Def: Let R be a ring. Let I and J be ideals of R.

1. The sum of I and J is
 $$ I + J := \{ a + b \mid a \in I, b \in J \} $$

2. The product of I and J is
 $$ IJ := \{ a_1 b_1 + \cdots + a_n b_n \mid n \in \mathbb{N}, a_i \in I, b_i \in J \} $$

3. $I^n := I \cdot I \cdots I$ \(n\text{-times}\)

Remarks:
- IJ is the set of all finite sums of elements of the form ab, $a \in I$ and $b \in J$.
- IJ is different to HK in group theory.
Example: Let R be a finite ring, $I = \{ 0, a_1, a_2, a_3 \}$ and $J = \{ 0, b_1, b_2 \}$.

$I + J = \{ 0, a_1, a_2, a_3, b_1, b_2, a_1 + b_1, a_1 + b_2, \ldots, a_3 + b_2 \}$

$$
I J = \begin{cases}
 0 & \text{length 1} \\
 a_1 b_1 & \text{length 2} \\
 a_1 b_2 & \text{length 2} \\
 a_2 b_1 & \text{length 2} \\
 a_2 b_2 & \text{length 2} \\
 a_3 b_1 & \text{length 3} \\
 a_3 b_2 & \text{length 3} \\
 \vdots & \vdots \\
 a_3 b_2 + a_3 b_1 & \text{length 2} \\
\end{cases}
$$
Proposition 12: Let \(R \) be a ring. Let \(I \) and \(J \) be ideals of \(R \).

1. \(I + J \) is an ideal of \(R \). Moreover, \(I + J \) is the smallest ideal of \(R \) containing both \(I \) and \(J \).

2. \(IJ \) is an ideal of \(R \). Moreover, \(IJ \) is contained in \(I \cap J \).

Proof:

1. We know \(I + J \) is a normal subgroup of \(R \). Thus it suffices to prove that \(I + J \) "absorbs" \(R \). Let \(a \in I \), \(b \in J \) and \(r \in R \), then

\[
r(a+b) = ra + rb \in I + J \quad \text{and} \quad (a+b)r = ar + br \in I + J.
\]

Hence, \(I + J \) is an ideal of \(R \).
Since $0 \in \text{INJ}$, then $I \subseteq I+J$ and $J \subseteq I+J$. Suppose there exists an ideal K of R such that $K \supseteq I, J$. It follows that $a+b \in K$ for all $a \in I$ and $b \in J$, i.e. $I+J \subseteq K$.

(2) Let $x = a_1 b_1 + \cdots + a_n b_n \in IJ$. Since I and J are ideals, $x \in I$ and $x \in J$.

This is $IJ \subseteq \text{INJ}$.

\circ $IJ \neq \emptyset$ because $0 = 0 \cdot 0 \in IJ$.

\circ Let $a_1 b_1 + \cdots + a_m b_m$ and $c_1 d_1 + \cdots + c_n d_n$ in IJ where $a_i, c_j \in I$ and $b_i, d_j \in J$.

Then $a_1 b_1 + \cdots + a_m b_m - (c_1 d_1 + \cdots + c_n d_n) = a_1 b_1 + \cdots + a_m b_m + (-c_1) d_1 + \cdots + (-c_n) d_n \in IJ$

because $-c_i \in I$ for all i.

\[\uparrow \text{Prop 1} \]
Let \(a, b, \ldots, a_n b_n \in \mathbb{I} \mathbb{J} \) and \(r \in \mathbb{R} \), then

\[
r(a, b, \ldots, a_n b_n) = (ra_i)b_i, \ldots, (ra_n)b_n \in \mathbb{I} \mathbb{J}
\]

because \(r a_i \in \mathbb{I} \forall i \)

\[
(a, b, \ldots, a_n b_n)r = a_i(b_i r) + \cdots + a_n(b_n r) \in \mathbb{I} \mathbb{J}
\]

because \(b_i r \in \mathbb{J} \forall i \)

Examples:

1. \(\mathbb{I} \mathbb{J} \): Consider \(6 \mathbb{Z} \) and \(10 \mathbb{Z} \).

\[
6 \mathbb{Z} + 10 \mathbb{Z} = \left\{ 6x + 10y \mid x, y \in \mathbb{Z} \right\}
\]

Claim: \(6 \mathbb{Z} + 10 \mathbb{Z} = 2 \mathbb{Z} \)

\[
(\leq) \quad \forall x, y \in \mathbb{Z}, \quad 6x + 10y = 2(3x + 5y) \in 2\mathbb{Z}
\]

\[
(\geq) \quad \text{Observe that } 2 = 6(2) + 10(-1). \text{ Then }
\]

\[
2x = 6(2)x + 10(-1)x \in 6 \mathbb{Z} + 10 \mathbb{Z} \text{ for all } x \in \mathbb{Z}.
\]
In general, \(m \mathbb{Z} + n \mathbb{Z} = \gcd(m, n) \mathbb{Z} \) for all \(m, n \in \mathbb{Z} \). Prove it!

\[(6 \mathbb{Z})(10 \mathbb{Z}) = \left\{ 56x \cdot 10y \mid n \in \mathbb{N} \text{ and } x, y \in \mathbb{Z} \right\} = 60 \mathbb{Z} \]

In general, \((m \mathbb{Z})(n \mathbb{Z}) = (mn) \mathbb{Z} \) for all \(m, n \in \mathbb{Z} \).

\(\mathbb{Z}[x] \): Consider \(I = \left\{ p(x) \in \mathbb{Z}[x] \mid p(0) \in 2 \mathbb{Z} \right\} \)

\[I + I = \left\{ p(x) + q(x) \in \mathbb{Z}[x] \mid p(0), q(0) \in 2 \mathbb{Z} \right\} = I \]

\[I \cdot I = \left\{ p_1(x)q_1(x) + \cdots + p_n(x)q_n(x) \mid n \in \mathbb{N} \text{ and } p_i(x), q_i(x) \in \mathbb{Z}[x] \right\} \not\subseteq I \]

For example, \(x^2 + 2 \in I \) but \(x^2 + 2 \notin I^2 \)

\[x^2 + 2 = x \cdot x + 2 \cdot 1 \text{ where } 1 \notin I \]

\[x^2 + 2 = \frac{(x - \sqrt{2})(x + \sqrt{2})}{\notin I \notin I} \]
Def: Let R be a commutative ring with identity.

1. Let $a \in R$, then $(a) := \{ar \mid r \in R\}$ is called the principal ideal generated by a.

2. Let $a_1, a_2, \ldots, a_n \in R$, then $(a_1, a_2, \ldots, a_n) := \{a_1r_1 + \ldots + a_nr_n \mid r_i \in R\}$ is called the ideal generated by a_1, \ldots, a_n.

⚠️ Generators are not unique.

Proposition 13: Let R be a commutative ring with identity. Let $a_1, a_2, \ldots, a_n \in R$.

Then (a_1, a_2, \ldots, a_n) is an ideal of R.

Proof: Exercise.
Examples:

1. \mathbb{R} commutative with identity. $\{0\} = \{0\}$ and $\mathbb{R} = \{1\}$.

2. \mathbb{Z}: $n\mathbb{Z} = \langle n \rangle = \langle -n \rangle$ principal ideal generated by n or $-n$.

Claim: $(m, n) = (\gcd(m, n))$. Prove it!

Claim: Every ideal of \mathbb{Z} is principal. Prove it!

3. $\mathbb{Z}[x]$: $(2, x) = \{2p(x) + xq(x) \mid p(x), q(x) \in \mathbb{Z}[x]\}$

 $= \{p(x) \in \mathbb{Z}[x] \mid p(0) \in 2\mathbb{Z}\} \not\subseteq \mathbb{Z}[x]$.

Claim: $(2, x)$ is not a principal ideal.

Assume by contradiction that $(2, x) = (\alpha(x))$ for some $\alpha(x) \in \mathbb{Z}[x]$.
Since \(2 \in (a(x)) \), \(\exists p(x) \in \mathbb{Z}[x] \) s.t. \(2 = a(x)p(x) \). Then \(a(x) \) and \(p(x) \) must be constant polynomials; \(a(x) = a, \ p(x) = p \in \mathbb{Z} \). Given that 2 is prime, we have \(a \in \{ \pm 1, \pm 2 \} \).

If \(a = \pm 1 \), then \((a) = \mathbb{Z}[x] \). Contradiction!!! (a) is a proper ideal.

If \(a = \pm 2 \), then \(x \in (2) = (-2) \), i.e. \(x = 2q(x) \) for some \(q(x) \in \mathbb{Z}[x] \). Contradiction!!! \(x \neq 2x \).

Thus, \((2, x)\) is not a principal ideal.

\[(\mathbb{Z}[[x]]: (x) = \{ xp(x) \mid p(x) \in \mathbb{Z}[[x]] \} \]
\[= \{ p(x) \in \mathbb{Z}[[x]] \mid p(0) = 0 \} \]
Proposition 14: Let R be a ring with identity. Let I be an ideal of R.

1. $I = R \iff \exists u \in R$ such that u is a unit and $u \in I$

2. Assume R is commutative.

 R is a field \iff The only ideal of R are $\{0\}$ and R

Proof:

1. (\Rightarrow) If $I = R$, then $1 \in I$.

 (\Leftarrow) Suppose $\exists u \in R$ such that u is a unit and $u \in I$. Then for all $r \in R$, $r = r \cdot 1 = r (u^{-1} u) = (ru^{-1}) u \in I$ because I is an ideal.

2. (\Rightarrow) Let I be a nonzero ideal of R. Then $\exists a \neq 0$ s.t. $a \in I$. Since R is a field, a is a unit. By (1), $I = R$.
\(\leq \) Let \(u \in R \setminus \{0\} \). By hypothesis \(u = R \) and so \(1 \in (u) \). Thus \(\exists v \in R \) s.t. \(uv = 1 = vu \). So \(R \) is a field.

Corollary 15: If \(F \) is a field then any nonzero ring homomorphism from \(F \) to another ring is injective.

Proof: Let \(\phi : F \rightarrow R \) be a nonzero ring homomorphism. Then \(\ker \phi \subseteq F \).

Since \(\ker \phi \) is an ideal, then \(\ker \phi = \{0\} \) by Prop 14 (b). So, \(\phi \) is injective.