Fundamentals of Data Science EGMGMT 585-01, 02 Fall 2024 Monday 3:05-5:50 PM, Teer 203

PRATT SCHOOL of ENGINEERING

Daniel Egger

BA in Philosophy, JD in Law, Yale University

Graduate study in philosophy, Ludwig Maximilian's University, Munich, Germany

30 Years Software Industry experience

Invented and commercialized patented search technology licensed to **Google, Yahoo**, **Microsoft**, etc.

Founded Three Venture-backed Companies and assisted many others as Board Member and investor - most recently **Little Otter** (\$20 million "A" financing 2021).

Ran an early-stage Venture Capital Fund for 7 Years

Duke University Entrepreneur in Residence (2003-2009)

Since 2009, teach Data Science, Mathematical Finance, and AI and Data Visualization at **Pratt School of Engineering**, Duke University (MEM, MIDS, AIPI Programs)

Over 1.2 Million On-line Students in 80+ Countries on Coursera

No Coding Required in this Course Problem Sets can be done 100% Using MS Excel

Why Excel?

Excel remains *the most widely used data science tool in industry* especially by senior executives. Fluency in Excel is an essential business skill for managers.

It is easy to see *how algorithms work* in Excel – and the focus of this course is on understanding the inner workings of the most important data science methods *and algorithms*.

ENGINEERING

What is Data?

Anything that can be measured: money, calories, heart rates, click-throughs, you name it!

Anything that can be stored in digital form, including: Written and spoken language Images and video Software (Code)

So is Data Science the Science of Everything? Yes, in a way.

Data science is about **extracting value from data mathematically**

Creating **inferences**, **predictive models**, and **insights** to guide important decisions and **influence behavior**

We cover the step-by-step engineering insights that led from simple statistics to Machine Learning and Generative AI/ LLMS

Thanks to Shiyan Chen for creating this visualization

Course Goals

Goal is to **prepare you to collaborate effectively** with the data science and AI teams in high-tech companies

Become fluent with the most important data science **vocabulary** and **concepts**

Understand how and why the key **algorithms** and **mathematical methods** work and get **hands-on experience** with real-world datadriven problem-solving

Why is Data Science Central to Business?

All Businesses track performance through **Business Metrics**

Data can be used to identify, through **experience** (historical data) or **experiments** (new, deliberately-generated data) **Business process changes** that can positively impact one or more **business metrics**

Data are identified, scrubbed, and analyzed, then **process change recommendations** are **identified** and **communicated to decisionmakers**

This process is **ongoing** an **iterative** because competition is relentless

New Categories of Products and Services

Many of the **most transformative** new products and services of the last 20 years could not have existed without **new forms of digital data**

They often benefit from **ongoing optimization** through tracking customer behavior

Creating a "virtuous cycle" of competitive advantage that can lead to complete market dominance for a single corporation

Course Topics

The **CRISP-DM** Data Science Project Methodology

- Definitions of Machine Learning.
- Supervised Learning Methods & Algorithms. Binary Classification and Linear Regression, Logistic Regression, Multi-Class Classification, Avoiding Overfitting
- **Unsupervised Learning** Methods and Algorithms: Clustering (**K Means Algorithm**), use of **Scree Plots** for Feature Selection

Topics

Probability Distributions in Data Science: Uniform, Gaussian, Bernoulli, Binomial, Exponential and Poisson

Parameter Estimation, Histograms, **Kernel Density Estimation**. Use of **Bayes' Theorem** and **Maximum Likelihood Estimation**

Introduction to **Information Theory**: Why Machine Learning Algorithms Optimize on the **Log Loss** Cost Function **Experimental Design, A/B testing, p-Values** and **Power** Key Concepts in **Time Series Analysis**

INGINEERING

Topics, Continued

Artificial Intelligence

Generative Adversarial Networks

Large Language models

Exciting areas of current research and venture-backed development

GANs trained on image Data

Valuations as of May, 2023

There are now 13 generative AI unicorns

Generative AI startups with \$1B+ valuations (as of 05/08/2023)

CBINSIGHTS

See You August 26!

