

Inhibition of Ruminal Methanogenesis Modulates Microbial Energy Metabolism via H₂ Rerouting

Kairi Tanaka^{1,2}, Scott Collins³, Kathryn Polkoff³, Vivek Fellner¹

¹Department of Animal Science, North Carolina State University

²Department of Plant and Microbial Biology, North Carolina State University

³Department of Chemical and Biomolecular Engineering, North Carolina State University

Beef and dairy cattle are the nexus between plants and humans. They provide highly nutritious and bioavailable milk and meat from cellulose, which is inedible to us. However, methane (CH₄) emissions from beef and dairy cattle contribute to roughly 10% of the global anthropogenic greenhouse gas emissions. Enteric methanogenesis represents up to 12% of dietary energy loss, resulting in reduced feed efficiency. Mitigation of ruminal methanogenesis provides an opportunity for beef and dairy producers to increase feed efficiency, reduce feed costs, and minimize environmental impact.

Feed additives and CH₄ abatement strategies typically target one of two processes, i.e. modulate microbial thermodynamics or inhibit enzyme kinetics. Thermodynamics is related to availability of free energy (ΔG°). Conversion of NO₃⁻ to NH₃ in the rumen has a ΔG° of -599.6 kJ/mol, compared to a ΔG° of -131.0 kJ/mol for hydrogenotrophic methanogenesis. Enzyme kinetics are affected by the affinity of enzymes (K_m) to bind to substrate, thereby entailing the possibility of direct inhibition. Bromochloromethane (BCM) competitively inhibits the cobamide-dependent methyl transfer of methanogenesis pathways. The objective of the present study was to evaluate the *in vitro* effects of NaNO₃ and BCM as thermodynamic and enzyme inhibitors, respectively, on CH₄ by mixed cultures of rumen microbes. We hypothesized that: 1) NaNO₃ will inhibit CH₄ but allow microbial fermentation by directing H₂ toward alternative sinks; and 2) BCM will inhibit CH₄ and reduce microbial fermentation by limiting the use of H₂ in alternative sinks. We tested three levels of NaNO₃ and BCM in batch cultures consisting of 100-mL glass bottles fitted with airtight rubber screw caps. Each culture bottle received 30 mL of inoculum prepared by mixing filtered rumen contents with artificial saliva in a 1:2 ratio. Experimental diets were prepared using ground alfalfa hay and a concentrate mix (ground corn and soybean meal) to provide three forage-to-concentrate ratios: 70:30, 50:50, and 30:70. Diets were weighed in duplicate and incubated at 39°C for 24 hours. After 24 h of incubation, headspace CH₄, culture pH, NH₃-N, and short chain fatty acids (SCFAs) were measured. Microbial DNAs from sample aliquots were extracted, amplified using universal and archaea-specific 16S rRNA and fungal ITS2 primers, and sequenced using Illumina MiSeq 2x300. The sequence data were sorted using Cutadapt and analyzed using the DADA2 pipeline.

Both NaNO₃ and BCM decreased ($p < 0.01$) CH₄ by 95% and 98%, respectively. NaNO₃ increased ($p < 0.01$) NH₃-N, pH, acetate and propionate but decreased ($p < 0.01$) butyrate without affecting ($p > 0.10$) total SCFA concentration. In contrast, BCM increased ($p < 0.01$) propionate and decreased ($p < 0.01$) acetate and total SCFA. Cultures receiving BCM had appreciably greater ($p < 0.01$) concentrations of gaseous H₂; no increase in gaseous H₂ was detected in cultures receiving NaNO₃ compared to control. NaNO₃ enriched microbes capable of nitrate/nitrite reduction and succinate/propionate production such as *Prevotella* spp., whereas BCM enriched *Megasphaera elsdenii* and *Desulfovibrio*. *Methanobrevibacter* were reduced in the BCM-treated culture compared to cultures receiving NaNO₃. Both NaNO₃ and BCM drastically reduced CH₄ and increased propionate; the abundance of *M. elsdenii* suggests acrylate pathway predominated with BCM induced inhibition of CH₄. The results offer key insights into microbial strategies to alter energy dispersion in the absence of methanogenesis as a primary H₂ sink.