

1 Title: Metagenomic and metabolomic shifts associated with successful fecal microbiota
2 transplantation in patients with recurrent *Clostridioides difficile* infection

3 A.S. McMillan^{1,2}, Michael K Dougherty³, Sarah K McGill³, Ajay S Gulati^{3,4}, C.M. Theriot²

1¹Genetics Program, Department of Biological Sciences, College of Science, ²Department of
Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State
University, Raleigh, North Carolina, USA ³Department of Pediatrics, Division of
Gastroenterology and Hepatology,⁴Department of Pathology and Laboratory Medicine,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

4
5 *Clostridioides difficile* (*C. difficile*) is a Gram-positive, spore-forming, anaerobic pathogen
6 responsible for *C. difficile* infection (CDI), a healthcare-associated infection that causes significant
7 morbidity and mortality. Recurrent CDI (rCDI), or the reoccurrence of symptoms after initial
8 treatment with an antibiotic, affects approximately 40% of patients. This cycle of antibiotic
9 treatment and recurrence is often associated with a continued disruption of the gut microbiota and
10 loss of colonization resistance, resulting in the loss of key microbial taxa and metabolites. Fecal
11 microbiota transplantation (FMT) has emerged as an effective therapy for rCDI, with cure rates
12 exceeding 90%. However, many of the underlying mechanisms which make FMT a successful
13 therapy remain poorly understood. We hypothesize that there will be unique structural (taxonomic)
14 and functional (metabolomic) shifts in the feces of patients undergoing FMT for rCDI.

15 We enrolled patients undergoing FMT for rCDI at the University of North Carolina Medical
16 Center in Chapel Hill in a prospective registry. The registry collected clinical data and patient stool
17 samples two weeks pre-FMT (n=16), and two weeks (n=11), two months (n=10), and six months
18 (n=8) post-FMT. Shallow shotgun sequencing was performed by CoreBiome and untargeted
19 metabolomics was performed by Metabolon on stool. The bioBakery suite of tools developed by
20 the Huttenhower lab were used to analyze shotgun sequencing data, determining relative
21 taxonomic abundance and identifying relevant genes within reads. Linear modeling with
22 Bonferroni q-value correction was performed to determine the relationship between taxonomic
23 abundance, microbial genes, and metabolites.

24 As expected, there was an increase in alpha diversity post-FMT compared to pre-FMT,
25 with minimal variation between the two week, two month, and six month post-FMT timepoints.
26 Pre-FMT samples had higher levels of Enterobacteriaceae, while post-FMT samples had
27 increased levels of Lachnospiraceae. Using random forest analysis, the most important
28 metabolites between pre- and post-FMT samples were classified as lipids, specifically
29 acylcarnitines and bile acids.

30 Linear modeling revealed significant differences in genes associated with enzymatic
31 reactions impacting these metabolites, such as carnitine-CoA ligase, choloylglycine hydrolase
32 (BSH), and 3 α -hydroxysteroid dehydrogenase (HSDH). Most of the carnitine-CoA ligase reads
33 mapped to *Escherichia*, while choloylglycine hydrolase (BSH) and 3 α -hydroxysteroid
34 dehydrogenase (HSDH) reads mapped largely to *Blautia* and *Fusicatenibacter*, respectively. This
35 research sheds light on the structural and functional shifts associated with successful FMTs and
36 holds promise for the development of more targeted therapies to treat rCDI.