α · (β ·X),
as required.

(d) We must confirm that 1R ·X = X. Observe that ∀X ∈ V :

1R ·X = 1R ·X(f) = X(1R · f) = X(f) = X, as required.

Thus, since the axioms are satisfied, by definition, V is a C∞(M)-module.

Definition 4.4. Let R be a commutative ring with identity. LetK be a k-simplicial complex,
and 0 ≤ p < k.

1. Let Sp ⊆ K be the set of p-simplices of K, and mp := #(Sp)

2. An element of Cp(K,R) :=
{∑mp

i=1 riσi : ri ∈ R, σi ∈ Sp

}
is called a p-chain in K. We

call ri coefficients for all 1 ≤ i ≤ mp.

Convention: When writing a chain, we omit simplices with coefficient 0R.

Example: Consider the 3-simplicial complex K shown below:

Figure 18: Visual representation of a 3-simplicial complex K with associated set of p-
simplices.

From the above complex K, we can observe the following:

vertices edges faces tetrahedra
m0 = 5 m1 = 7 m2 = 4 m3 = 1
S0 = {v1, ..., v5} S1 = {e1, ..., e7} S2 = {f1, ..., f4} S3 = {σ}
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Let R = Z, then the following are examples of p-chains in K:
0-chains: C0(K;Z) 20v5,−3v1 − 6v4
1-chains: C1(K;Z) 6e2 + 5e4,

∑7
i=1 ei

2-chains: C2(K;Z) f2 − 3f4
3-chains: C3(K;Z) 11σ,−63σ

Let R = F2, then the p-chains have coefficients 0 or 1:
In C0(K;F2) (v1 + v2) + (v2 + v3) = v1 + 2v2(= 0v2) + v3 = v1 + v3

Proposition 4.5. For all 0 ≤ p ≤ k, Cp(K;R) is an R-module where r · Σmp

i=1riσi :=
Σ

mp

i=1(rri)σi for all r, ri ∈ R and σi ∈ Sp.

Remark. From now on, we will assume R = F2, and simply write Cp(K). In this case:

• The inverse of every σ ∈ Cp(K) is itself.

• A p-chain σ1 + σ2 + · · ·+ σn can be treated as a set {σ1, σ2, ..., σn}, where addition of
two p-chains A and B is given by (A ∪B)− (A ∩B), and the zero chain is the empty
set.

Example: Consider again the example in Figure 18. From this example, we have the
following:

C1(K) {e1, e2, e3}+ {e4 + e5} = {e1, e2, e3, e4, e5}
C2(K) {f2, f3, f4}+ {f1, f3, f4} = {f1 + f2}
C3(K) {σ}+ {σ} = ∅

Definition 4.6. Let R be a commutative ring with identity. Let (Ci, ∂i)
∞
i=0 be a sequence

of R-modules connected by R-homomophisms as follows

· · · → Ci
∂i−→ Ci−1 → · · · → C1

∂1−→ C0 → 0

We say (Ci, ∂i)
∞
i=0 is a chain of R-modules (or chain complex over R) if the composition

∂i−1 ◦ ∂i equals zero for all i ≤ 1.
The R-homomorphisms are called boundary homomorphisms (or differentials).

4.2 Homology

Definition 4.7. Let C := (Ci, ∂i)i≥0 be a chain complex over a commutative ring with
identity, R. The i-th homology group of C with coefficient in R is the quotient R-module
Hi(C, R) := Zi/Bi+1(= Ker ∂i/ Im ∂i+1).

29



Figure 19: Visual representation of Ker ∂i−1 (which is denoted by Zi−1 and its elements
are called (i-1)-cycles) and Im ∂i (which is denoted by Bi and its elements are called i-
boundaries). Note that Bi and Zi−1 are R-modules. This figure also allows us to visualize
an important consequence of the condition ∂i−1 ◦ ∂i = 0 ∀i ≥ 1 from Definition 4.6. Namely
that ∀i ≥ 1 Im ∂i ⊂ Ker ∂i−1

Intuition

Ker ∂i/ Im ∂i+1 can be through of as ”consider Im ∂i+1 and all elements of Ker ∂i that
are not images of ∂i+1”.
This quotient can also be thought of as a measure of the failure of Im ∂i+1 to be
equal to Ker ∂i.

Definition 4.8. LetK be a simplicial complex. The p-th homology group with F2-coefficients
associated to K, Hp(K;F2, is the p-th homology group of (Cp(K), ∂p)p≥0, i.e.

Hp(K,F2) := Zp/Bp+1(= Ker ∂p/ Im ∂p+1).

Definition 4.9. The dimension of Hp(K;F2) as a vector space over F2 receives the name of
p-th Betti number, and it is denoted by βp := dimF2(Hp(K;F2)).

Remark. Let p ≥ 1, a p-dimensional hole in the simplicial complex formed by the boundary
of a (p+ 1)-simplex (without the interior).

• H0 gives the number of path-connected components of |K|.

• H1 gives the number of loops in |K|.

• H2 gives the number of voids in |K|.

• Hp gives the number of p-dimensional holes in |K|.
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Example: Consider the simplicial complexK with geometric realization as shown below.

Figure 20: Simplicial complex K. Note that the tetrahedron formed by v4, v5, v6, v7 is hol-
low.

We claim that the homology groups and associated Betti numbers of K are as follows:

H0(K;F2) ∼= F3
2 i.e. β0 = 3

H1(K;F2) ∼= F2
2 i.e. β1 = 2

H2(K;F2) ∼= F2 i.e. β2 = 1

Hp(K;F2) ∼= 0 i.e. βp = 0, ∀p ≥ 0.

We will calculate H0 and H1, and the rest will be left as an exercise.
Notation:

• v0, v1, v2, v3, v4, v5, v6, v7, v8

• e1 = v0v1 e2 = v0v2 e3 = v0v3 e4 = v1v2 e5 = v2v3 e6 = v4v5
e7 = v4v6 e8 = v4v7 e9 = v5v6 e10 = v5v7 e11 = v6v7

• f1 = v4v5v6 f2 = v4v5v7 f3 = v4v6v7 f4 = v5v6v7

• σ = v4v5v6v7

Recall from Definition 4.4 that Cp(K,R) :=
{∑mp

i=1 riσi : ri ∈ R, σi ∈ Sp

}
. Thus, using

R = F2, observe that Cp(K,F2) takes the form:

Cp(K) = Cp(K,F2) =
{∑mp

i=1 riσi : ri ∈ F2, σi ∈ Sp

}
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Therefore, we have:

C3(K) = {0, σ} ∼= F2

C2(K) =

{
4∑

i=1

rifi : ri ∈ F2

}
∼= F2 × F2 × F2 × F2 =: F4

2

C1(K) =

{
11∑
i=1

riei : ri ∈ F2

}
∼= F11

2

C0(K) =

{
8∑

i=0

rivi : ri ∈ F2

}
∼= F9

2

Thus, we have the chain complex:

0 → F2
∂3−→ F4

2
∂2−→ F11

2
∂1−→ F9

2 → 0

Let us now compute ∂p for all p:

p ∂p : Cp(K) → Cp−1(K) ∂p : F
mp

2 → Fmp−1

2

3 ∂3(σ) = f1 + f2 + f3 + f4 ∂3(1) = (1, 1, 1, 1)

2 ∂2(f1) = e6 + e7 + e9 ∂2(1, 0, 0, 0) = (0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0)

∂2(f2) = e6 + e8 + e10 ∂2(0, 1, 0, 0) = (0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0)
...

...

1 ∂2(e1) = v0 + v1 ∂1(1, 0, ..., 0) = (1, 1, 0, 0, 0, 0, 0, 0, 0)

∂2(e2) = v0 + v2 ∂1(0, 1, ..., 0) = (1, 0, 1, 0, 0, 0, 0, 0, 0)
...

...

Therefore, we can represent ∂p as an mp−1×mp matrix, which we will denote Ap. In this
case,

A3 =


1
1
1
1

 , A2 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1


, and, A1 =



1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0


.
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Having our chain complex completely described, we can now compute H0 and H1. By
definition, Hp = Ker(∂p)/ Im(∂p+1) = Null(Ap)/Col(Ap+1). Thus, if we row reduce our above
matrices and apply the rank-nullity theorem,

• H0(K) = Null(A0)/Col(A1) ∼= F9
2/F6

2
∼= F3

2

• H1(K) = Null(A1)/Col(A2) ∼= F2
2

Intuition

In the above example, we started with a combinatorial object simplicial complex,
then moved to an algebraic object ”vector spaces” and used linear algebra to un-
derstand the geometric realization of the simplicial complex, which is a topological
object.

Proposition 4.10. Functorial properties of H∗(−;F2)

1. The induced map of the identity is the identity, i.e. id∗ : Hp(K;F2) → Hp(K;F2) is
equal to idHp(K;F2) for all p ≥ 0.

2. Let f : K → L and g : L → M be simplicial maps. Then (g ◦ f)∗ = g∗ ◦ f∗.

Proposition 4.11. Let f : K → L be a simplicial map s.t. f : |K| → |L| is a homeomor-
phism. Then f∗ : Hp(K;F2) → Hp(L;F2) is an isomorphism.

Example: The 2-sphere S2 is not homeomorphic to the torus T := S1 × S1. If S2 ∼= T,
then their homology groups are isomorphic. However,

H1(S
2;F2) ∼= 0 ̸∼= F2

2
∼= H1(T;F2).

Proposition 4.12. Let f, g : K → L be simplicial maps. If f, g : |K| → |L| are homotopic,
then f∗ = g∗.

Proof. Omitted. See Theorem 2.10, Algebraic Topology, Hatcher. [10]

Intuition

The above proposition implies that homotopy equivalent spaces will have the same
homology (hence, equivalent Betti numbers). Therefore, we can use homology as a
tool to tell some spaces apart. However, there are some spaces that have the same
homology despite not being homotopy equivalent.

Definition 4.13. Let ∆p denote the p-simplex spanned by the following points in Rp+1

{(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)}. We call ∆p a standard p-simplex.
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Figure 21: Illustration of the standard p-simplex in R,R2, and R3.

Definition 4.14. Let X be a topological space. A singular p-simplex for X is a continuous
map σ : ∆p → X.

Figure 22: Visual representation of various maps σ : ∆p → X. Note that σ is not necessar-
ily injective, which is why it is called ”singular”.

Definition 4.15. We can define a chain complex (Sp(X), ∂p)p≥0 and H∗(X;F2).

• Sp(X) =
{∑n

i=0 riσi : n ∈ N, ri ∈ F2 and σi is a singular p-simplex
}

Elements of Sp(X) are called (singular) p-chains.

• ∂p : Sp(X) → Sp−1(X) is defined as follows:

– If σ : ∆p → X is a singular p-simplex, ∂pσ := τ0+τ1+ ...+τp where τi : ∆
i
p−1 → X

is the composite ∆i
p−1

di
↪−→ ∆p

σ−→ X where di is the inclusion of the ith facet of ∆p

into ∆p.

– ∂p (
∑n

i=0 riσi) :=
∑n

i=0 ri∂pσi

• The singular homology group of X of degree p with F2-coefficients is

Hp(X;F2) := Zp/Bp+1 (= Ker ∂p/ Im ∂p+1).
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5 Persistent Homology

Persistent homology takes the principles of homology and studies the qualitative features of
data that persist across multiple scales. By observing patterns in what homological features
of data persist over particular, varied intervals, beginning with a simplicial complex and then
applying homology to it, one can better characterize data and observe patterns that could
potentially be useful for applications of topological data analysis.

Definition 5.1. Let K be a r-simplicial complex. A filtration F of K is a finite sequence
of nested subcomplexes of K (not its skeleta necessarily):

F : K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ · · · ⊆ Kr = K

Figure 23: This is a simple example of a filtration with F : K0 ⊆ K1 ⊆ K2 ⊆ K3.

Figure 24: This is another, more complex example of a filtration using real data. [18]

Definition 5.2. Let F : K0 ⊆ K1 ⊆ · · · ⊆ Kr = K be a filtration for K. The p-th homology
of F is the pair

Hp(F) :

({
Hp(Ki;F2)

}r

i=0
;
{
fij

}
0≤i≤j≤r

)
,

where for all 0 ≤ i ≤ j ≤ r the linear transformations fij : Hp(Ki;F2) → Hp(Kj;F2) are
introduced by the inclusion Ki ↪→ Kj.

Hp(F) : Hp(K0) → Hp(K1) → · · · → Hp(Ki) →
fij· · · → Hp(Kj) → · · · → Hp(K)

Definition 5.3. Let F : K0 ⊆ K1 ⊆ · · · ⊆ Kr = K be a filtration for K.

1. The (i, j)-persistent p-th homology group of K is the image of fij in the p-th homology
group of F , and it is denoted by H i,j

p :
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H i,j
p := Im

(
fij : Hp(Ki;F2) → Hp(Kj;F2)

)
for 0 ≤ i ≤ j ≤ r where fii = id.

2. The (i, j)-persistent p-th Betti number of K is the dimension of H
(
pi, j) over F2, i.e.

βi,j
p := dimF2(H

i,j
p ).

Definition 5.4. Let F : K0 ⊆ K1 ⊆ · · · ⊆ Kr = K be a filtration for K. Let α ∈ Hp(Ka)
be a non-trivial p-th homology class. We say

• α is born at Ki (for i ≤ a) if α ∈ H i,a
p but α /∈ H i−1,a

p .

• α dies entering Kj (for a < j) if Fa,j−1(α) ̸= 0 but fa,j(α) = 0.

• α lives forever if fa,i(α) ̸= 0 for all a < i ≤ r.

Note, there are two ways to visualize/represent the lifetime of α: persistence diagrams and
persistence barcodes (introduced in Definition 5.8 and Definition 5.9, respectively).

Figure 25: This figure illustrates how homology classes persist through filtration steps. We
can see that class α is born at Ki since it is not in the image of fi−1,i and dies entering Kj

since this is the first time its image becomes 0. This visual also shows that class β is born
at Ki and lives forever (β persists through all of the filtration steps).

Definition 5.5. A persistence pair is a pair of the form (ai, aj) with 0 ≤ ai < aj ≤ r, or of
the form (ai, inf) with 0 ≤ ai ≤ r such that

1. (ai, aj) represents a non-trivial homology class that is born at step ai of F and dies at
step aj of F .

2. (ai,∞) represents a non-trivial homology class that is born at step ai of F and lives
forever.
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movetoright µi,j
p := (βi,j−1

p − βi,j
p )− (βi−1,j−1

p − βi,j
p ),

Definition 5.6. Let p ≥ 0. For 0 < i < j ≤ r + 1, the persistence paring function (or
multiplicity) µi,j

p of a persistence pair (ai, aj) is given by
where ar+1 = inf.

• (βi,j−1
p −βi,j

p ) = Number of independent classes born at or before Ki, and die entering
Kj

• (βi−1,j−1
p − βi−1,j

p ) = Number of independent classes born at or before Ki−1, and die
entering Kj

• µi,j
p = Number of independent classes born at Ki and die entering Kj

• j = r + 1 =⇒ µi,r+1
p = Number of independent classes born at Ki and remain alive

till the end in the filtration F .

Definition 5.7. Let α be a class with persistence pair (ai, aj). If µi,j
p ̸= 0, we define the

persistence of α as its life span and we denote it by Per(α).

1. If j < r + 1, then Per(α) = aj − ai.

2. If j = r + 1, then Per(α) = ∞.

Definition 5.8. The persistence diagram Dgmp(F) of a filtration F is obtained by drawing a

point (ai, aj) with nonzero multiplicity µi,j
p , i < j, on the extended plane R2

:= (R∪{+ inf})2
where the points on the diagonal ∆ = {(x, x)} are added with infinite multiplicity.

Definition 5.9. The persistence barcode bcd(F) of a filtration F is obtained by where

1. (ai, aj) is represented by a semi-open interval [ai, aj) called a bar,

2. (ai,∞) is represented by a ray [ai, inf) called an infinite bar.

Example: Consider the filtration shown below.

Figure 26: This is a filtration with F : K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ K3 = K.
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We can redraw and relabel the above filtration as shown below.

Figure 27: A redrawing of Figure 26 with classes α1, ..., α6 labelled.

Observe the following:

• H0 :

– At t = 0, we have 3 connected components, i.e. three classes are born.

– At t = 1, two components merged, i.e. σ2 dies whereas both σ3 and the class
”anchored” to σ1 persist.

– At t = 2, two components merged, i.e. σ3 dies and the class ”anchored” to σ1

persists.

– At t = 3 and t = 4, an edge and a face are added but they do not created new
connected components, i.e. the class ”anchored” to σ1 persists.

Intuition

When a class dies, it can be thought of as a merger of several classes, among
which the youngest one persists and determines the birth point.

• H1 :

– At t = 0, t = 1 and t = 2, there are no loops.

– At t = 3, on loop appears, i.e. the class σ4 + σ5 + σ6 is born.

– At t = 4, the loop is filled up, i.e. σ4 + σ5 + σ6 dies.

Therefore, the persistence diagram and barcode can be seen below.
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(a) Persistence Diagram (b) Persistence Barcode

Figure 28: Persistence diagram and barcode for the filtration show in Figure 26.

Example:

Figure 29: Here is a visual representation of persistence barcodes and a persistence dia-
gram for a filtration using real data. The red points and bars represent 0-cycles, while the
blue curves represent 1-cycles associated to the blue bars in the barcodes. [3]
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6 Applications in Data Analysis

Topological data analysis provides a powerful tool in both recognizing and understanding
patterns within data sets, seeking to understand the shape of data in lower-dimensions, using
the aforementioned principles of persistent homology and complexes to do so.

6.1 Application in Chemistry

One application of topological data analysis is in chemistry, particularly in the study of
aqueous solubility, or the ability of a molecule to be dissolved in water. In drug develop-
ment, many drugs are often abandoned during the discovery process due to problems with
bioactivity, in particular with the drug remaining insoluble during the oral delivery stage,
leading it to be unabsorbed and with low bioavailability. Many statistical data models are
inherently flawed, with experimental difficulties resulting in significant margins of error, and
thus unable to generate accurate predictors of what features might explain the solubility
properties of molecules. As an alternative, topological data analysis can be used to repre-
sent solubility models - using the mapper algorithm, a topological data analysis method that
creates low-dimension representations of data, a network visualization of the solubility space
for particular molecules can be formed, aiming to understand the descriptors that affect
solubility prediction and the interplay between them. In addition, persistence barcodes of
the chemical space are utilized from persistent homology in order to create a measure of the
similarity between molecules that takes account their three-dimensional connectivity bond
structure [19].

In one study, an analysis of a publicly available data set of 3663 drug-like molecules with
regards to their solubility in water was used. First, they were given in Sybyl line notation
(SLN), and conversion to SMILES, or molecular descriptors, was performed using computer
software as one- and two-dimensional features, leaving 1521 descriptors. The SMILES strings
then uniquely determined molecular graphs, with three-dimensional coordinates generated to
perform classical geometry optimization. The coordinates together are then considered to be
weighted, undirected graphs defined by Euclidean distances between the coordinates of the
atom centers. After performing implementation of graph persistence using low-dimensional
embeddings of the H0 and H1 distance matrices and also implementation of the mapper
algorithm, the following results were found [19]:

According to the mapper algorithm:

1. nCIC, the number of cycles, or molecular rings, determined most strongly the similar-
ity between molecules, and best accounted for the formation of cluster-like groupings
within the output graphs.

2. After partitioning the data set according to the number of cycles, the feature that
changed the most was the percentage of halogen atoms.
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Figure 30: Here, the mapper algorithm analysis is colored by different relevant features. In
(a), several distinct groupings of nodes are observed, with the red color indicating a higher
number of molecules per node. In (b), the average solubility values decrease from left to
right. In (c), the number of cycles in the molecular graph separate the groupings the best.
In (d), the same graph is colored by molecular weight. In (e), the same graph is colored
by average molecular weight. In (f), the same graph is colored by the number of chlorine
atoms. According to the given research, in the red region in (d), this corresponds to the
high number of chlorine atoms, which matches the blue region in (b), a lower solubility
value. From (c), we can see that these are molecules with two rings [19].

According to persistent homology:

1. A radial gradient is observed with respect to the number of rings (nCIC) and an angular
gradient is observed with respect to the number of atoms.

2. When colored by the number of chlorines, small, distinct subsets correspond to molecules
with two rings.
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Figure 31: Here, the persistent homology analysis colored by the number of atoms (a), the
number of cycles (b), the number of chlorines (c), and solubility (d). As in the mapper
algorithm, the number of rings and chlorine atoms are highly representative of a lower sol-
ubility value [19].

By using topological data analysis, we can now better understand some of the correlations
between ring structure of molecules and how that affects solubility. In particular, using the
techniques of the mapper algorithm and persistent homology, it is observed that the effect
of chlorinated groups on reducing solubility was far more powerful in larger molecules in the
given data set. In addition, the molecules with chlorinated groups were particularly evenly
distributed as a function of the number of rings. These graphical depictions of chemical
space might be useful down the line in drug development, particularly in solubility studies,
along with further exploration of chemical structures [19].

6.2 Additional Resources

Below are additional resources for further exploration of applications of TDA:

1. Torus and Klein Bottle

42

https://www.youtube.com/watch?v=4oIH6Rzp96Y


2. Spaces of 3× 3 natural image patches

3. The Mapper Algorithm

4. The Mapper Algorithm: An Introduction

5. Persistence and Local geometry

(a) Part A

(b) Part B

6. Coordinate free coverage in sensor networks

7. TDA for genomics & Evolution topology in biology [20]

8. More applications of toplogy and TDA: See AATRN

43

https://www.youtube.com/watch?v=hBdGiu1chzk
https://www.youtube.com/watch?v=NlMrvCYlOOQ
https://www.youtube.com/watch?v=NjcLSviRP5E
https://www.youtube.com/watch?v=TzxkYdGT-3E
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https://www.youtube.com/@aatrn1
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