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The Steenrod Algebra and The Dual Steenrod Algebra

Niny Arcila Maya

November 29, 2019

1 Hopf Algebras and Dual Hopf Algebras

Definition 1.1. Let R be a commutative ring with unit.

1. A graded R-module M is a sequence (Mi )i≥0 of unitary R-modules.

2. A homomorphism of graded R-modules f : M −→ N is a sequence
(

fi : Mi −→ Ni
)

i≥0 of homomor-
phims of R-modules.

3. The tensor product of graded R-modules M and N is
(
(M ⊗N )i

)
i≥0 where

(M ⊗N )i =
⊕

p+q=i
Mp ⊗Nq .

Remark 1.2. The ring R is considered as a graded R-algebra by setting R0 = R, Ri = 0 (i 6= 0).
Let 1 : A −→ A denote the identity. Let T : M ⊗ N −→ N ⊗ M be defined by T (m ⊗n) = (−1)i j (n ⊗m),
i = degm and j = degn.

Definition 1.3 (Algebra). Let A denote a graded R-module. We say that A has a multiplication if there is
a mapping ∇ : A⊗ A −→ A.

1. ∇ is associative if the following diagram commutes

A⊗ A⊗ A A⊗ A

A⊗ A A, ∇(∇(a ⊗b)⊗ c
)=∇(

a ⊗∇(b ⊗ c)
)
.

∇⊗1

∇
∇

1⊗∇ (1)

2. ∇ has a unit if there is an R-homomorphism η : R −→ A and in the following diagram both compo-
sitions are the identity map

A⊗R

A A⊗ A A, ∇(
a ⊗η(1)

)= a =∇(
η(1)⊗a

)
.

A⊗R

1⊗η∼=

η⊗1

∇

∼=

(2)

The triple (A,∇,η) satisfying 1 and 2, is called an algebra over R.

3. An algebra is said to be commutative if the following diagram commutes

A⊗ A

A, ∇(a ⊗b) = (−1)deg(a)deg(b)∇(b ⊗a).

A⊗ A

∇

∇

T (3)
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4. A homomorphism of graded algebras over R is a homomorphism of graded R-modules that respects
the multiplication and unit.

Definition 1.4. Let A and B be graded R-algebras. The tensor product A ⊗B is given the structure of
graded R-algebra by defining ϕA⊗B = (ϕA ⊗ϕB )◦ (1⊗T ⊗ 1). This is,

(ai ⊗b j )(ak ⊗bl ) = (−1) j k (ai ak ⊗b j bl )

for ai ∈ Ai and b j ∈ B j .
Let M be a graded R-module. The tensor algebra Γ(M) is the graded algebra over R defined by the r -fold
tensor product, Γ(M)r = M⊗r , where M 0 = R. The product is given by the isomorphism M r ⊗M s ∼= M r+s .
The tensor algebra Γ(M) is associative, but not commutative.

The homomorphisms multiplication and unit can be dualized by reversing all arrows in the commutative
diagrams of Definition 1.3; this defines the structure of a coalgebra.

Definition 1.5 (Coalgebra). Let A denote a graded R-module. We say that A has a comultiplication (or
diagonal map) if there is a mapping ∆ : A −→ A⊗ A.

1. ∆ is coassociative if the following diagram commutes

A⊗ A⊗ A A⊗ A

A⊗ A A.

∆⊗1

∆

∆

1⊗∆ (4)

2. ∆ has a counit if there is an R-homomorphism ε : A −→ R and in the following diagram both com-
positions are the identity map

A⊗R

A A⊗ A A.

A⊗R

1⊗ε∼=

ε⊗1

∆

∼=

(5)

A counit may also be called an augmentation of A.

The triple (A,∆,ϕ) satisfying 1 and 2, is called an coalgebra over R.

3. An algebra is said to be cocommutative if the following diagram commutes

A⊗ A

A.

A⊗ A

∆

∆

T (6)

4. A homomorphism of graded coalgebras over R is a homomorphism of graded R-modules that re-
spects the comultiplication and counit.
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Definition 1.6 (Hopf Algebra). Let A denote a graded R-module equipped with a multiplication ∇ : A ⊗
A −→ A, a comultiplication ∆ : A −→ A⊗ A, a unit η : R −→ A, and an augmentation ε : A −→ R. Then A is
a Hopf algebra over R if

1. (A,∇,η) is an algebra over R

2. (A,∆,ε) is a coalgebra over R

3. The compositions η◦ε and ε◦η are the identity on degree zero.

4. The following diagram commutes

A⊗ A A A⊗ A

A⊗ A⊗ A⊗ A A⊗ A⊗ A⊗ A

∇ ∆

∇⊗∇

1⊗T⊗1

∆⊗∆ (7)

This is, ∆ is a morphism of algebras or; equivalently, ∇ is a morphism of coalgebras.

Definition 1.7 (Dual Hopf Algebra). Let k be a field. Let A be a Hopf algebra over k of finite type (that is,
Ai is finite-dimensional over k). The dual Hopf algebra A∗ is defined by setting (A∗)i = (Ai )∗, that is, the
dual of Ai as a vector space over k. The multiplication ∇ and unit η in A gives the comultiplication ∇∗

and augmentation η∗ in A∗, and the comultiplication∆ and augmentation ε in A gives the multiplication
∆∗ and unit ε∗ in A∗.

Proposition 1.8. Let A be a Hopf algebra over k of finite type.

1. ∇ is associative (commutative) if and only if ∇∗ is coassociative (cocommutative).

2. ∆ is coassociative (cocommutative) if and only if ∆∗ is associative (commutative).

3. A∗ is a Hopf algebra.

4. A and A∗ are isomorphic as graded vector spaces. (But not as algebras in general).

Example 1.9. Let k be a field. Let X be an H-space, with product µ : X ×X −→ X , such that

1. X is path-connected.

2. Hn(X ;k) is a finite-dimensional vector space over k for all n. Therefore,

Hn(X ;k) ∼= Hom(Hn(X ;k),k) is also a finite-dimensional vector space over k for all n.

Claim 1.10. The homology ring H∗(X ;k) is a Hopf algebra over R.

Multiplication: The composition of the cross product in homology
H∗(X ;k)⊗H∗(X ;k)

×−→ H∗(X × X ;k) and the induced map µ∗ : H∗(X × X ;k) −→ H∗(X ;k) gives the multi-
plication,

∇ : H∗(X ;k)⊗H∗(X ;k) −→ H∗(X ;k),

this product is called the Pontryagin product.
Comultiplication: The map induced by the diagonal map d : X −→ X × X gives the comultiplication
d∗ : H∗(X ;k) −→ H∗(X ;k)⊗H∗(X ;k).
Unit and counit: By hypothesis, H0(X ;k) is isomorphic to k. The maps η and ε are this isomorphism in
degree zero and the trivial map in higher degrees.

Claim 1.11. The cohomology ring H∗(X ;k) is a Hopf algebra over R.
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Multiplication: The cup product ∪ : H∗(X ;k)⊗H∗(X ;k) −→ H∗(X ;k).
Comultiplication: By Theorem 3.16 [1] and hypothesis, the cross product in cohomology H∗(X ;k) ⊗
H∗(X ;k)

×−→ H∗(X ×X ;k) is an isomorphism of rings. The combination of the induced map
µ∗ : H∗(X ;k) −→ H∗(X ×X ;k) with the cross product isomorphism gives the comultiplication,

∆ : H∗(X ;k) −→ H∗(X ;k)⊗H∗(X ;k).

Unit and counit: Dually to the homology case.

Conclusion:
(
H∗(X ;k),∇,d∗

)
and

(
H∗(X ;k),∪,∆

)
are Hopf algebras. Moreover,

(
H∗(X ;k),∪,∆

)
is the dual

Hopf algebra of
(
H∗(X ;k),∇,d∗

)
, and viceversa. This is, ∇∗ =∆ (the Pontryagin product in homology de-

termines the comultiplication in cohomology) and (d∗)∗ = ∪ (the comultiplication in homology deter-
mines the cup product in cohomology).
To see a more detailed version of this example please go to chapter 3, section C. in [1].

2 The Steenrod Algebra

2.1 Cohomology Operations

Definition 2.1. A cohomology operation is a natural transformation θ : Hn(−;G) −→ Hn(−;G ′). That is, for
all spaces, X and Y , and mappings f : X −→ Y , there are functions θX , θY such that the following diagram
commutes

Hn(X ;G) Hn(X ;G ′)

Hn(Y ;G) Hn(Y ;G ′).

θX

f ∗

θY

f ∗ (8)

Example 2.2. Let R be a ring. We can define a squaring map θ : Hn(X ;R) −→ H2n(X ;R) by using the cup
product, θ(α) =α∪α=:α2.
Note that is generally not a homomorphism. If R =Z, then

θ(α+β) = (α+β)2 =α2 +2α∪β+β2 6=α2 +β2 = θ(α)+θ(β).

But if R =Z/2, then θ is a homomorphism.

Example 2.3. Given a sequence of coefficients 0 → Z/p
×p−−→ Z/p2 → Z/p → 0, there is a long exact se-

quence on cohomology

· · ·→ Hn(X ;Z/p2) → Hn(X ;Z/p)
βn−→ Hn+1(X ;Z/p) →···

The connecting homomorphism, βn , is a cohomology operation called Bockstein homomorphism.

Proposition 2.4. For fixed m,n,G and G ′ let O (G ,m;G ′,n) denote the set of all cohomology operations
θ : Hm(−;G) −→ Hn(−;G ′). Then there is a bijection

O (G ,m;G ′,n) ≈ Hn(K(G ,m);G ′)
θ 7→ θ(ιm)

where ιm ∈ Hm(K(G ,m);G) is a fundamental class.

Proof. See Proposition 4L.1. [1].
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2.2 Steenrod Squares

Theorem 2.5. Let X be a topological space.There exists a transformation

Sqi : H∗(X ;Z/2) −→ H∗+i (X ;Z/2)

called the i th Steenrod square, with the following properties:

1. Sqi ( f ∗(α)) = f ∗(Sqi (α)) for f : X −→ Y .

2. Sqi (α+β) = Sqi (α)+Sqi (β).

3. Sq0 = 1, the identity.

4. Sq1 is the Bockstein homomorphism β associated to the short exact sequence of coefficients

0 →Z/2
×2−−→Z/4 →Z/2 → 0.

5. If α ∈ Hn(X ;Z/2), then Sqn(α) =α2 ∈ H2n(X ;Z/2).

6. If α ∈ Hn(X ;Z/2) and i > n, then Sqi (α) = 0.

7. Sqi (σ(α)) =σ(Sqi (α)) where σ : Hn(X ;Z/2) −→ Hn+1(ΣX ;Z/2) is the suspension isomorphism given
by reduced cross product with a generator of H1(S1;Z/2).

8. The Cartan Formula:
Sqi (α∪β) = ∑

a+b=i
Sqa(α)∪Sqb(β).

9. The Ádem Relations: For a < 2b

Sqa Sqb =∑
j

(
b − j −1

a −2 j

)
Sqa+b− j Sq j ,

where Sqa Sqb denotes the composition of the Stenrood squares, the binomial coefficient is taken mod
2 and, by convention,

(m
n

)
is taken to be zero if m or n is negative or if m < n.

Proof. See Theorem 1. in chapter 3. [3] or Theorem 4L.12. [1].

Example 2.6. Taking a = 1 in the Ádem relation we have that

Sq1 Sqb = (b −1)Sqb+1 =
{

Sqb+1, if b is even

0, if b is odd

2.3 The Steenrod Algebra A

Let F denote the free Z/2-module generated by the set of symbols
{
Sqi : i = 0,1,2, . . .

}
. We think of F as

a graded Z/2-module with Fi =Z/2 ·Sqi .
For each pair of integers (a,b) such that 0 < a < 2b, let

R(a,b) = Sqa ⊗Sqb +∑
j

(
b − j −1

a −2 j

)
Sqa+b− j ⊗Sq j .

Let Q denote the two sided ideal of Γ(F ) generated by all such R(a,b) and 1+Sq0.

Definition 2.7. The Steenrod algebra A is the quotient algebra Γ(F )/Q. A is a graded algebra over Z/2.
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In English, the Steenrod algebra is the quotient of the algebra of polynomials with coefficients in Z/2 in
the noncommuting variables Sq1,Sq2,Sq3, . . . by the two sided ideal generated by the Ádem relations.

Notation 2.8. Given a sequence {i1, . . . , ir } of positive integers, denote by SqI the product Sqi1 · · ·Sqir .
For example, Sq{2,1,6} = Sq2 Sq1 Sq6.

Definition 2.9. A sequence I as above is admissible if ik ≥ 2ik+1 for every k < r . This condition is vacously
satisfied if r = 1. In this case we also say that SqI is admissible.

For example, Sq2 Sq1 Sq6 is not admissible, but Sq9 Sq4 Sq2 Sq1 is admissible. In other words, SqI is ad-
missible if no Ádem relation can be applied to it.

Theorem 2.10 (Serre-Cartan basis). The monomials SqI , as I runs through all admissible sequences, form
a basis for A as a Z/2-module. This basis is known as Serre-Cartan basis.

Proof. (Idea) By using the bijection given in Proposition 2.4, the fact that the monomials SqI are lin-
early independent follows from the linear independance of the elements SqI (ιn) ∈ H∗(

K(Z/2,n);Z/2
)

for all admissible I of degree less or equal than n. By using the Ádem relations, we can proof that{
SqI : I is admissible

}
generates A as a Z/2-module.

See Theorem 1. chapter 6. [3].

Example 2.11. By Theorem 2.10, the Steenrod algebra A = (
An

)
n≥0 is such that its homogeneous com-

ponents A6 and A7 have as basis

Sq6,Sq5 Sq1,Sq4 Sq2 and Sq7,Sq6 Sq1,Sq5 Sq2,Sq4 Sq2 Sq1, respectively.

Definition 2.12. An element a ∈ A a graded algebra over R is decomposable if it can be expressed in the
form

∑
i ai bi with each ai and bi having lower degree than a. Otherwise, we say a is indecomposable.

As examples, Sq6 is decomposable because by the Ádem relations Sq2 Sq4 = Sq6+Sq5 Sq1; Sq1 is inde-
composable and Sq2 is indecomposable because Sq1 Sq1 = 0.
In [3] we find that an element Sqi is indecomposable if and only if i is a power of 2.

Theorem 2.13. The set of indecomposable elements of A , namely
{
Sq2i

: i ≥ 0
}
, generates A as an algebra.

Proof. See Theorem 1. chapter 6. [3].

Unitl now we know that A is an algebra over Z/2 with non-commutative multiplication given by the
product in the tensor algebra, and the unit given by the identity in degree zero, and trivial otherwise. We
will see that the Steenrod algebra possesses additional structure, namely, A is a Hopf algebra. We must
see that there is a diagonal map and a augmentation satisfying Definition 1.6.
Define ∆ : Γ(F ) −→ Γ(F )⊗Γ(F ) by the formulas

∆(Sqi ) =
i∑

k=0
Sqi−k ⊗Sqk and ∆(Sqi ⊗Sq j ) =∆(Sqi )⊗∆(Sq j ).

Theorem 2.14. The above ∆ induces an algebra homomorphism ∆ : A −→A ⊗A . The homomorphism ∆

is coassociative and cocommutative.

Proof. See Theorem 2. in chapter 6. [3].
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2.4 The Dual Steenrod Algebra A ∗

Corollary 2.15. Let A ∗ denote the dual to the Steenrod algebra. The dual Steenrod algebra A ∗ is a Hopf
algebra with commutative multiplication ∆∗.

Theorem 2.16. As an algebra, A ∗ is isomorphic to the polynomial algebra

Z/2[ξ1,ξ2, ...]

where degξi = 2i −1. As a coalgebra, the comultiplication on A ∗ is determined by ∇∗(ξi ) =∑i
k=1 ξ

2k

i−k ⊗ξk .

Proof. See Corollary 2. in chapter 3. [3].

Please let me know if there are typos and/or mistakes. Thank you :D
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