Week 5

Topological spaces are too general to be feasible for algorithmic purposes.

Simplicial complexes are spaces constructed from building blocks called simplices,
which are points, line segments, filled-in triangles, solid tetrahedra, and their
higher dimensional analogues. They provide a highly usefu

Suppose we are given points $\{x_0, x_1, ..., x_k\}$ in \mathbb{R}^n . We will assume that these points satisfy the condition that the set of vectors $\{x_1 - x_0, x_2 - x_0, ..., x_k - x_n\}$ in \mathbb{R}^n

are linearly independent, i.e. For $\alpha_1, \alpha_2, ..., \alpha_k \in \mathbb{R}$

 \mathscr{L}_{1} if $\alpha_{1}(x_{1}-x_{0})+\alpha_{2}(x_{2}-x_{0})+\cdots+\alpha_{k}(x_{k}-x_{0})=0$, then $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0$.

SIMPLICIAL COMPLEXES

Ex.	$\{x_0, x_1\}$ satisfy \emptyset if $x_1 - x_2 \neq 0$	
$2.\{x_0, x_1, x_3\}$ satisfy \emptyset if x_0, x_1 , and x_2 do not lie on the som		
x_2	x_0	x_1
x_1	x_2	x_3
x_2	x_0	x_1
x_1	x_2	x_3
x_2	x_3	x_4
x_1	x_2	x_3
x_2	x_3	x_4
x_1	x_2	x_3
x_1	x_2	x_3
x_1	x_2	x_3
x_1	x_2	

Ex. A 0-simplex is a point.
$$
\{a_0 \times b : a_0 \in \mathbb{R}^+ \text{ and } a_0 = 1\} = \{x_0\}
$$
.

\n2. A 1-simplex is a line segment with end points x_0 and x_0 .

\n $\{a_0 \times b + a_1 \times c : a_0, a_1 \in \mathbb{R}^+ \text{ and } a_0 + a_1 = 1\} = \{(1-a) \times b + a \times c : a_0, a_1 \in \mathbb{R}^+ \text{ and } a_0 + a_1 = 1\}$.

\n3. A 2-simplex is a filled-in triangle with vertices x_0, x_1 and $\{a_0 \times b + a_1 \times c : a_0, a_1, a_2 \in \mathbb{R}^+ \text{ and } a_0 + a_1 + a_2 = 1\}$.

\n $= \{a_0 \times b + (1-a_0) \mid \frac{a_1}{1-a_0} \times c_1 + \frac{a_2}{1-a_0} \times c_2\}$ is a point on the line joining x_0 and p .

Remark: We consider a k-simplex as a top space with the subspace topology. Def Let 5 be a k-simplex spanned by $\{x_0, x_1, ..., x_k\} \subseteq \mathbb{R}^n$ DA face of S is any simplex spanned by a subset of { $x_0, x_1, ..., x_k$ } 2 The interior of 5 is the subset of 5 where 9.50 for all barycentric coordinates 9.50 for all barycentric coordinates 3 The boundary of S is $Bd(5) = 5 \cdot int(5)$ $Ex:$ 1. A 0-simplex only has one face. $\label{eq:3.1} \left\langle \Phi_{\alpha\beta} \right\rangle = \left\langle \Phi_{\alpha\beta} \right\rangle$ 2 A 1-simplex has v two faces of dim 0: . $\begin{array}{c}\n\text{dim 1} \\
\downarrow \\
\text{dim 0}\n\end{array}$ f
"dim" 0 3. Any k-simplex has k+1 faces of dimension (k-1).

5. For any n-simplex S, there are homeomorphisms boundary and $Bd(S) \cong 5^{n-1}$ $S \cong B^{n^*}$ Def: A simplicial complex X in IR" is a set of simplices in IR" such that 1) every face of a simplex in X is also a simplex in K, and 2 For any two simplices o, $\tau \in X$, their intersection on τ is either empty We say X has dimension k if k is the maximum dimension among all simplices in X . We say X is finite if X has finitely many simplices.

The collection of simplices of dim at most 1 is referred to as the 1-skeleton of
the simplicial complex; we denote it by X1 The geometric realization $|x|$ of a finite simplicial complex X is the topological
space given by the union of simplices in X, given the subspace topology. $Ex:$ 1. Let 5 be a k-simplex, the collection of all faces of 5 is a simplicial complex. $Z. X = \begin{bmatrix} 6 & 6 & 3 \end{bmatrix}$, $\{6\}$, $\{c\}$, $\{d\}$, $\{d$ X is a simplicial 1-complex in R² $0 - \frac{1}{2}$ beleton $X_0 = \left\{ \{ \alpha \} , \{ \omega \} , \{ \omega \} , \{ c \} , \{ d \} \right\}$ $1-skeleton$ $X_1 = X$ 3. $Y = \left\{ \{a\}, \{b\}, \{c\}, a, b, c\}, a, b, c, d\}$

0-skeleton
$$
y_0 = \begin{cases} \{\hat{a}\}, \{\hat{b}\}, \{\hat{c}\}, \{\hat{d}\}, \{\hat{e}\} \end{cases}
$$
 (1-skeleton $y_1 = y_1$), $y_2 = y_2$ and $y_3 = y_3$ (2-skeleton $y_4 = y_1$). $y_5 = \begin{cases} 2 & \text{otherwise} \\ \text{0} & \text{otherwise} \end{cases}$ (a) $y_1 = y_2$ (b) $y_3 = y_1$ (c) $y_4 = y_2$ (d) $y_5 = y_3$ (e) $y_6 = y_1$ (f) $y_7 = y_2$ (g) $y_8 = y_1$ (h) $y_9 = y_1$ (i) $y_9 = y_1$ (ii) $y_9 = y_1$ (iii) $y_9 = y_1$ (iv) $y_9 = y_1$ (v) $y_9 = y_1$ (vi) $y_9 = y_1$ (v) $y_9 = y_$

simplicial 2-complex in R² <u>Ы</u> Communication de la communication not a simplicial complex not belong to Z $\mathcal{L}^{\mathcal{L}}$, and the set of t presents a graph

\n- **Def.** Let X be a simplicial complex. Any subset
$$
X \in X
$$
 that is itself a simplicial complex.
\n- **Def.** Let X and Y be complicated complex of X.
\n- **Def.** Let X and Y be complicated complex. A simplicial map $F: X \rightarrow Y$ is
\n- **Def.** Let X and Y be complicated complex. A simplicial map $F: X \rightarrow Y$ is
\n- **Spec Spec ker** X, $\{f(x_0), ..., f(x_k)\} \in Y$ such that whenever $\{x_0, ..., x_k\} \in X$ open.
\n- **The map** $f: X \rightarrow Y$ is an isomorphism of complex of Y.
\n- **The map** $f: X \rightarrow Y$ is an isomorphism of complex of Y.
\n- **The map** $f: X \rightarrow Y$ is an isomorphism of complex of Y.
\n- **The map** $f: X \rightarrow Y$ is an isomorphism of complex F and F is an complex of Y.
\n

Remarks: @ Given a simplicial k-complex X, there is a chain of simplicial complexes given by its skeleta: $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_{k-1} \subseteq X_k = X$
vertices O A simplicial map $f: X \longrightarrow Y$ induces a continuous map $f: |X| \longrightarrow |Y|$ α If $f: X \longrightarrow Y$ is an isomorphism, then $f: |X| \longrightarrow |Y|$ is a homeomorphism. All the considerations of this section carry over without change if we replace \mathbb{R}^n by an arbitrary finite-dimensional vector space V. We give V the metric topology induced by any norm. We can show that the resulting topology is independent of the norm. The only properties of \mathbb{R}^n that we use are its vector space structure and its topology, and since any choice of basis gives a linear homeomorphism of V with \mathbb{R}^n , all the results of this section are true with \mathbb{R}^n replaced by V. We will use this slightly It turns out that the data of a simplicial complex can be abstracted further, all that
is really important is the data of how many simplices there are and which faces
they are glued along.

Def: An abstract simplicial complex is a collection if of nonempty. Finite sets such that if $\sigma \in \mathcal{K}$, then every nonempty subset of σ is in \mathcal{K} . O Elements of K are called simplices. (2) The dimension of $\sigma \in K$ is dim $\sigma = \#(\sigma) - 1$ where $\#(\sigma)$ is the number of elements of the set σ 3 Any non-empty subset of a simplex σ is called a face of σ . 4) The vertices of JC are the one-point sets in JC \circ The n-skeleton of K is the subset of K consisting of sets of cordinality
 $\leq n+1$ we write K_{ℓ} O A map $f: K \rightarrow L$ is a map of abstract simplicial complexes if ...
(same as a map of simplicial complexes) (similarly, for iso of abstract simp comp)

 $\sim 10^{-10}$ complex of 5 \mathbf{x} , \mathbf{y} $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ $\left[\chi_{2}\right]$, $\left\{\chi_{0}, \chi_{2}\right\}$, $\left\{\chi_{0}, \chi_{1}, \chi_{2}\right\}$ es and abstract

 $\mathcal{L}^{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}$ Then there is e collection of α , α , α , α , α K_{\cdot} \sim simplicial complex ~ 0.1 $\mathbf{0}$, and $\mathbf{0}$, and $\mathbf{0}$ $\mathcal{A}^{\mathcal{A}}$. The contract of the contrac α . $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal$ \sim the contract of $\sim 10^{-11}$ abstract an \mathbf{a} , and \mathbf{a} , and \mathbf{a} the contract of $\sim 10^{-11}$ \mathbf{a} , and \mathbf{a} , and \mathbf{a} $\mathcal{L}^{\mathcal{A}}$. The contract of the contrac α . \mathbf{A} , and a set of the set of \mathbf{a} , and \mathbf{a} , and \mathbf{a} the contract of the contract of the contract of $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$ ~ 0.1