Def: An integer p is said to be prime if $p \neq 0$, $p \neq \pm 1$ and the only divisor of p are ± 1 and $\pm p$.

An integer that is not prime is called composite.

Euclid’s Lemma: If p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof: Suppose p is prime, $p \mid ab$, and $p \mid b$. Since $p \mid b$ and p is prime, $\gcd(p, b) = 1$. Otherwise, we have $\gcd(p, b) \neq 1$ with $\gcd(p, b) \mid p$ and $\gcd(p, b) \mid b$.

But this is not possible because $\gcd(p, b)$ would be p and $p \mid b$.

By Prop. 7, $p \mid a$.
Euclid’s lemma shows a very important property of primes. A property that can be used to define a prime number.

Theorem 10: Let $p \in \mathbb{Z} \setminus \{0, \pm 1\}$. p is prime if and only if p has this property:

- If $p | ab$, then $p | a$ or $p | b$.

Proof:

(\Rightarrow) Euclid’s lemma.

(\Leftarrow) We want to prove that the only divisors of p are $\{\pm 1, \pm p\}$.

Suppose p satisfies the property above. Let a be a divisor of p. Then $p = am$ for some $m \in \mathbb{Z}$. From this $p | am$, then $p | a$ or $p | m$.
If \(p \mid a \), then \(a = \pm p \).

If \(p \mid m \), \(m = p \cdot l \) for some \(l \in \mathbb{Z} \). Then \(p = am = ap \cdot l \Rightarrow al = 1 \Rightarrow a = \pm 1 \).

Corollary 11: If \(p \) is prime and \(p \mid a_1 a_2 \cdots a_n \), then \(p \) divides at least one \(a_i \).

Proof: Exercise.

- Why are primes important?
 - Prime numbers are the building blocks for all integers.
The Fundamental Theorem of Arithmetic

Theorem: Every integer $n \in \mathbb{Z} \setminus \{0, \pm 1\}$ can be factored uniquely into the product of primes.

Explicitly, there are distinct primes p_1, p_2, \ldots, p_r and positive integers $\alpha_1, \alpha_2, \ldots, \alpha_r$ such that $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ and $\alpha_i \geq 0 \quad \forall i$.

The factorization is unique in the following sense: If $n = q_1^{\beta_1} q_2^{\beta_2} \cdots q_s^{\beta_s}$ for distinct primes q_1, q_2, \ldots, q_s and positive integers $\beta_1, \beta_2, \ldots, \beta_s$, then $r = s$ and if we arrange the two sets of primes in increasing order, then $p_i = \pm q_i$ and $\alpha_i = \beta_i$ for all $1 \leq i \leq r$.

Proof: Read Thm 1.7 and Thm 1.8 from Hungerford's.
Digression - Equivalence Relations

IDEA: Want to generalize the concept of equality.

Def: Let A be a nonempty set. A partition of A is a collection A_1, A_2, A_3, \ldots of subsets of A such that

1. $A_i \cap A_j = \emptyset$ for all i, j with $i \neq j$. A_i are mutually disjoint
2. $A = \bigcup A_i$. A is equal to the union of the subsets

![Diagram of a partition of a set A into subsets A_1, A_2, A_3, A_4.](image)
Ex:
- \{..., -4, -2, 0, 2, 4, ...\}, \{..., -3, -1, 1, 3, ...\} is a partition of \(\mathbb{Z}\).
- The collection formed by \{a\} for all \(a \in \mathbb{Z}\) is a partition of \(\mathbb{Z}\).
- \((-\infty, 0), [0, \infty)\) is a partition of \(\mathbb{R}\).
- \((-\infty, 3), \{3\}, [3, \infty)\) is not a partition of \(\mathbb{R}\), since \(\{3\} \cap [3, \infty) = \{3\}\).

Def:
Let \(A\) be a set. A relation on \(A\) is a subset \(R \subseteq A \times A\). If \((a, b) \in R\), we say \(a\) is related to \(b\).

Notation: \(a R b\) \(\iff\) \((a, b) \in R\)

Note: \(a R b\) is different from \(b R a\).

\[A \times B = \{(a, b) \mid a \in A, b \in B\}\]

\[A = \{1, 2\}\]
\[B = \{3, 4\}\]
\[A \times B = \{(1,3), (1,4), (2,3), (2,4)\}\]
Ex: Equality Relation

Define the relation $=$ as the subset $\{(a,a) \mid a \in A\} \subseteq A \times A$

$a = b$ means $(a, b) \in =$ and $a \neq b$ means $(a, b) \notin =$

Ex:

Define $f := \{(x, x^2) \mid x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}$.

If $(a, b) \in f$, then $b = a^2$ and we denote it by $f(a) = a^2$.

Every real function is a relation.

Ex: Relation induced by a partition

Consider a set A with a partition $\mathcal{P} = \{A_i \mid i \in I\}$. Define the relation

$a R b \iff a$ and b are in the same subset

$R = \{(a, b) \in A \times A \mid a, b \in A_i \text{ for some } i \in I\}$