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1 Hopf Algebras and Dual Hopf Algebras

Definition 1.1. Let R be a commutative ring with unit.

1. A graded R-module M is a sequence (M;);>o of unitary R-modules.

2. A homomorphism of graded R-modules f : M — N is a sequence ( f; : M; — N;),., of homomor-
phims of R-modules.

3. The tensor product of graded R-modules M and N is (M ® N);),., where

(MeN);= @ M,eN,.
p+q=i

Remark 1.2. The ring R is considered as a graded R-algebra by setting Ry = R, R; =0 (i #0).
Let 1: A — A denote the identity. Let T: M® N — N ® M be defined by T(m® n) = (-1)¥/ (n® m),
i=degmand j =degn.

Definition 1.3 (Algebra). Let A denote a graded R-module. We say that A has a multiplication if there is
amappingV: A® A— A.

1. Vis associative if the following diagram commutes

Ao Ao A —Y21 s AgA

ﬂ@Vl lv (1

A A —Y 3 A V(Vae®b)®c)=V(aeV(heo).

2. V has a unit if there is an R-homomorphism 7: R — A and in the following diagram both compo-
sitions are the identity map

A®R
Ten

n

A A A —Y— A, V(@enm)=a=vV(nl)ea). @

I}

nel
A®R

The triple (A, V,n) satisfying 1 and 2, is called an algebra over R.
3. An algebra is said to be commutative if the following diagram commutes
A®A
~
T A V(a®b) = (-1)98@debIy(hg g). ®)

s

A® A



4. A homomorphism of graded algebras over R is a homomorphism of graded R-modules that respects
the multiplication and unit.

Definition 1.4. Let A and B be graded R-algebras. The tensor product A® B is given the structure of
graded R-algebra by defining ¢ 4o = (@4 ® @p) o (1® T ® 7). This is,

(a; ® bj)(ax® b)) = -/ aar® bjby)
for a; € A; and bj € B;.
Let M be a graded R-module. The tensor algebra I'(M) is the graded algebra over R defined by the r-fold

tensor product, I'(M), = M®", where M° = R. The product is given by the isomorphism M” ® M = M"*S.
The tensor algebra I' (M) is associative, but not commutative.

The homomorphisms multiplication and unit can be dualized by reversing all arrows in the commutative
diagrams of Definition[L.3} this defines the structure of a coalgebra.

Definition 1.5 (Coalgebra). Let A denote a graded R-module. We say that A has a comultiplication (or
diagonal map) if there is a mapping A: A — A® A.

1. Ais coassociative if the following diagram commutes

Ao Ao A <221 AgA

ﬂ@AT TA 4)

A®A +——2 A

2. Ahas a counit if there is an R-homomorphism ¢ : A — R and in the following diagram both com-
positions are the identity map

A®R
A A A 2 — A (5)
k A
A®R
A counit may also be called an augmentation of A.
The triple (A, A, @) satisfying 1 and 2, is called an coalgebra over R.

3. An algebra is said to be cocommutative if the following diagram commutes

A®A

A®A

4. A homomorphism of graded coalgebras over R is a homomorphism of graded R-modules that re-
spects the comultiplication and counit.



Definition 1.6 (Hopf Algebra). Let A denote a graded R-module equipped with a multiplication V: A®
A — A, acomultiplication A: A— A® A, aunitn: R — A, and an augmentation € : A— R. Then A is
a Hopf algebra over R if

1. (A,V,n)is an algebra over R

2. (A, A, ¢€) is a coalgebra over R

3. The compositions o € and € o7 are the identity on degree zero.
4. The following diagram commutes
A® A v 54 5 A®A
A@AJ /I\wgv )
A®A® A® A loTel y A® A® A® A

This is, A is a morphism of algebras or; equivalently, V is a morphism of coalgebras.

Definition 1.7 (Dual Hopf Algebra). Let k be a field. Let A be a Hopf algebra over k of finite type (that is,
A; is finite-dimensional over k). The dual Hopf algebra A* is defined by setting (A*); = (A;)*, that is, the
dual of A; as a vector space over k. The multiplication V and unit 7 in A gives the comultiplication V*
and augmentation n* in A*, and the comultiplication A and augmentation € in A gives the multiplication
A* and unit €* in A*.

Proposition 1.8. Let A be a Hopf algebra over k of finite type.
1. V is associative (commutative) if and only if V* is coassociative (cocommutative).
2. A is coassociative (cocommutative) if and only if A* is associative (commutative).
3. A" isa Hopf algebra.
4. A and A* are isomorphic as graded vector spaces. (But not as algebras in general).
Example1.9. Let k be a field. Let X be an H-space, with product p: X x X — X, such that
1. X is path-connected.

2. H,(X; k) is a finite-dimensional vector space over k for all n. Therefore,

H"(X; k) = Hom(H,(X; k), k) is also a finite-dimensional vector space over k for all 7.

Claim 1.10. The homology ring H. (X; k) is a Hopf algebra over R.

Multiplication: The composition of the cross product in homology
H. (X; k) ® H, (X; k) = H, (X x X; k) and the induced map g, : H, (X x X; k) — H., (X; k) gives the multi-
plication,

V:H. (X;k) ® Hi (X; k) — Ha (X5 k),

this product is called the Pontryagin product.

Comultiplication: The map induced by the diagonal map d : X — X x X gives the comultiplication
dy - H. (X5 k) — H. (X; k) @ Hi (X k).

Unit and counit: By hypothesis, Hy(X; k) is isomorphic to k. The maps 1 and ¢ are this isomorphism in
degree zero and the trivial map in higher degrees.

Claim 1.11. The cohomology ring H* (X; k) is a Hopf algebra over R.



Multiplication: The cup product U : H*(X; k) e H* (X; k) — H*(X; k).

Comultiplication: By Theorem 3.16 [1] and hypothesis, the cross product in cohomology H* (X; k) ®
H*(X; k) S H* (X x X; k) is an isomorphism of rings. The combination of the induced map

u* :H*(X; k) — H*(X x X; k) with the cross product isomorphism gives the comultiplication,

A:H*(X;k) — H*(X; k) e H* (X; k).
Unit and counit: Dually to the homology case.
(H«(X;k),V,d.) and (H*(X; k), U, A) are Hopf algebras. Moreover, (H* (X; k), U, A) is the dual
Hopf algebra of (H. (X; k), V, d.), and viceversa. This is, V* = A (the Pontryagin product in homology de-
termines the comultiplication in cohomology) and (d.)* = U (the comultiplication in homology deter-

mines the cup product in cohomology).
To see a more detailed version of this example please go to chapter 3, section C. in [1].

2 The Steenrod Algebra

2.1 Cohomology Operations

Definition 2.1. A cohomology operation is a natural transformation 6 : H" (—; G) — H"(—; G'). That is, for
all spaces, X and Y, and mappings f : X — Y, there are functions fx, 8y such that the following diagram
commutes

H(X;G) —2 s H(X;G))
f*T Tf»« ®)
H(Y:G) —2 3 H(Y;G)).

Example 2.2. Let R be aring. We can define a squaring map 6 : H*(X; R) — H2"(X;R) by using the cup

product, 6(a) = au a =: a?.

Note that is generally not a homomorphism. If R = Z, then
Oa+pB)=(a+p)?=a’+2auf+p*#a*+p*=0(a) +0(B).

Butif R=27/2, then 0 is a homomorphism.

Example 2.3. Given a sequence of coefficients 0 — Z/p 2 z/ p?> — Z/p — 0, there is a long exact se-
quence on cohomology

RN H"(X;Z/pz) —H"(X;Z/p) bn, H" Y X;z2/p) — -
The connecting homomorphism, ,, is a cohomology operation called Bockstein homomorphism.

Proposition 2.4. For fixed m,n,G and G' let 0(G, m; G',n) denote the set of all cohomology operations
0 :H™(—; G) — H"(—; G'). Then there is a bijection

0(G, m;G',n) = H'(K(G, m); G

where 1, € H™(K(G, m); G) is a fundamental class.

Proof. See Proposition 4L.1. [1]. a



2.2 Steenrod Squares

Theorem 2.5. Let X be a topological space.There exists a transformation

Sq' :H*(X;Z/2) — H**(X;Z/2)

called the , With the following properties:

~

N

. SqU(f* (@) = f*(Sqi () for f: X — Y.

Sq‘(a+ B) =Sq’ (@) +Sq’ (B).
Sq° =1, the identity.

Sq! is the Bockstein homomorphism f3 associated to the short exact sequence of coefficients
0—22227/4—27/2—0.

Ifa e H(X;Z/2), then Sq" (@) = a? e H*"(X;Z/2).
Ifa e H'(X;Z/2) and i > n, then Sqi((x) =0.

Sqi(a(a)) = U(Sqi(a)) whereo :H'(X;Z/2) — H" Y (2 X;7Z/2) is the suspension isomorphism given
by reduced cross product with a generator of H'(S';Z/2).

The _
Sq'taupy= Y Sq“ausq’(p.

a+b=i

The Fora<2b

b—j-1 o
Sq(lsqbzz( . ] ) )Sq(l‘f'b—jsq]’
J

whereSq®SqP denotes the composition of the Stenrood squares, the binomial coefficient is taken mod
2 and, by convention, (")) is taken to be zero if m or n is negative or if m < n.

Proof. See Theorem 1. in chapter 3. [3] or Theorem 4L.12. [1]. O

Example 2.6. Taking a = 1 in the Adem relation we have that

SqP*1, ifbiseven

Sq'Sq’ = (b-1)Sq"* =
4597 =(b-DSq 0, if bis odd

2.3 The Steenrod Algebra </

Let F denote the free Z/2-module generated by the set of symbols {Sqi :i=0,1,2,...}. We think of F as
a graded Z/2-module with F; = Z/2-Sq'.
For each pair of integers (a, b) such that 0 < a < 2b, let

b—j-

,1) Sq“tt-ie@Sq.
a—-2j

R(a,b):Sq“®qu+Z(
j

Let Q denote the two sided ideal of I'(F) generated by all such R(a, b) and 1 + SqO.

Definition 2.7. The Steenrod algebra <f is the quotient algebra I'(F)/Q. < is a graded algebra over Z/2.



In English, the Steenrod algebra is the quotient of the algebra of polynomials with coefficients in Z/2 in
the noncommuting variables Sq',Sq?,Sq?,... by the two sided ideal generated by the Adem relations.

Notation 2.8. Given a sequence {i1,...,i,} of positive integers, denote by Sq’ the product Sq’' ---Sq" .
For example, Sq%1% = Sq?Sq! Sq°®.

Definition 2.9. A sequence I as above is admissibleif iy = 2ij, for every k < r. This condition is vacously
satisfied if r = 1. In this case we also say that Sq’ is admissible.

For example, Sq°Sq' Sq® is not admissible, but Sq°Sq*Sq?Sq' is admissible. In other words, Sq’ is ad-
missible if no Adem relation can be applied to it.

Theorem 2.10 (Serre-Cartan basis). The monomials SqI , as I runs through all admissible sequences, form
a basis for of as a Z12-module. This basis is known as Serre-Cartan basis.

Proof. (Idea) By using the bijection given in Proposition the fact that the monomials Sq’ are lin-
early independent follows from the linear independance of the elements SqI (tn) € H*(K(Z/Z, n);zl 2)
for all admissible I of degree less or equal than n. By using the Adem relations, we can proof that
{Sq’: I'is admissible} generates of as a Z/2-module.

See Theorem 1. chapter 6. [3]. O

Example 2.11. By Theorem ‘ the Steenrod algebra «f = (*Q{n)nzo is such that its homogeneous com-
ponents «f; and </ have as basis

SqG, qu Sql, Sq4 Sq2 and Sq7, Sq6 Sq1 , Sq5 qu, Sq4 qu Sql, respectively.

Definition 2.12. An element a € A a graded algebra over R is decomposable if it can be expressed in the
form Y ; a; b; with each a; and b; having lower degree than a. Otherwise, we say a is indecomposable.

As examples, Sq° is decomposable because by the Adem relations Sq®Sq* = Sq°® +Sq®Sq!; Sq! is inde-
composable and Sq? is indecomposable because Sq' Sq' = 0.
In [3] we find that an element Sq’ is indecomposable if and only if i is a power of 2.

Theorem 2.13. The set of indecomposable elements of «f , namely {qui : i = 0}, generates </ as an algebra.
Proof. See Theorem 1. chapter 6. [3]. a

Unitl now we know that <f is an algebra over Z/2 with non-commutative multiplication given by the
product in the tensor algebra, and the unit given by the identity in degree zero, and trivial otherwise. We
will see that the Steenrod algebra possesses additional structure, namely, <f is a Hopf algebra. We must
see that there is a diagonal map and a augmentation satisfying Definition|1.6

Define A : T'(F) — I'(F) ® I'(F) by the formulas

. i . . . . .
ASq) =Y Sq"*eSq* and A(Sq' ®Sq’) = A(Sq") ® A(Sq).
k=0

Theorem 2.14. The above A induces an algebra homomorphism A : of — of ® of . The homomorphism A
is coassociative and cocommutative.

Proof. See Theorem 2. in chapter 6. [3]. a



2.4 The Dual Steenrod Algebra < *

Corollary 2.15. Let o/ * denote the dual to the Steenrod algebra. The dual Steenrod algebra <¢* is a Hopf
algebra with commutative multiplication A*.

Theorem 2.16. As an algebra, «/* is isomorphic to the polynomial algebra

Z12[¢1,¢2,...]
wheredegé; = 2i-1.Asa coalgebra, the comultiplication on «f* is determined by V* (¢;) = 22:1 éffk ®¢&g.

Proof. See Corollary 2. in chapter 3. [3]. O

Please let me know if there are typos and/or mistakes. Thank you :D
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