

Title: Determination Of Bile Acid Tolerance Of *Clostridium sporogenes* and *Clostridioides difficile*

KC Cooper¹, A.S. McMillan^{1,2}, C.M. Theriot²

¹Genetics Program, Department of Biological Sciences, College of Science,

²Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA

Clostridioides difficile infection (CDI) is the leading cause of nosocomial infection in the United States, impacting nearly half a million people each year. Antibiotics are a major risk factor for CDI as they alter the gut microbiota and decrease colonization resistance to this pathogen. It is hypothesized that commensal *Clostridia* are able to prevent *C. difficile* growth due to their ability to make inhibitory secondary bile acids from primary bile acids. The bile acid-inducible (*bai*) operon is necessary to carry out 7 α -dehydroxylation of deconjugated primary bile acids – cholic acid (CA) and chenodeoxycholic acid (CDCA) thereby converting them into the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), respectively. A recent study was able to knock in the *bai* operon into *C. sporogenes* or MF001. To determine the relationship between *C. sporogenes* wildtype (WT), MF001, and *C. difficile*, we will measure the minimum inhibitory concentrations (MICs) and growth kinetics of these strains in the presence of bile acids CA, CDCA, DCA, and LCA at different concentrations. *C. sporogenes* WT and MF001 have similar MICs in CA (>10 mM), CDCA (0.96 mM), and DCA (1.25 mM). Whereas, *C. difficile* has different MICs in CA (~5 mM), and CDCA (~0.625 mM). These MICs will inform future experiments that will determine how *C. difficile* growth is affected by secondary bile acids made by MF001. These findings will help further our understanding of how commensal bacteria are able to inhibit *C. difficile* in the gut.