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An open set is a set where every point has some "wiggle room" without leaving the set. No
matter which point in the set you pick there is a little bit of space around that point (in
every direction) that is still in the set. In other words, no point in the set is on a boundary (if
you were on a boundary, you couldn't move at all in the direction that would take you
across the boundary).
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Warning. The names “open” and ‘“closed” often lead newcomers to the world E'\’\ LS \oo’\'h OFCY\ ané C\Dsgé,
of topology into error. Despite the names, some open sets are also closed sets!

Moreover, some sets are neither open sets nor closed sets! -
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I think the idea of a boundary (0A = A \ A°)is very helpful.

Essentially, an open set doesn't contain any of its boundary; there is a demarcation object (I
want to say point, but it's the boundary) separating our set, A, from everything that's not in

Q ) /\ . en <==§ A = \ﬂ'\ ( A) A. Our set is open if this demarcation is completely outside A.
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In other words, it's hard to tell (from within A) where A ends. We never reach any point
x € A for which we can say, "Aha, going beyond this point, I would no longer be in A!"

A NS c\ o 5@.;; 4—;} /_\ = C\ ( A) Looking at A from the outside, we would encounter points for which we cannot continue
"going toward A", while remaining outside A; we reach the edge of X \ A, while

remaining in X \ A.
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Compactness is a sort of finiteness property that some spaces have and others wﬂn Me o SUO\ t.
do not. The rough idea is that spaces which are ‘infinitely large’ such as IR"EIT[O, oo)f \ F
are not compact. However, we want compactness to depend just on the topology on
a space, so it will have to be defined purely in terms of open sets. This means that
any space homeomorphic to a noncompact space will also be noncompact, so finite
intervals (a,b) and [a, b) will also be noncompact in spite of their ‘finiteness’. On
the other hand, closed intervals [a, b] will be compact — they cannot be stretched to
be ‘infinitely large’. [2]
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