Def: (1) A ring is a triple $(R, +, \cdot)$ with $+$ and \cdot binary operations such that

(i) $(R, +)$ is an abelian group.

(ii) \cdot is associative: $a(bc) = (ab)c \quad \forall a, b, c \in R$.

(iii) The distributive laws hold: $a(b + c) = ab + ac \quad \forall a, b, c \in R$.

$$(a + b)c = ac + bc$$

(2) A ring $(R, +, \cdot)$ is commutative if $ab = ba \quad \forall a, b \in R$.

(3) A ring $(R, +, \cdot)$ is a ring with identity if there exists $1 \in R$ such that

$$a1 = a = 1a \quad \forall a \in R.$$
(4) A ring with identity \((R, +, \cdot)\), where \(1 \neq 0\), is a division ring if every nonzero element of \(R\) has a multiplicative inverse: \(\forall a \in R \setminus \{0\}, \exists b \in R, ab = ba = 1\).

(5) A division ring \((R, +, \cdot)\) is a field if \(R\) is commutative.
Notation:
- Additive identity $0 \in \mathbb{R}$
- Additive inverse $-r \in \mathbb{R}$
- Multiplicative identity $1 \in \mathbb{R}$
- Multiplicative inverse $r^{-1} \in \mathbb{R}$

Examples:

1. $\{0\}$ is a commutative ring with identity $1 = 0$. We call $\{0\}$ the zero ring.

2. $(\mathbb{Z}, +, \cdot)$ is a commutative ring with identity.
 - Additive identity: 0
 - Multiplicative identity: 1
 - Additive inverse: $-a$
 - Only 1 and -1 have multiplicative inverses

3. Let $n \in \mathbb{Z}$, $n \geq 2$. Then $(n\mathbb{Z}, +, \cdot)$ is a commutative ring without identity.

4. $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ and $(\mathbb{C}, +, \cdot)$ are fields.
3) Let \(n \in \mathbb{Q} \) be a number that is not a perfect square in \(\mathbb{Q} \), then
\[
\mathbb{Q}[\sqrt{n}] := \{ a + b\sqrt{n} \mid a, b \in \mathbb{Q} \}
\]
is a field called the \textit{quadratic field}.

\[
(a + b\sqrt{n})^{-1} = \frac{a - b\sqrt{n}}{a^2 - nb^2}
\]
where \(a \neq 0 \) or \(b \neq 0 \)

6) \((\mathbb{Z}/n, +, \cdot)\) is a \textit{commutative ring with identity}.

\begin{align*}
\text{Additive identity:} & \quad [0] \\
\text{Additive inverse:} & \quad [-a] \\
\text{Multiplicative identity:} & \quad [1] \\
\text{Multiplicative inverse:} & \quad [a] \text{ has a multiplicative inverse } \iff \gcd(a, n) = 1.
\end{align*}

7) \((\mathbb{Z}/p, +, \cdot)\) is a field. We denote it by \(\mathbb{F}_p \).
\(\mathbb{Z}/n \) is a field iff \(n \) is a prime.
9. The real Quaternions \(H = \{ a + bi + cj + dk \mid a, b, c, d \in \mathbb{R} \} \) is a division ring. See Example (5), RA7.

9. \((M_{n \times n}(\mathbb{C}), +, \cdot) \) is a noncommutative ring with identity.

- Additive identity: Zero matrix \(O_{n \times n} \)
- Multiplicative identity: \(I_n \)
- Additive inverse: \(-A \)
- Some matrices are not invertible

10. If \(R \) and \(S \) are rings, then the direct product \(R \times S \) is a ring under componentwise addition and multiplication.

- \(R \times S \) is commutative \(\iff \) \(R \) and \(S \) are commutative
- \(R \times S \) has an identity \(\iff \) \(R \) and \(S \) have identities
Let $X \neq \emptyset$ be a set. Let $(A, +, \cdot)$ be a ring.

Define $\mathcal{F}(X, A) := \{ f : X \rightarrow A \mid f \text{ is a function} \}$. $\mathcal{F}(X, A)$ is a ring under addition and multiplication of function: Let $f, g \in \mathcal{F}(X, A)$ and $x \in X$

$(f + g)(x) := f(x) + g(x) \in A$ and $(fg)(x) := f(x) \cdot g(x) \in A$.

$0(x) = 0_A$ \hspace{1cm} $1(x) = 1_A$ (if A has an identity).

$\mathcal{F}(X, A)$ is commutative \iff A is commutative

$\mathcal{F}(X, A)$ has an identity \iff A has an identity

If A is a division ring, then $\mathcal{F}(X, A)$ is not a division ring necessarily.

See Example 4 of Zero divisors/Units.
Proposition 1: Let R be a ring. Then

1. $0a = a0 = 0$, $\forall a \in R$

2. $(-a)b = a(-b) = -(ab)$, $\forall a, b \in R$

3. $(-a)(-b) = ab$, $\forall a, b \in R$

4. If R has an identity 1, then the identity is unique and $-a = (-1)a$.

Proof: Exercise.
Let \((R, +, \cdot)\) be a ring.

1. A nonzero element \(a \in R\) is called a zero divisor if there is a nonzero element \(b \in R\) s.t. either \(ab = 0\) or \(ba = 0\).

2. Let \(R\) have an identity \(1 \neq 0\). A nonzero element \(a \in R\) is called a unit if there is \(b \in R\) s.t. \(ab = 1 = ba\).

The set of units in \(R\) is denoted \(R^x\) and it is a group called the group of units of \(R\). Prove \((R^x, \cdot)\) is a group.

\[\text{A zero divisor cannot be a unit.}\]

\[\text{A noncommutative ring can have } ab = 0 \text{ and } ba \neq 0.\]
1. A field F is a commutative ring with identity $1 \neq 0$ in which every nonzero element is a unit, i.e. $F^\times = F \setminus \{0\}$.

\mathbb{F}_p, p prime, \mathbb{Q}, $\mathbb{Q}[\sqrt{m}]$, \mathbb{R}, \mathbb{C}

2. \mathbb{Z}

Units: $\mathbb{Z}^\times = \{ \pm 1 \}$

Zero divisors: None

3. \mathbb{Z}/n, $n \geq 2$

In Exam 1 you proved that $[a] \in \mathbb{Z}/n$ is either a unit or a zero divisor.

Units: $\left(\mathbb{Z}/n \right)^\times = \left\{ [a] \mid \gcd(a, n) = 1 \right\}$

Zero divisors: $(\mathbb{Z}/n) \setminus \left(\left(\mathbb{Z}/n \right)^\times \cup \{ [0] \} \right)$
4. Let R denote $\mathcal{F}([0,1], \mathbb{R})$.

Units:

$R^\times = \left\{ f \in R \mid f(x) \neq 0 \text{ for all } x \in [0,1] \right\}$

If $f \in R$, then $f^{-1} := \frac{1}{f}$ where $\left(\frac{1}{f}\right)(x) = \frac{1}{f(x)}$ for all $x \in [0,1]$.

Zero divisors:

$R \setminus (R^\times \cup \{0\})$

If $f \in R$, $f \notin R^\times$ and $f \neq 0$, then $fg = 0$ where

$$g(x) := \begin{cases} 0, & \text{if } f(x) \neq 0 \\ 1, & \text{if } f(x) = 0 \end{cases}$$

is not the zero function.
Def: A commutative ring with identity \(1 \neq 0 \) is called an integral domain if it has no zero divisors.

Explicitly \(\forall a, b, c \in R \quad (ab = 0 \Rightarrow a = 0 \text{ or } b = 0) \)

\((a \neq 0 \text{ and } b \neq 0 \Rightarrow ab \neq 0) \)

Ex: \(\mathbb{Z} \) - Division rings - Fields

Proposition 2: (1) Let \(a, b, c \in R \) with \(a \) not a zero divisor.

If \(ab = ac \), then \(a = 0 \) or \(b = c \).

(2) If \(R \) is an integral domain, then for all \(a, b, c \in R \)

\(ab = ac \) implies \(a = 0 \) or \(b = c \).

Proof: Exercise.
Corollary 3: Any finite integral domain is a field.

Proof: Let \(R \) be a finite ID.

We need \(\Rightarrow \)
- \(R \) has identity \(\checkmark \)
- \(R \) is commutative \(\checkmark \)
- \(1 \neq 0 \)
- \(\forall a \in R \setminus \{0\}, \exists b \in R, \ ab = 1 \)

Let \(a \in R \setminus \{0\} \). Define a map \(\lambda_a : R \to R \) by \(\lambda_a(r) = ar \) for all \(r \in R \).

WTS: \(\lambda_a \) is surjective.

Observe that \(\lambda_a \) is injective. Let \(r, s \in R \) s.t. \(\lambda_a(r) = \lambda_a(s) \), i.e. \(ar = as \).

By Prop 2(b), \(a = 0 \) or \(r = s \). Since \(a \neq 0 \), then \(r = s \).

Now, \(\lambda_a : R \to R \) is injective and \(R \) is finite. This implies \(\lambda_a \) must be surjective.

Thus, \(1 \in R \) is so that \(\exists b \in R \) s.t. \(ab = \lambda_a(b) = 1 \).
Definition: Let \((R, +, \cdot)\) be a ring. A subset \(S \subseteq R\) is called a subring of \(R\) if:

1. \(0 \in S\)
2. \(S\) is closed under addition.
3. \(S\) is closed under additive inverses.
4. \(S\) is closed under multiplication.

A subring of the ring \(R\) is a subgroup of \(R\) that is closed under multiplication.

Examples:

1. \(\mathbb{Z}: S = \{\text{even integers}\}\) \(O = \{\text{odd integers}\}\)

\(S\) is a subring
\(O\) is not a subring because \(0 \notin O\).
2. \(\mathbb{Z} \) is a subring of \(\mathbb{Q} \) is a subring of \(\mathbb{R} \) is a subring of \(\mathbb{C} \).
3. \(n\mathbb{Z} \) is a subring of \(\mathbb{Z} \) for \(n \in \mathbb{Z} \).
4. \(\{ f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is continuous} \} \) is a subring of \(\mathcal{F}(\mathbb{R}, \mathbb{R}) \).
5. Let \(S := \{ a + bi + cj + dk \mid a, b, c, d \in \mathbb{Z} \} \) (integral quaternions) is a subring of the real quaternions \(\mathbb{H} \).
6. Let \(M \in \mathbb{Z} \) be a number that is not a perfect square in \(\mathbb{Z} \).
 \(\mathbb{Z}[\sqrt{M}] := \{ a + b\sqrt{M} \mid a, b \in \mathbb{Z} \} \) is a subring of \(\mathbb{Q}[\sqrt{M}] \).

\[\text{commutative with an identity} \]
Let F be a field and S a subring of F.

- S is not a field necessarily. See previous example: $\mathbb{Z}[\sqrt{M}]$ is not a division ring.

- If $1_F \in S$, then S is an ID. Prove it!

Subring Tests

Theorem 4: Let $(R, +, \cdot)$ be a ring and $S \subseteq R$.

S is a subring \iff

1. $S \neq \emptyset$
2. $a - b \in S \ \forall a, b \in S$
3. $ab \in S \ \forall a, b \in S$

Proof: Exercise
Theorem 5: Let \((R, +, \cdot)\) be a finite ring and \(S \subseteq R\).

\(S\) is a subring \(\iff\)

1. \(S \neq \emptyset\)

2. \(a + b \in S\) \(\forall a, b \in S\)

3. \(ab \in S\) \(\forall a, b \in S\)

Proof: Exercise