Definition: Let \([a] \in \mathbb{Z}/n\).

1. An additive inverse of \([a]\) is an element \([b] \in \mathbb{Z}/n\) such that
 \[a] + [b] = [b] + [a] = [0]\]

2. If \([a] \neq 0\), a multiplicative inverse of \([a]\) is an element \([b] \in \mathbb{Z}/n\) such that
 \[a] \cdot [b] = [b] \cdot [a] = [1]\]

Example: In \(\mathbb{Z}/6\).

\([2]\) is an additive inverse of \([4]\): \([4] + [2] = [0]\)

\([3]\) is a multiplicative inverse of \([2]\): \([2] \cdot [3] = [1]\)
Proposition 15: For all \([a] \in \mathbb{Z}/n\), there exists an additive inverse. Moreover, it is unique.

Proof: Observe that \([-a] \in \mathbb{Z}/n\) is such that \([a] \oplus [-a] = [-a] \oplus [a] = [0] \).

Suppose there are \([b], [c] \in \mathbb{Z}/n\) additive inverses of \([a]\). Then,

\[
[b] = [b] \oplus [0] = [b] \oplus ([a] \oplus [c]) = [b] \oplus [a+c]
\]

\[
= [b + (a+c)] = [(b+a) + c]
\]

\[
= [b+a] \oplus [c] = ([b] \oplus [a]) \oplus [c] = [0] \oplus [c] = [c].
\]
Unlike additive inverses, multiplicative inverses do not always exist. However, if they exist, they are unique.

Proposition 16: If \([a] \neq [0]\) in \(\mathbb{Z}/n\) has a multiplicative inverse, then it is unique.

Proof: Similar to the one in Prop 15.

Def: Let \([a] \in \mathbb{Z}/n\).

The additive inverse of \([a]\) will be denoted by \(-[a]\). (i.e. \(-[a] = [-a]\))

The multiplicative inverse of \([a]\) will be denoted by \([a]^{-1}\) (when it exists).
Ex: In $\mathbb{Z}/9$.

$$[6] \oplus [3] = [0], \text{ then } -[6] = [3] \quad \text{and} \quad -[3] = [6].$$

- additive inverse of $[6]$ is $[3]$

Def: Let $k \in \mathbb{N}\backslash\{0\}$ and $[a] \in \mathbb{Z}/n$.

$$-k[a] := \underbrace{(-[a]) \oplus \cdots \oplus (-[a])}_{k \text{-times}}.$$

Ex: In $\mathbb{Z}/9$.

Remark: \(-k[a] = [-ka]\). As you would expect!

Properties of Addition

\[\mathbb{Z} \quad \mathbb{Z}/n\]

1. Closure

2. Associativity

3. Identity (additive)
 \(\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, a + 0 = 0 + a = a\).

4. Inverse
 \(\forall a \in \mathbb{Z}, \exists -a \in \mathbb{Z}, a + (-a) = (-a) + a = 0\).

5. Commutativity

\[\mathbb{Z}/n\]

1. Closure

2. Associativity

3. Identity (additive)
 \(\exists [0] \in \mathbb{Z}/n, \forall [a] \in \mathbb{Z}/n, [a] \oplus [0] = [0] \oplus [a] = [a]\).

4. Inverse
 \(\forall [a] \in \mathbb{Z}/n, \exists [-a] \in \mathbb{Z}/n, [a] \oplus [-a] = [-a] \oplus [a] = [0]\).

5. Commutativity
Properties of Multiplication

In \(\mathbb{Z} \)

1. Closure
2. Associativity
3. Identity (multiplicative)
 \[\exists 1 \in \mathbb{Z}, \forall a \in \mathbb{Z}, \quad a \cdot 1 = 1 \cdot a = a \]
4. Commutativity

5. Inverse
 \[\forall a \in \mathbb{Z}, \exists a^{-1} \in \mathbb{Z}, \quad a \cdot a^{-1} = a^{-1} \cdot a = 1 \quad a \neq 0 \]
6. If \(ab = 0 \), then \(a = 0 \) or \(b = 0 \).

In \(\mathbb{Z}/n \)

1. Closure
2. Associativity
3. Identity (multiplicative)
 \[\exists [1] \in \mathbb{Z}/n, \forall [a] \in \mathbb{Z}/n, \quad [a] \circ [1] = [1] \circ [a] = [a] \]
4. Commutativity

5. Inverse
 \[\forall [a] \in \mathbb{Z}/n, \exists [a]^{-1} \in \mathbb{Z}/n, \quad [a] \circ [a]^{-1} = [a]^{-1} \circ [a] = [1] \quad [a] \neq [0] \]
6. If \([a] \circ [b] = 0\), then \([a] = 0\) or \([b] = 0\).
Addition and Multiplication Tables

Since \(\mathbb{Z}/n \) is a finite set, we can use a table to describe operations on it.

Ex: In \(\mathbb{Z}/5 \)

<table>
<thead>
<tr>
<th></th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
<td>[4]</td>
</tr>
<tr>
<td>[1]</td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
<td>[4]</td>
<td>[0]</td>
</tr>
<tr>
<td>[2]</td>
<td>[2]</td>
<td>[3]</td>
<td>[4]</td>
<td>[0]</td>
<td>[1]</td>
</tr>
<tr>
<td>[3]</td>
<td>[3]</td>
<td>[4]</td>
<td>[0]</td>
<td>[1]</td>
<td>[2]</td>
</tr>
<tr>
<td>[4]</td>
<td>[4]</td>
<td>[0]</td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>[1]</td>
<td>[0]</td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
<td>[4]</td>
</tr>
<tr>
<td>[2]</td>
<td>[0]</td>
<td>[2]</td>
<td>[4]</td>
<td>[1]</td>
<td>[3]</td>
</tr>
<tr>
<td>[3]</td>
<td>[0]</td>
<td>[3]</td>
<td>[1]</td>
<td>[4]</td>
<td>[2]</td>
</tr>
<tr>
<td>[4]</td>
<td>[0]</td>
<td>[4]</td>
<td>[3]</td>
<td>[2]</td>
<td>[1]</td>
</tr>
</tbody>
</table>

We can identify properties that an operation satisfies by examining its table:

1. **Identity:**

<table>
<thead>
<tr>
<th></th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
<td>[4]</td>
</tr>
<tr>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
<tr>
<td>[3]</td>
<td>[3]</td>
<td>[3]</td>
<td>[3]</td>
<td>[3]</td>
<td>[3]</td>
</tr>
</tbody>
</table>
2. **Inverse:**

\[
\begin{array}{c}
\circlearrowright \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \\
\circlearrowright \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}
\end{array}
\]

\[-[1] = [4], \quad -[3] = [2], \quad -[2] = [3], \quad -[4] = [1]\]

\[
\begin{array}{c}
\circlearrowright \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \\
\circlearrowright \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
\end{array}
\]

\[
\]

3. **Commutativity:**

\[
\begin{array}{c}
\circlearrowright \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \\
\circlearrowright \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\end{array}
\]

\[
\begin{array}{c}
\circlearrowright \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \\
\circlearrowright \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\end{array}
\]

Symmetry with respect to the diagonal.
Equations in \mathbb{Z}/n

Equations in \mathbb{Z}/n can be solved by substituting each class in the equation to see which ones are solutions.

Ex: Solve $x^2 \oplus ([5] \odot x) = [0]$ in $\mathbb{Z}/6$

Solutions

$[0], [1], [3], [4]$

$x = [0] \quad \text{clearly works}$

$x = [1] \quad \Rightarrow \quad [1]^2 \oplus ([5] \odot [1]) = [1] \oplus [5] = [0] \checkmark$

$x = [3] \quad \Rightarrow \quad [3]^2 \oplus ([5] \odot [3]) = [3] \oplus [3] = [0] \checkmark$

$x = [4] \quad \Rightarrow \quad [4]^2 \oplus ([5] \odot [4]) = [4] \oplus [2] = [0] \checkmark$

$x = [5] \quad \Rightarrow \quad [5]^2 \oplus ([5] \odot [5]) = [1] \oplus [1] = [2] \neq [0]$
Def: Let \([a] \neq [0]\) in \(\mathbb{Z}/n\).

1. \([a]\) is called a **unit** if the equation \([a] \odot x = [1]\) has a solution in \(\mathbb{Z}/n\).

 \[\exists [b] \in \mathbb{Z}/n \text{ s.t. } [a] \odot [b] = [1] \text{ (i.e. } [a] \text{ has an inverse).} \]

2. \([a]\) is called a **zero divisor** if the equation \([a] \odot x = [0]\) has a nonzero solution in \(\mathbb{Z}/n\).

 \[\exists [b] \in \mathbb{Z}/n \text{ s.t. } [b] \neq 0 \text{ and } [a] \odot [b] = [0]. \]

Ex: Find the units and zero divisors in the following sets of congruence classes.

- \(\mathbb{Z}/2 = \{ [0], [1] \}\)
 - **Units:** \([1]\) with \([1]^{-1} = [1]\)
 - **Zero divisors:** none
\(\mathbb{Z}/3 = \{[0], [1], [2]\}\)

Units:
- \([1] \text{ with } [1]^{-1} = [1]\)
- \([2] \text{ with } [2]^{-1} = [2]\)

Zero divisors:
- none

\(\mathbb{Z}/4 = \{[0], [1], [2], [3]\}\)

Units:
- \([1] \text{ with } [1]^{-1} = [1]\)
- \([3] \text{ with } [3]^{-1} = [3]\)
- \([2] \text{ with } [2]^{-1} = [2]\)

Zero divisors:
- \([2] \text{ bc } [2] \odot [2] = [0]\)

\(\mathbb{Z}/5 = \{[0], [1], [2], [3], [4]\}\)

Units:
- \([1] \text{ with } [1]^{-1} = [1]\)
- \([2] \text{ with } [2]^{-1} = [3]\)

Zero divisors:
- none

\(\mathbb{Z}/6 = \{[0], [1], [2], [3], [4], [5]\}\)

Units:
- \([1] \text{ with } [1]^{-1} = [1]\)
- \([5] \text{ with } [5]^{-1} = [5]\)

Zero divisors:
- \([2], [3] \text{ bc } [2] \odot [3] = [0]\)
- \([4] \text{ bc } [4] \odot [3] = [0]\)
Theorem 17: Let \(n \in \mathbb{N} \setminus \{0,1\} \) and \([a] \in \mathbb{Z}/n\).

\([a]\) is a unit in \(\mathbb{Z}/n\) iff \(\gcd(a,n) = 1\).

Proof: See Question 5, PS4.

Theorem 18: Let \(p \in \mathbb{N} \setminus \{0,1\} \), then the following conditions are equivalent:

1. \(p \) is prime.
2. \(\forall [a] \neq 0 \text{ in } \mathbb{Z}/p, \text{ the equation } [a] \cdot x = [1] \text{ has a solution in } \mathbb{Z}/p. \)
3. Whenever \([b] \cdot [c] = [0] \text{ in } \mathbb{Z}/p\), then \([b] = [0]\) or \([c] = [0]\).

Proof: \((1) \implies (2) \implies (3) \iff (2) \)