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Objective of the study: 
      The human brain changes substantially during aging. Beginning during early adulthood, 
accumulated damage leads to degeneration of the brain over decades and faster degradation is 
associated with many age-related diseases, most notably dementia. While the effects of aging on 
brain structure are increasingly well-characterized, the effects of aging on brain function are less 
clear. Better understanding changes in brain functional organization is important as brain 
function is a dynamic aspect of brain homeostasis that is sensitive to aging and is especially 
related to behavior (Marek et al, 2022). Brain function can be estimated by measuring blood flow 
using functional magnetic resonance imaging (fMRI) and can be organized into approximately 
17 different functional networks (Yeo et al., 2011). Functional networks are sets of brain areas 
that have coordinated neural firing over time. While these functional networks have coordinated 
activity, the brain areas that make up one functional network may be located at distant parts of 
the brain. With this project, we seek to describe aging associations between the size, shape, 
spatial location, and strength of functional brain networks. As our measures of aging, we will 
use (i) the pace of biological aging during midlife using data from Phase 45 of the Dunedin 
Study (Elliott et al., 2021), and (ii) chronological age using data from the Human Connectome 
Project in Aging (HCP-A; Bookheimer et al., 2019). 
      The first measure of brain function we will use in this analysis is functional topography. 
Functional because this measure is derived from brain function from fMRI data, and topography 
because it estimates the spatial pattern of brain function. Traditional studies of functional 
networks in the brain assume that the brain areas involved in each functional network are 
identical from person to person. However, people have some variation in the brain areas that 
make up their functional networks (Gordon et al., 2017). Functional topography estimates which 
specific areas of the brain make up an individual person’s functional networks. Individual 
differences in functional topography are related to individual differences in personality, emotion, 
and cognition (Kong et al., 2019). We will use previously generated estimates of functional 
topography generated in the Dunedin cohort (Whitman et al., 2023), and create analogous 
estimates in the HCP-A dataset. This will allow us to test how the size, shape, and spatial 
location of functional networks are associated both with the pace of biological aging and 
chronological age. 



The second measure of brain function we will use in this analysis is functional 
connectivity. Functional because this measure is also derived from brain function from fMRI 
data, and connectivity because it estimates the strength of coordinated activity from different 
brain regions. To measure this, we will divide the brain into 400 regions and test how strongly 
brain activity is correlated between all pairs of brain regions. This is also referred to as a 
connectome. As described above, traditional studies have relied on group averages to define this 
set of brain regions. However, recent advances have made it possible to create individualized 
estimates of these 400 brain regions, thus making it possible to create individualized 
connectomes. These individualized connectomes are also more closely related to behavior than 
traditional connectomes (Kong et al., 2021). We will produce an individualized connectome for 
each Dunedin Study member and HCP-A participant. We will then test how pace of biological 
aging and chronological age are each associated with the strength of connections in that 
individual’s connectome. This will allow us to test how the strength of functional networks are 
associated with pace of biological aging and with chronological age. 

We hypothesize that associations with pace of biological aging and chronological age 
will both be most pronounced in “higher-order” functional networks such as the default mode, 
frontoparietal, and attention networks. Specifically, we predict that these higher-order networks 
will be smaller, weaker, and show greater variation in their shape and spatial location among 
older individuals in HCP-A and among those aging more quickly in the Dunedin Study. 
  
Question 1: 
How are the size, shape, spatial location, and strength of functional networks associated with 
pace of biological aging at midlife? 

We use previously generated individualized functional topography maps of the cerebral 
cortex of 769 Dunedin Study members using Multi-Session Hierarchical Bayesian Modeling (MS-
HBM) (Kong et al., 2019). MS-HBM is a well-validated, reliable, open-source algorithm. This 
method creates a group average of functional topography for the whole cohort and then identifies 
an individual study member’s deviation from this group average to estimate that individual’s 
unique functional network topography (Kong et al., 2019). We will also use MS-HBM to generate 
individualized areal parcellations of each Study member’s brain (Kong et al., 2021). Using these 
individualized parcellations, we will then generate individualized connectomes. 

We will then use ridge regression models to predict each Study Member’s pace of 
biological aging from their unique functional topography and connectivity. Our first ridge 
regression model will be trained using network size, shape, and spatial location, while our second 
ridge regression model will be trained using network strength. Both models will predict the pace 
of biological aging using a split-half approach. Ridge regression models show high efficacy at 
predicting behavior using functional topography data (Kong et al., 2019; Whitman et al., 2023). 
These models will indicate how much individual differences in network size, shape, spatial 
location, and strength are correlated with individual differences in midlife pace of biological 
aging. 
  
Question 2: 
How are the size, shape, spatial location, and strength of functional networks associated with 
chronological age? 

Next, we will repeat the above steps using the HCP-A dataset with chronological age as 
our outcome measure. We will use MS-HBM to generate both estimates of individualized 



functional network topography as well as individualized connectomes of 711 HCP-A (ages 36-100 
years, mean age = 60.3 years) participants. We will again train one ridge regression model on 
network size, shape, and spatial location. Next, we will train a second ridge regression model using 
network strength. We will again test these models’ prediction ability using a split-half approach. 
These models will indicate how much individual differences in network size, shape, spatial 
location, and strength are correlated with chronological age during midlife and aging. 
  
Question 3: 
Are the same functional networks associated with pace of biological aging and with 
chronological age? 
      Next, we will explicitly compare the associations with pace of biological aging and 
chronological aging to test whether they converge on higher-order brain networks. To compare 
associations with network size, shape, and spatial location, we will repeat our ridge regression 
models using functional topography information from only certain regions of the brain. We can 
then empirically test whether network size, shape, and spatial location from similar brain 
regions are able to predict both pace of biological aging and chronological age. 
      We will then use a method known as a Haufe-transformation to identify which 
connections in participants’ connectomes are most important for prediction (Chen et al., 2022). 
We will then test whether a similar set of connections most important for predicting pace of 
biological aging and chronological age. This will allow us to discern whether a similar pattern of 
network connectivity strength predicts pace of biological aging and chronological age. 
  
Question 4: 
How do these features of brain function relate to age-related behavioral outcomes? 
      Finally, based on prior work in the Dunedin Study (Whitman et al., 2023), we will 
attempt to expand and replicate functional network associations with cognitive ability, gait 
speed, and sensorimotor ability using data from the HCP-A study. Following the approach of 
Whitman et al., we will attempt to predict IQ, gait speed, and various sensorimotor abilities using 
ridge regression models trained on network size, shape, spatial location, and strength in both 
the Dunedin and the HCP-A study. We predict that functional topography associations with these 
behavioral measures will be strongest in higher-order functional networks, such as the default 
mode network. 
  
Variables needed at which ages: 
  
Dunedin: 
Full fMRI scans (task and rest) at age 45 
Pace of biological aging at age 45 
Gait speed at age 45 
  
HCP-A: 
Full fMRI scans (task and rest) 
Chronological age 
Full-scale IQ 
Gait speed 
Words in noise task score 



Visual acuity 
Contrast sensitivity 
  
  
Significance of the study: 
      This study will leverage two large datasets to provide first description of age- and aging-
related associations with individualized features of brain function. In doing so, we will help 
answer whether chronological age and aging show similar patterns of associations with brain 
function. Second, we will answer whether these associations are most pronounced in higher-
order brain networks that are thought to show the earliest and most pronounced changes during 
aging. Finally, we will attempt to validate these associations with common behavioral measures 
thought to index aging. 
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