CARDIOVASCULAR PCCN

© OnCourse Learning Corporation 2016

Essentials of Care: Vital Signs

- Heart rate: What causes tachycardia?
 - Fever, hypovolemia or hypervolemia
 - Almost anything that turns on the sympathetic nervous system will cause tachycardia
- But the physiological reason for tachycardia is tissue hypoxia

Vital Signs

- Respiratory rate: What causes increased respiratory rate?
 - The same triggers that stimulate the sympathetic nervous system may increase respiratory rate
- But the two major physiological reasons for increased respiratory rate are:
 - Tissue hypoxia
 - Metabolic acidosis

Vital Signs

- Temperature:-
- Increased temperature
 - Causes increased oxygen demand of all tissues
- Decreased temperature
 - Causes abnormalities in metabolism, vasoconstriction and coagulopathies

Essentials: Blood Pressure

- Systolic: reflects stroke volume
- Diastolic: reflects arterial tone
 - And capillary blood flow
 - With vasoconstriction, diastole increases.
 - With vasodilation, diastole decreases.
- MAP = [SBP+ 2(DBP)] divided by 3

Blood Pressure

- Pulse pressure: the difference between systole and diastole,
 - Normal is 35 to 45 mmHg and therefore
 - Reflects LV performance
- For the test, this will help distinguishing different types of shock:
 - Neurogenic (wide pulse pressure) vs.
 - Cardiogenic shock (narrow pulse pressure)

Low Cardiac Output Syndrome

- What does this patient look like?
 - Tachycardia and vasoconstriction
 - Decreased mental status
 - Cool, cold and wet skin (vasoconstriction of the skin)
 - Decreased urine output
 - Narrowed pulse pressure
 - Pale
 - Change in mental status

Essentials

- So what we do for a living in the ICU/PCU is to enhance cardiac output and maintain perfusion
- GOAL for all patients is to:
 - Enhance O2 delivery
 - Decrease O2 demand

HEART: PURPOSE AND FUNCTION

Purpose is to drive hemoglobin to the cell

Perfusion Assessment

© OnCourse Learning Corporation 2016

The Right Ventricle

- Smaller chamber, septum does not improve function of the right ventricle; only the left
- Lower pressure
- Purpose is to pump blood from the right ventricle through the pulmonary vault and fill the left ventricle.

The Right Ventricle

- What happens in acute right ventricular failure?
 - The ventricle dilates and cannot pump blood from right through the pulmonary vault and "backs up" into the right atrium and SVC and IVC:
 - See JVD and later hepatic congestion
- NO pulmonary edema in acute right ventricular failure!

The Right Ventricle

- How to treat RV failure?
 - Volume resuscitation
- Always treat RV failure with fluid: remember no pulmonary edema
- So early signs of RV failure:
 - Tachycardia, S3 and clear lungs
- Give fluid.

The Left Ventricle

- Thicker, larger ventricle with more muscle
- Pumping oxygenated blood from the heart to the arterial system
- Higher pressure! Corkscrew performance

The Left Ventricle

- What happens when the left ventricle fails?
- Pulmonary edema: ventricle dilates,
 - Cannot pump blood through the aorta
 - Blood "backs up" into the left atrium and to the lungs. Pulmonary edema
- Early signs of LV failure:
 - Tachycardia, S3 and pulmonary congestion
 - Low cardiac output syndrome

The Left Ventricle

- Treatment:
 - Decrease intake of fluids
 - Decrease preload: diuresis
 - Decrease afterload: vasodilation
 - Possibly inotropic support for contractility

Coronary Circulation

Coronary Circulation

- Right coronary artery: RCA
 - Feeds right atrium and right ventricle
 - In 90% of all people the RCA is dominate: It crosses the ventricular groove inferiorly to supply blood to the inferior left ventricle.
- In an inferior wall STEMI (ST elevation myocardial infarction), it is the RCA that has an occlusion

Coronary Artery Circulation

- Left main
 - Left circumflex: feeds left atrium and high anterior and lateral left ventricle
 - Left anterior descending: feeds the entire left anterior wall, 2/3 ventricular septum and the apex of the left ventricle

Coronary Perfusion

- Cardiac cycle: coronary artery perfusion depends on diastolic time
- Aortic pressure: coronary artery perfusion depends on aortic diastolic pressure
- Coronary artery perfusion pressure
 - CAPP = diastolic BP PAWP (pulmonary artery wedge pressure)
 - Normal is 60-80 mmHg

Coronary Perfusion

- Coronary perfusion occurs only during ventricular diastole
- Coronary perfusion depends on
 - Diastolic time
 - Diastolic pressure

Cardiac Function

- Cardiac function is measured by cardiac output/cardiac index.
- To enhance cardiac performance, the treatment is to increase or improve cardiac output/cardiac index.

Definitions

- Cardiac output = heart rate (and rhythm) times stroke volume (SV)
- Stroke volume equals
 - Preload
 - Afterload
 - Contractility

Definitions

- SV = preload: amount of blood returning to the heart at the end of diastole
- SV = afterload: impedance to ventricular emptying: how much work the ventricle has to do to contract and eject blood
- Contractility: the amount of contraction the muscle of the ventricle can do

- Heart rate and rhythm
 - All anti-dysrhythmics apply here
 - Know ACLS for dysrhythmias
 - Very few questions on pacemakers
 - Too fast or too slow: fix rate and rhythm

- Preload
- Low: hypovolemia
 - Give fluid that patient needs
 - Fluid resuscitation
- High: Patient is volume overloaded
 - The patient in heart failure
 - Diuretics (if the kidneys work) or vasodilators (nitroglycerin)

- Afterload, Low: low SVR (systemic vascular resistance)
 - Vasoconstrictors: vasopressin, levophed, neosynephrine, dopamine

- Afterload, high: high SVR
 - Vasodilating drugs: sodium nitroprusside, NTG
 - ABCs:
 - ACE-I (angiotensin converting enzyme inhibitors) Ex: enalapril, captopril, lisinopril, ramipril ARBs (angiotensin receptor blockers) Ex: candesartan, losartan, valsartan Alpha antagonists, Ex: doxazosin, prazosin
 - Beta blockers

Ex: atenolol, labetalol, metoprolol

Calcium chanel blockers
Ex: diltiazem, verapamil, nicardipine

- Contractility
- Drugs that improve contractility: inotropes
 - Digoxin
 - Dobutamine: Dobutrex
 - Milrinone: Primacor
 - Dopamine
- IABP (intra-aortic balloon pump): not a drug, but remember this option

Supply and Demand

- Remember the goals:
- Improve delivery of oxygen
- Decrease demand

Supply and Demand

- The next slide shows the determinants of myocardial oxygen supply
 - Open coronary arteries, diastolic time and pressure, normal Hgb and SaO2
- Determinants of oxygen demand
 - Preload, afterload, HR and contractility

Oxygen Supply And Demand

Supply

- Coronary artery potency
- Diastolic pressure
- · Diastolic time
- O₂ extraction
 - Hgb
 - SaO₂

Demand

- Heart rate
- Preload
- Afterload
- Contractility

Heart Sounds: S3

- S3: always pathologic in the adult,
 - Reveals fluid overload in the patient
- An early sign of heart failure
 - Early diastolic heart sound
 - Low pitched

Heart Sounds: S4

- S4: always pathologic in the adult
 - Reveals a stiff (noncompliant) ventricle
- What can cause this?
 - Chronic hypertension, aortic stenosis, and
 - STEMI (noncompliance of the infarcted muscle)
 - Late diastolic sound
 - Low pitched

Cardiac Cycle

Hemodynamics
Hemodynamics: Pulmonary Artery Catheter

- RA pressure: 3-5 mmHg: CVP pressure
- RV pressure: 25/3-5 mmHg: not a monitored pressure
- PA pressure: 25/8-12 : pressure in the pulmonary parenchyma
 - Can be affected by any disease of the lung, pulmonary embolism, pneumonia or hypoxia

Pulmonary Artery Catheter

- PAWP (pulmonary artery wedge pressure or PAOP pulmonary artery occlusive pressure): 8-12mmHg
- Pressure reflects left atrial and left- sided filling pressures
 - The wedge can not be higher than the pulmonary artery diastolic

Hemodynamics

- CO 4-8 liters/min
- CI 2.5-4 liters/min/m2
- CVP 2-6
- PAP 20-25/8-12
- PAWP 4-12
- PVR 37-250dynes/sec/cm2
- SVR800-1200dynes/sec/cm2

Hemodynamics

- True mixed venous saturations: SVO2
- SvO2 is reflective of
 - Cardiac output/cardiac index
 - H&H
 - Oxygenation
 - Metabolic demand: important info of tissue utilization of oxygen: consumption
 - Important in determining shock states

Cardiac Assessment

- First: Assess cardiac rate and rhythm
- Second: vital signs
- Then: physical assessment
 - Mental status
 - Skin: warm or wet
 - Urine output (the poor man's cardiac output machine)
 - 0.5 ml/kg/hour for urine output

Electrical Conduction

- It is all about ACLS, not what you do at YOUR hospital
- Know all rhythms!

© OnCourse Learning Corporation 2016

Interpreting Rhythm Strips

• You may have one strip to read; usually atrial fibrillation

Electrolytes

- The following slides review electrolytes as they pertain to the heart
- At the end, there is an electrolyte review

Hypokalemia

Hypokalemia: ventricular irritability

- Flat T with prominent U wave
- T-wave + U-wave same amplitude
- ST seg flattening
- Prolongation of QT interval (K < 2.0)
- ST seg depression

Hypokalemia

- Treatment:
- Give potassium
- Careful: How fast can you give potassium and where?

Hyperkalemia

- Hyperkalemia; asystole
 - Greater than 5.5 = tall, narrow, peaked T waves (tall peaked T waves in all 12 Leads)
 - QRS widens
 - P-wave widens
 - > 6.5 QRS widens
 - > 8.0 Wide QRS
 - P-wave barely visible

Hyperkalemia

- Hyperkalemia
 - Treatment: Remove K
 - Remove K: kayexalate or dialysis
 - Shift K: insulin and dextrose, NaHCO
 - Calcium: to protect the heart
- Remember: Repeat potassium levels every fours hours if treating

Calcium

- Hypocalcemia: torsades de pointes
 - Prolonged QT
 - Prolonged ST seg
- Hypercalcemia: agonal or asystole
 - Shortened QT
 - Shortened ST seg

Magnesium

- Hypomagnesemia: torsades de pointes
 - Prolonged QT
 - Broad, flattened T-wave
 - Dysrhythmias
- Hypermagnesemia: agonal to asystole
 - PR, QT prolonged
 - Prolonged QRS

Coronary Artery Disease: CAD

- Definition: a blood flow limiting lesion
- Pathophysiology and etiology: inflammation
- Risk Factors: number one is diabetes
- Clinical manifestations
 - Heart failure, sudden death
 - Acute coronary syndrome: stable angina, unstable angina
 - NSTEMI (non-ST elevation MI)
 - STEMI (ST elevation MI)

Risk Factors

- This man has all the risk factors:
- Hypertension
- Obesity
- Noninsulin dependent diabetes
- Atherosclerosis
- Obstructive sleep apnea
- Maybe hypothyroidism, a smoker and a drinker

Stable Angina

Clinical presentation: pain with exertion

- ECG presentation: normal
- Negative cardiac enzymes
- Treatment modalities
- Rest, NTG (nitroglycerine), ASA (aspirin)

Angina Management

- Antiplatelet therapy
 - ASA
 - ADP inhibitors (Plavix/Effient)
- Anticoagulant
 - Heparin/low molecular weight (fragmin, lovenox, arixtra)
 - Coumadin

Angina Management

- Vasodilator
- NTG: patch, SL, longer acting: Imdur
- Beta blocker
 - Decreases MVO2 (myocardial oxygen demand)
 - Regulates BP, HR, rhythm
- Ace I (angiotensin converting enzyme inhibitors)
 - BP control, reduces remodeling

Unstable Angina

- Clinical presentation: unpredictable pain, change in character of pain, rest pain
- ECG: ST changes, depression
- Enzymes: troponin elevated
- Pathophysiology: blood clot in coronary
- In the ACC/AHA guidelines: unstable angina (UA) and NSTEMI are together.

UA/NSTEMI

- Biochemical markers
 - Troponin +, CPK -
 - DX: UA minimal myocardial damage
 - DX: NSTEMI There is myocardial damage.
 - Prognosis: high-risk patient

UA/NSTEMI: Treatment

- Increase MVO₂ supply: Decrease MVO₂ demand: Put patient at rest
 - ASA and oxygen
 - Beta blockers
 - Heparin
 - NTG
 - Morphine
 - GP IIb-IIIa Inhibitor drugs

UA/NSTEMI

- Management: patient with refractory pain
- Assistance for the ventricle
- Medications: antiplatelet, Ilb IIIa inhibitors (ReoPro, Integrilin, Aggrastat), nitroglycerin, pain relief
- Mechanical assist
- IABP (Intra-aortic balloon -pump)
- Additional diagnostics: cardiac cath

IABP

- Two functions
 - Decrease afterload
 - Increase coronary perfusion
- Absolute contraindication: aortic insuff.
- Monitor for:
 - Vascular exam
 - Timing

UA/NSTEMI

- Medical interventional (cath lab)
 - PTCA (percutaneous transluminal coronary angioplasty)
 - Stent placement: drug eluting or bare metal stents
 - DCA (directional coronary atherectomy)
 - Cath lab intervention (PCI: percutaneous cardiac intervention)

Nursing Care of Cardiology Interventional Patient

- Preprocedure
 - NPO, consent
 - Labs, ECG, insulin orders, prehydrate
 - Renal protection if needed
 - Vascular exam, allergies
 - On-call meds: ASA, Plavix, etc.

Postprocedure

- Monitor ECG
- Vascular assessment
- Labs, heparin protocol, IIbIIIa infusion
- Activity restrictions, progression
- Sheath removal
- Medications
- Monitor for bleeding

Arterial Insufficiency or Occlusion

Nursing Care

Vascular Assessment

- Six Ps of assessment
 - Pulse: presence of palpable or doppler able
 - Pain: good indicator of ischemia
 - Pallor: pale extremity
 - Polar: cold extremity
 - Paresthesia: tingling, pins and needles in extremity
 - Paralysis: unable to feel or move extremity

Peripheral Vascular Insufficiency

- Arterial vs. Venous
- Carotid Artery Stenosis: Neuro checks
- Femoral-Popliteal Bypass: Blood Pressure monitoring
- **Peripheral Stents**
- Improving Blood Flow: Perfusion assessments

AMI/STEMI

Time = Muscle Muscle = Life

AMI/STEMI

- Etiology: atheroma rupture with clot formation
- Pathophysiology: inflammation
- Clinical presentation: men vs. women
- Labs: troponin, LDH, CPK, MB band
- ECG, ECHO
- Cath lab

ECG Changes During STEMI

- First: The first ECG change in early infarction is T wave elevation and peaking, only in the leads associated with the injury.
- Second: T wave inversion
- Third: ST segment elevation
- Fourth: Q wave formation and ST elevation

12 Lead ECG in STEMI

- Leads: II, III and AVF are inferior leads
- Leads: I, AVL are high anterior leads
- Leads: V1 and V2 are septal leads
- Leads: V3-V6 are anterior lateral leads

STEMI: Right Ventricular Infarction

Assess for clinical indications of right ventricular myocardial infarction

- ECG changes
 - V_{4R}, V_{5R}, V_{6R}
 - Decreased RAP, decreased PAWP
 - Decreased CO, CI, MAP; Increased SVR
 - Clinical indications of right ventricular failure
 - Minimal to absent pulmonary congestion

STEMI: Acute Management

- Manage and monitor
 - 12 lead ECG, enzymes
 - ECG, VS, BLS, ACLS
 - Hemodynamic parameters
- Reduce size of infarct
 - It's all about timing
 - Door to diagnosis and treatment (90 minutes)
 - Time is muscle

STEMI: Management

- Diagnose
- Clinical presentation: different between men and women, ECG, enzymes
- Remember that in women, an early symptom of STEMI may be nausea and vomiting or epigastric distress
- Take home message: get a 12-lead ECG

STEMI: Management

- Treatment paradigm: open artery:
 - ABCs, oxygen, pain management, ASA, NTG
 - Reperfusion therapies
 - Cath lab (PCI)
 - Fibrinolytic therapy (if delay in treatment and patient is a candidate)
 - CABG

STEMI: Dysrhythmias

- Inferior wall STEMI: most common dysrhythmia: bradycardia and heart block
- Anterior wall STEMI: most common dysrhythmias are tachycardias, including VT and VF

STEMI: Management

- Increase Oxygen Supply
- Oxygen therapy if O2 Saturations less than 94%
- Nitroglycerin: increase supply
- Open the artery: Catheterization Lab

STEMI: Management

- Decrease myocardial oxygen consumpti
 - Oxygen (Sats less than 94%)
 - Beta blockers
 - ACE inhibitors
 - Pain control
 - Rhythm control

*ADAM. © 2008 A.D.A.M., Inc.

 $\ensuremath{\mathbb{C}}$ OnCourse Learning Corporation 2016

STEMI: RV Infarction

- Assess for clinical indications of RVMI
- Right sided ECG: 15-18 Lead ECG
 - ECG changes V4R, V5R, V6R
 - High CVP, low or normal PAWP
 - Low CO/CI, MAP low
 - Clinical indications of RV failure
 - Minimal to absent pulmonary congestion

RV Infarction: Management

- Maintain adequate filling pressures
- Administer volume
- Avoid diuretics and/or venodilators (NTG)
- Maintain contractility
- Remember: fluid is the answer here

Hemodynamics RV vs. LV infarction

V	
CVP	High
PAP	Normal or Low
PAWP	Normal or Low
CI/CO	Low
SVR	High

Complications: STEMI

- Dysrhythmias
- Heart failure
- Cardiogenic shock
- Papillary muscle dysfunction or rupture
- VSD (ventricular septal defect)

- Cardiac rupture
- Ventricular aneurysm
- Pericarditis
- Dressler's syndrome
- Sudden death

Pericarditis

- Inflammation of the pericardial sac
- Due to infection, connective tissue disorder, scar formation following MI, and/or renal failure due to azotemia
- Dressler's syndrome: inflammation of pericardium following infection, connective tissue disorder or surgery on the heart

Pericarditis

- Patient with chest pain
 - Increases with deep inspiration
 - Improves with upright position
- 12-Lead ECG with ST-T wave elevation in all 12 leads
 - Pericarditis

CAD

- Treatment: Re-vascularization
- Medical: DX, open the artery, antiplatelet therapy, vasodilator, beta blocker (BB), ACE inhibitor (ACE-I), statin
- Surgical: CABG: antiplatelet, vasodilator, BB, ACE-I, and statin (same meds)
 - Statins: atorvastatin (Lipitor), fluvastatin (Lescol), lovastatin (Mevacor), pravastatin (Pravachol), rosuvastatin (Crestor), simvastatin (Zocor, Lipex)

Heart Failure (HF)

- An evolving definition
- Heart failure should be viewed as a neurohormonal model, in which heart failure progresses as a result of the overexpression neurohormones that are capable of exerting toxic effects on the heart and circulation ... contributing to disease progression independently of the hemodynamic status of the patient
- A progressive syndrome resulting in malperfusion: an inability of the heart to meet the demands of the body

Etiology of Heart Failure

- LVF
 - CAD/LV infarct
 - Dysrhythmias
 - Volume overload
 - Valvular disease
 - VSD
 - Cardiomyopathy
 - Coarctation of aorta
 - Tamponade

- RVF
 - CAD/RV infarct
 - Dysrhythmias
 - Volume overload
 - Valvular disease
 - VSD
 - Cardiomyopathy
 - Myocardial contusion
 - Pulmonary HTN

Etiology of Heart Failure

The most common cause of heart failure in the US today is **ischemic cardiomyopathy**

Cardiomyopathy

- Cardiomyopathy: dilation of the ventricles causing loss of contractile function, resulting in reduced ejection fraction and signs and symptoms of heart failure
- Most common in the U.S. is ischemic cardiomyopathy resulting form coronary artery disease

Cardiomyopathy

- Types of cardiomyopathies
 - Ischemic
 - Viral
 - Medication induced: ETOH, drugs, Adriamycin
 - Postpartum
 - Idiopathic

Clinical Presentation: LVF

- Tachycardia
- Tachypnea, dyspnea, orthopnea
- Paroxysmal nocturnal dyspnea (PND)
- Left sided S3
- Dry cough at night
- Pulsus alternans

- Weakness, fatigue
- Mental confusion
- Murmur mitral regurgitation
- ECG: atrial arrhythmia, LAE, LVH
- Oliguria

Clinical Presentation: RVF

- JVD
- HJR (hepatojugular reflux)
- Dependent edema
- Hepatomegaly
- Anorexia, nausea, vomiting, abd pain
- Ascites

- Nocturia
- Weakness, fatigue
- Wt gain
- Murmur tricuspid regurg
- Right-sided S3
- Abn liver functions
- ECG: RAE, RVH, atrial dysrhythmia

HF: Management

- Decrease preload:
 - Monitor volume status
 - Diuretics, natrecor
 - Nitroglycerin, ACE-I, pulmonary vasodilators (oxygen), IABP
- Decrease MVO2: decrease afterload
- Beta blockers, carvedilol (Coreg)
- Control dysrhythmias (at fib)

HF: Management

- Increase contractility: IABP
 - SNS stimulants: dobutamine
 - PDE inhibitors: milrinone
 - Dopamine (at inotropic dosage)
 - Digoxin (not used acutely)

Heart Failure

- Chronic HF Treatment
- Preload
 - Low-salt diet
 - Diuretics: Lasix, potassium
- Afterload
 - Beta Blockers and ACE-I
- Contractility
 - Digoxin

Chronic Heart Failure

- If patient continues to gain weight secondary to fluid retention (the patient already on Lasix)
- Add: Aldactone (aldosterone inhibitor)
- Careful of K+ levels

Acute Decompensated Heart Failure (Pulmonary Edema)

- Acutely decrease preload
 - Stop all intravenous fluids
 - Lasix
 - If not responding to diuretics, add vasodilators like nitroglycerin
 - Ultrafiltration if not responding to diuretic or vasodilation therapy

Acute Decompensated Heart Failure (Pulmonary Edema)

- Acutely decrease afterload
 - Vasodilator
 - Beta Blocker: as long as patient not in cardiogenic shock
 - IABP

Acute Decompensated Heart Failure (Pulmonary Edema)

- Increase contractility
 - Add inotrope if in cardiogenic shock: dobutamine, milrinone, dopamine
 - IABP

Acute Decompensated Heart Failure: Pulmonary Edema

- Questions on the test:
 - What drugs would you anticipate the patient being on in pulmonary edema?
 - Each answer has three drugs: What do you pick?
 - Preload reducer, afterload reducer and contractility drug

Cardiogenic Shock

- The heart now fails to meet the metabolic demands of the tissues; at such a rate, that the body can no longer compensate
- What do you see?
 - SHOCK

Shock: Cold and Wet

- Vital sign changes:
 - Tachycardia, dysrhythmias (at fib), lowered systolic BP with elevated diastolic BP = narrowed pulse pressure, increased RR
- Patient with altered mental status
- Cold and wet skin
- Decreased or NO urine output

Aneurysm/Dissectio

- **Control Blood Pressure**
- Repair: stent or surgical replacement
- Post-operative Care: Pain control, Blood pressure control (surgeon determines), renal and pulmonary care
- Post-operative Complications: Spinal Cord Ischemia/Infarction, Pulmonary Insufficiency, Renal Injury
- Ambulate, Incentive Spirometer, Ambulate

- ABCs: always remember the ABCs
- Maintain CI/CO: preservation of PERFUSION
- Maintaining HR × SV
 - Preload
 - Afterload
 - Contractility

- Remember to look at pulse pressure
- In questions about shock, look closely at the clinical presentation
- Look at pulse pressure!

- ST segment depression = ischemia
- ST segment elevation = current of injury
- IABP = increase coronary perfusion, decrease afterload:
 - Increases myocardial oxygen supply
 - Decreases demand

- ST elevation II, III, AVF = inferior infarction
- ST elevation I, AVL, V leads = anterior infarction
- Remember: The pulmonary artery catheter: the wedge can not be higher than the pulmonary artery diastolic.

- Acute arterial occlusion is a limb-threatening complication: the 6 Ps of arterial circulation
 - Pulse
 - Pain
 - Pallor
 - Polar
 - Paresthesia
 - Paralysis

Bibliography

- Bojar RM. Manual of Perioperative Care in Adult Cardiac Surgery. 6th ed. Hoboken, NJ: Wiley-Blackwell; 2013.
- Carlson K. Advanced Critical Care Nursing. Philadelphia, PA: W.B. Saunders/Elsevier; 2009.
- Copstead L, Banasik JL. Pathophysiology: Biological and Behavioral Perspectives. 5th ed. Philadelphia, PA: WB Saunders; 2014.
- Lynn-McHale Wiegand, DJ. AACN Procedure Manual for Critical Care. 6th ed. St. Louis: Saunders; 2011.
- Pagana KD, Pagana TJ. Mosby's Diagnostic and Laboratory Test Reference. 5th ed. St. Louis: Mosby/Elsevier; 2014.
- Sole, ML, Klein DG, Moseley M. Introduction to Critical Care Nursing. 7th ed. Philadelphia: Saunders; 2016.