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Abstract. Homeostasis is a regulatory mechanism that keeps a specific variable close to a set value as other
variables fluctuate. The notion of homeostasis can be rigorously formulated when the model of
interest is represented as an input-output network, with distinguished input and output nodes, and
the dynamics of the network determines the corresponding input-output function of the system. In
this context, homeostasis can be defined as an ``infinitesimal"" notion, namely, the derivative of the
input-output function is zero at an isolated point. Combining this approach with graph-theoretic
ideas from combinatorial matrix theory provides a systematic framework for calculating homeostasis
points in models and classifying the different homeostasis types in input-output networks. In this
paper we extend this theory by introducing the notion of a homeostasis pattern, defined as a set
of nodes, in addition to the output node, that are simultaneously infinitesimally homeostatic. We
prove that each homeostasis type leads to a distinct homeostasis pattern. Moreover, we describe
all homeostasis patterns supported by a given input-output network in terms of a combinatorial
structure associated to the input-output network. We call this structure the homeostasis pattern
network.
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1. Introduction. In biology, ``homeostasis"" originally referred to the ability of an organism
to maintain a specific internal state despite varying external factors. A typical example
is the regulation of body temperature in a mammal despite variations in the temperature
of its environment. This concept goes back to 1849 when the French physiologist Claude
Bernard observed this kind of regulation in the ``milieu int\'erieur"" (internal environment) of
human organs such as the liver and pancreas; see the modern translation [5]. The American
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HOMEOSTASIS PATTERNS 2263

physiologist Walter Cannon [6] developed this idea, coining the word ``homeostasis"" in 1926.
The same basic concept has now spread to many areas of science.

In the literature, homeostasis is often modeled using differential equations, and is inter-
preted in two mathematically distinct ways. One boils down to ``stable equilibrium."" Here
changes in the environment are considered to be perturbations of initial conditions. A stronger
(and, in our view, more appropriate) usage works with a parametrized family of differential
equations, with a corresponding family of stable equilibria. Now ``homeostasis"" means that
this equilibrium changes by a relatively small amount when the parameter varies by a much
larger amount.

In this paper we adopt the second, stronger, interpretation. We also focus on the math-
ematical aspects of this concept. We say that homeostasis occurs in a system of differential
equations when the output from the system xo is approximately constant on variation of an
input parameter \scrI . Golubitsky and Stewart [14] observe that homeostasis on some neigh-
borhood of a specific value \scrI 0 follows from infinitesimal homeostasis, where x\prime o(\scrI 0) = 0 and \prime 

indicates differentiation with respect to \scrI . This observation is essentially the well-known idea
that the value of a function changes most slowly near a stationary (or critical) point.

Remarks 1.1.
(a) Despite the name, infinitesimal homeostasis often implies that the system is homeo-

static over a relatively large interval of the parameter [16, section 5.4]. The key
quantity is the value of the second derivative x\prime \prime o(\scrI 0) at the point \scrI 0.

(b) Infinitesimal homeostasis is a sufficient condition for homeostasis over some interval
of parameters, but it is not a necessary condition. A function can vary slowly without
having a stationary point.

(c) One advantage of considering infinitesimal homeostasis is that it has a precise math-
ematical formulation, which makes it suitable for analysis using methods from singu-
larity theory. ``Not varying by much"" is a vaguer notion.

(d) In applications, the quantity that experiences homeostasis can be a function of several
internal variables, such as a sum of concentrations, or the frequency of an oscillation.
We do not consider such examples here, but similar ``infinitesimal"" methods might be
developed for such cases.

(e) Control-theoretic models of homeostasis often generate perfect homeostasis (or robust
perfect adaptation [19, 26, 13, 18, 25]), in which the equilibrium is exactly constant over
the parameter range. We do not adopt such a strong definition, in part because bio-
logical systems lack such precision. However, everything we prove here can be applied
to perfect homeostasis, since it is a particular case of infinitesimal homeostasis [20].

Wang et al. [27] consider infinitesimal homeostasis for a general class of input-output
networks \scrG . Such a network has two distinguishing nodes: the input node \iota , the only node
that is affected by the input parameter \scrI , and the output node o. To each fixed input-output
network \scrG there is associated a space of admissible families of ODEs (or vector fields). An
admissible family of ODEs with a linearly stable family of equilibrium points defines an input-
output function xo(\scrI ) for \scrG (and the family of equilibria). In [27] it is shown that the derivative
of xo(\scrI ) with respect to \scrI is given in terms of the determinant of the homeostasis matrixH (see

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

52
.3

.4
3.

46
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2264 DUNCAN ET AL.
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Figure 1. A 6-node input-output network.

(1.4)). This ``determinant formula"" implies that input-output networks support infinitesimal
homeostasis through a small number of distinct ``mechanisms,"" called homeostasis types.

In this paper we consider the notion of a homeostasis pattern on a given input-output
network \scrG . A homeostasis pattern is the set of nodes j in \scrG (including the output node o)
such that the node coordinate xj , as a function of \scrI , satisfies x\prime j(\scrI 0) = 0. In other words, a
homeostasis pattern is a set of nodes \scrS of \scrG , which includes the output node o, and all nodes
in \scrS are simultaneously (infinitesimally) homeostatic at a given parameter value \scrI 0. The main
result is that all the homeostasis patterns supported by a given input-output network \scrG can
be completely classified in terms of the homeostasis types of \scrG .

Consider, for example, the 6-node input-output network \scrG shown in Figure 1.
Although there are exactly 31 subsets of nodes of \scrG including the output node o, only 4

subsets define homeostasis patterns: \{ o\} , \{ o, \tau 3\} , \{ o, \tau 2, \tau 3\} , and \{ o, \tau 2, \tau 3, \sigma , \iota \} . These home-
ostasis patterns can be graphically represented by coloring the nodes of \scrG that are homeostatic
(see Figure 2).

In this paper we lay out a general theory to classify all homeostasis patterns in a given
input-output network. This method is purely combinatorial, based on the topology of the
network, and does not rely on calculations involving the admissible ODEs. However, before
going into the details of this theory, we use such calculations to give some indication of why
the input-output network in Figure 1 has exactly the 4 homeostasis patterns exhibited in
Figure 2. We do this using the results of [27]; see also subsection 1.1.

The admissible system of parametrized equations for the network in Figure 1, in coordi-
nates X = (\iota , \sigma , \tau 1, \tau 2, \tau 3, o), is

\.\iota = f\iota (\iota , \tau 1,\scrI ),
\.\sigma = f\sigma (\iota , \sigma , \tau 2),

\.\tau 1 = f\tau 1(\sigma , \tau 1),

\.\tau 2 = f\tau 2(\tau 2, \tau 3, o),

\.\tau 3 = f\tau 3(\tau 3, o),

\.o= fo(\iota , \sigma , o).

(1.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

52
.3

.4
3.

46
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



HOMEOSTASIS PATTERNS 2265

ι ο

σ

τ
1

τ τ
2

3

(a) fτ3,τ3(I0) = 0

ι ο

σ

τ
1

τ τ
2

3

(b) fτ1,τ1(I0) = 0
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(d) (fσ,ιfo,σ − fσ,σfo,ι)(I0) = 0

Figure 2. The four infinitesimal homeostasis patterns of (1.1). Cyan nodes are homeostatic.

The homeostasis matrix H is obtained from the Jacobian matrix J of (1.1) by removing
the first row and the last column (see subsection 1.1, equation (1.4)). This leads to

H =

\left[      
f\sigma ,\iota f\sigma ,\sigma 0 f\sigma ,\tau 2 0
0 f\tau 1,\sigma f\tau 1,\tau 1 0 0
0 0 0 f\tau 2,\tau 2 f\tau 2,\tau 3
0 0 0 0 f\tau 3,\tau 3
fo,\iota fo,\sigma 0 0 0

\right]      .

Using row and column expansion it is straightforward to calculate

det(H) = f\tau 3,\tau 3 f\tau 1,\tau 1 f\tau 2,\tau 2 (f\sigma ,\iota fo,\sigma  - f\sigma ,\sigma fo,\iota ).(1.2)

The ``determinant formula"" from [27] says that the input-output function xo(\scrI ) undergoes
infinitesimal homeostasis at \scrI 0 if and only if det(H) = 0, evaluated at (X(\scrI 0),\scrI 0). Here
X(\scrI 0) is the equilibrium used to construct the input-output function (see subsection 1.1,
Lemma 1.5). The expression det(H) is a multivariate polynomial in the partial derivatives
fj,\ell of the components of the admissible vector field. As a polynomial, det(H) is reducible
with 4 irreducible factors, so det(H) = 0 if and only if one of its irreducible factors vanishes.

According to [27] these irreducible factors determine the homeostasis types (see subsec-
tion 1.1, Theorem 1.6). Hence, (1.1) has 4 homeostasis types. One of the main results of this
paper says that each homeostasis type determines a unique homeostasis pattern (see Theo-
rem 7.3). Moreover, our theory gives a purely combinatorial procedure to find the set of nodes
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2266 DUNCAN ET AL.

that belong to each homeostasis pattern. When applied to Figure 1 it yields the four patterns
in Figure 2.

In a simple example such as shown in Figure 1 it is also possible to find the sets of nodes
in each homeostasis pattern by a ``bare hands"" calculation based on the admissible ODEs (see
subsection 1.3). Here this calculation serves as a check on the results. Direct calculations
with the ODEs can, of course, be used instead of the combinatorial approach in sufficiently
simple cases.

The rest of this introduction is divided into subsections. In subsection 1.1 we define the
admissible differential equations that are associated to input-output networks and infinitesimal
homeostasis. In subsection 1.2 we define homeostasis types and homeostasis patterns. In
subsection 1.3 we determine the homeostasis patterns of the network shown in Figure 1.

1.1. Input-output networks and infinitesimal homeostasis types. We begin by introduc-
ing the basic objects: input-output networks, network admissible differential equations, and
infinitesimal homeostasis types. Our exposition follows [27].

Definition 1.2 (see [27, section 1.2]). An input-output network is a directed graph \scrG with
nodes \kappa \in \scrC , arrows in \scrE connecting nodes in \scrC , a distinguished input node \iota , and a distin-
guished output node o. The network \scrG is a core network if every node in \scrG is downstream
from \iota and upstream from o.

An admissible system of differential equations associated with \scrG has the form

\.x\iota = f\iota (x\iota , x\kappa , xo,\scrI ),
\.x\kappa = f\kappa (x\iota , x\kappa , xo),

\.xo = fo(x\iota , x\kappa , xo),

(1.3)

where \scrI \in \bfR is the input parameter, X = (x\iota , x\kappa , xo) \in \bfR \times \bfR n \times \bfR is the vector of state
variables associated to nodes in \scrC , and f(X,\scrI ) = (f\iota (X,\scrI ), f\kappa (X), fo(X)) is a smooth family
of mappings on the state space \bfR \times \bfR n \times \bfR . Note that \scrI appears only in the equation of
system (1.3) corresponding to the input node.

We can write (1.3) as

\.X = f(X,\scrI ).

We denote the partial derivative of the function associated to node j with respect to the state
variable associated to node \ell by

fj,\ell =
\partial 

\partial x\ell 
fj .

We assume fj,\ell \equiv 0 precisely when no arrow connects node \ell to node j. That is, fj is
independent of x\ell when there is no arrow \ell \rightarrow j. This is a modeling assumption made in \scrG .

Suppose \.X = f(X,\scrI 0) has a hyperbolic equilibrium at X0. Then the implicit function
theorem implies that there is a unique family of equilibria X(\scrI ) = (x\iota (\scrI ), x\kappa (\scrI ), xo(\scrI )) such
that X(\scrI 0) =X0 and f(X(\scrI ),\scrI ) = 0 for all \scrI near \scrI 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

52
.3

.4
3.

46
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



HOMEOSTASIS PATTERNS 2267

Definition 1.3. The mapping \scrI \mapsto \rightarrow xo(\scrI ) is an input-output function, which is defined on
a neighborhood of \scrI 0. Infinitesimal homeostasis occurs at \scrI 0 if x\prime o(\scrI 0) = 0, where \prime indicates
differentiation with respect to \scrI .

(a) If x\prime o(\scrI 0) = 0 and x\prime \prime o(\scrI 0) \not = 0, then o has a simple homeostasis point at (X0,\scrI 0).
(b) If x\prime o(\scrI 0) = x\prime \prime o(\scrI 0) = 0 and x\prime \prime \prime o (\scrI 0) \not = 0, then o has a chair point at (X0,\scrI 0).
Nijhout, Best, and Reed [22] associated homeostasis with chairs, defined as a curve that is

monotone except for a flat section. The infinitesimal notion of a ``chair point"" was introduced
in [14].

Remark 1.4. Each node in an input-output network \scrG corresponds to a one-dimensional
state variable of the admissible system. In particular, the output node corresponds to a scalar
quantity and the input parameter is a scalar quantity. This class of systems considered in this
paper is also known as single-input, single-output (SISO) systems. It is possible to consider
input-output networks with multiple input nodes, but a single input parameter [20] and single
output, and multiple inputs and single output [21].

1.2. Homeostasis type and homeostasis pattern. Wang et al. [27] show that infinites-
imal homeostasis occurs when the determinant of the homeostasis matrix H is 0, where the
(n+ 1)\times (n+ 1) matrix H is obtained from the (n+ 2)\times (n+ 2) Jacobian matrix J of (1.3)
by deleting its first row and last column. Indeed

J =

\left[  f\iota ,\iota f\iota ,\kappa f\iota ,o
f\kappa ,\iota f\kappa ,\kappa f\kappa ,o
fo,\iota fo,\kappa fo,o

\right]  =\Rightarrow H =

\biggl[ 
f\kappa ,\iota f\kappa ,\kappa 
fo,\iota fo,\kappa 

\biggr] 
,(1.4)

where J and H are both functions of (X(\scrI ),\scrI ) as in (1.3). The following lemma states this
more precisely.

Lemma 1.5 (see [27, Lemma 1.5]). The input-output function xo(\scrI ) undergoes infinitesimal
homeostasis at \scrI 0 if and only if det(H) = 0, evaluated at (X0,\scrI 0).

In [27] the authors show that the determination of infinitesimal homeostasis in an input-
output network reduces to the study of core networks. We assume throughout that the
input-output networks are core networks. See Definition 1.2.

Theorem 1.6 (see [27, Theorem 1.11]). Assume (1.3) has a hyperbolic equilibrium at
(X0,\scrI 0). Then there are permutation matrices P and Q such that PHQ is block upper trian-
gular with square diagonal blocks B1, . . . ,Bm. The blocks Bj are irreducible in the sense that
each Bj cannot be further block triangularized. It follows that

det(H) = det(B1) \cdot \cdot \cdot det(Bm)(1.5)

is an irreducible factorization of det(H).

Definition 1.7. Let \scrG be an input-output network and H its homeostasis matrix. Each irre-
ducible square block B\eta in (1.5) is called a homeostasis block. Further we say that infinitesimal
homeostasis in \scrG is of homeostasis type B\eta if for all \xi \not = \eta 

det(B\eta ) = 0 and det(B\xi ) \not = 0.(1.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2268 DUNCAN ET AL.

Remark 1.8 (see [27, section 1.10]). Let B\eta be a homeostasis type and let

h\eta (\scrI )\equiv detB\eta (X(\scrI ),\scrI ).

A chair point of type \eta occurs at \scrI 0 if h\eta (\scrI 0) = h\prime \eta (\scrI 0) = 0 and h\prime \prime \eta (\scrI 0) \not = 0.

In principle every homeostasis type can lead to infinitesimal homeostasis, that is, h\eta (\scrI 0) =
0 for some input value \scrI 0. For simplicity, we say that node xo is homeostatic at \scrI 0. We ask,
if the output node is homeostatic at \scrI 0, which other nodes must also be homeostatic at \scrI 0?
Based on this question we introduce the following concept.

Definition 1.9. A homeostasis pattern corresponding to the homeostasis block B\eta at \scrI 0 is
the collection of all nodes, including the output node o, that are simultaneously forced to be
homeostatic at \scrI 0.

1.3. Example of direct calculation of homeostasis patterns. Finally, we determine the
four homeostasis patterns by direct calculation. We do this by assuming that there is a one-
parameter family of stable equilibria X(\scrI ) where X(\scrI 0) = X0 using implicit differentiation
with respect to \scrI (indicated by \prime ), and expanding (1.1) to first order at \scrI 0. The linearized
system of equations is

0 = f\iota ,\iota \iota 
\prime + f\iota ,\tau 1\tau 

\prime 
1 + f\iota ,\scrI ,

0 = f\sigma ,\iota \iota 
\prime + f\sigma ,\sigma \sigma 

\prime + f\sigma ,\tau 2\tau 
\prime 
2,

0 = f\tau 1,\sigma \sigma 
\prime + f\tau 1,\tau 1\tau 

\prime 
1,

0 = f\tau 2,\tau 2\tau 
\prime 
2 + f\tau 2,\tau 3\tau 

\prime 
3,

0 = f\tau 3,\tau 3\tau 
\prime 
3,

0 = fo,\iota \iota 
\prime + fo,\sigma \sigma 

\prime .

(1.7)

Next we compute the homeostasis patterns corresponding to the four homeostasis types of
(1.1).

(a) Homeostasis type: \bfitf \bfittau \bfthree ,\bfittau \bfthree 
= \bfzero . Homeostatic nodes: \{ \bfito \} . Equation (1.7) becomes

0 = f\iota ,\iota \iota 
\prime + f\iota ,\tau 1\tau 

\prime 
1 + f\iota ,\scrI ,

0 = f\sigma ,\iota \iota 
\prime + f\sigma ,\sigma \sigma 

\prime + f\sigma ,\tau 2\tau 
\prime 
2,

0 = f\tau 1,\sigma \sigma 
\prime + f\tau 1,\tau 1\tau 

\prime 
1,

0 = f\tau 2,\tau 2\tau 
\prime 
2 + f\tau 2,\tau 3\tau 

\prime 
3,

0 = 0,

0 = fo,\iota \iota 
\prime + fo,\sigma \sigma 

\prime .

(1.8)

Since f\tau 2,\tau 2 and f\tau 2,\tau 3 are generically nonzero at homeostasis, the fourth equation implies that
generically \tau \prime 2 and \tau \prime 3 are nonzero. The second and sixth equations can be rewritten as\biggl[ 

f\sigma ,\iota f\sigma ,\sigma 
fo,\iota fo,\sigma 

\biggr] \biggl[ 
\iota \prime 

\sigma \prime 

\biggr] 
= - 

\biggl[ 
f\sigma ,\tau 2\tau 

\prime 
2

0

\biggr] 
.

Generically the right-hand side of this matrix equation at \scrI 0 is nonzero; hence generically \iota \prime 

and \sigma \prime are also nonzero. The third equation implies that generically \tau \prime 1 is nonzero. Therefore,
in this case, the only homeostatic node is o.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HOMEOSTASIS PATTERNS 2269

(b) Homeostasis type: \bfitf \bfittau \bfone ,\bfittau \bfone 
= \bfzero . Homeostatic nodes: \{ \bfitiota , \bfittau \bftwo ,\bfittau \bfthree ,\bfitsigma ,\bfito \} . In this case

(1.7) becomes

0 = f\iota ,\iota \iota 
\prime + f\iota ,\tau 1\tau 

\prime 
1 + f\iota ,\scrI ,

0 = f\sigma ,\iota \iota 
\prime + f\sigma ,\sigma \sigma 

\prime + f\sigma ,\tau 2\tau 
\prime 
2,

0 = f\tau 1,\sigma \sigma 
\prime ,

0 = f\tau 2,\tau 2\tau 
\prime 
2 + f\tau 2,\tau 3\tau 

\prime 
3,

0 = f\tau 3,\tau 3\tau 
\prime 
3,

0 = fo,\iota \iota 
\prime + fo,\sigma \sigma 

\prime .

(1.9)

The fifth equation implies that generically \tau \prime 3 = 0. The fourth equation implies that generically
\tau \prime 2 = 0. The third equation implies that generically \sigma \prime = 0, and the sixth equation implies that
generically \iota \prime is zero. It follows that the infinitesimal homeostasis pattern is \iota \prime = \tau \prime 2 = \tau \prime 3 =
\sigma \prime = o\prime = 0.

(c) Homeostasis type: \bfitf \bfittau \bftwo ,\bfittau \bftwo 
= \bfzero . Homeostatic nodes: \{ \bfittau \bfthree ,\bfito \} . Equation (1.7) be-

comes

0 = f\iota ,\iota \iota 
\prime + f\iota ,\tau 1\tau 

\prime 
1 + f\iota ,\scrI ,

0 = f\sigma ,\iota \iota 
\prime + f\sigma ,\sigma \sigma 

\prime + f\sigma ,\tau 2\tau 
\prime 
2,

0 = f\tau 1,\sigma \sigma 
\prime + f\tau 1,\tau 1\tau 

\prime 
1,

0 = f\tau 2,\tau 3\tau 
\prime 
3,

0 = f\tau 3,\tau 3\tau 
\prime 
3,

0 = fo,\iota \iota 
\prime + fo,\sigma \sigma 

\prime .

(1.10)

The fourth or fifth equation implies that \tau \prime 3 = 0. The first and sixth equations imply that \iota \prime ,
\sigma \prime , and \tau \prime 2 are nonzero. The third equation implies that generically \tau \prime 1 is nonzero. Hence the
infinitesimal homeostasis pattern is \{ \tau 3, o\} .

(d) Homeostasis type: \bfitf \bfitsigma ,\bfitiota \bfitf \bfito ,\bfitsigma  - \bfitf \bfitsigma ,\bfitsigma \bfitf \bfito ,\bfitiota = \bfzero . Homeostatic nodes \{ \bfittau \bftwo ,\bfittau \bfthree ,\bfito \} . To
repeat, equation (1.7) is

0 = f\iota ,\iota \iota 
\prime + f\iota ,\tau 1\tau 

\prime 
1 + f\iota ,\scrI ,

0 = f\sigma ,\iota \iota 
\prime + f\sigma ,\sigma \sigma 

\prime + f\sigma ,\tau 2\tau 
\prime 
2,

0 = f\tau 1,\sigma \sigma 
\prime + f\tau 1,\tau 1\tau 

\prime 
1,

0 = f\tau 2,\tau 2\tau 
\prime 
2 + f\tau 2,\tau 3\tau 

\prime 
3,

0 = f\tau 3,\tau 3\tau 
\prime 
3,

0 = fo,\iota \iota 
\prime + fo,\sigma \sigma 

\prime .

(1.11)

The fifth equation implies generically that \tau \prime 3 = 0, and the fourth equation implies generically
that \tau \prime 2 = 0. Again, the second and sixth equations can be rewritten in matrix form as\biggl[ 

f\sigma ,\iota f\sigma ,\sigma 
fo,\iota fo,\sigma 

\biggr] \biggl[ 
\iota \prime 

\sigma \prime 

\biggr] 
= - 

\biggl[ 
f\sigma ,\tau 2\tau 

\prime 
2

0

\biggr] 
= 0.
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2270 DUNCAN ET AL.

Table 1
Infinitesimal homeostasis patterns for admissible systems in (1.1).

Homeostasis type Homeostasis pattern Figure 2

f\tau 3,\tau 3 = 0 \{ o\} (a)
f\tau 1,\tau 1 = 0 \{ \iota , \tau 2, \tau 3, \sigma , o\} (b)
f\tau 2,\tau 2 = 0 \{ \tau 3, o\} (c)
f\sigma ,\iota fo,\sigma  - f\sigma ,\sigma fo,\iota = 0 \{ \tau 2, \tau 3, o\} (d)

Hence generically \iota \prime and \sigma \prime are nonzero. The third equation implies that \tau 1 is nonzero. Hence
the homeostatic nodes are \tau 2, \tau 3, o.

The homeostasis types of (1.1) with the corresponding homeostasis patterns are summa-
rized in Table 1.

In principle the homeostasis patterns of any input-output network can be computed in
the manner shown above, but in practice this becomes complicated for large networks. In
this paper we introduce another approach based on the pattern network \scrP associated to the
input-output network \scrG . This method is both computationally and theoretically superior.
First, the method introduced here provides a reduction of the size of the original input-output
network to the pattern network, which is obtained from the former by ``collapsing"" certain
subsets of nodes into single nodes. Second, the classification of the homeostasis patterns using
the pattern network is given by an algorithm (which can be easily extracted from the main
theorems). We illustrate this by working out the homeostasis patterns of the network shown
in Figure 1 using the new approach in Example 2.21. Finally, the new conceptual framework
allows us to give a new characterization of the homeostasis types, namely, that they correspond
uniquely to the homeostasis patterns.

1.4. Structure of the paper. Sections 2.1--2.3, introduce the terminology of input-output
networks, the homeostasis pattern network \scrP , and homeostasis induction. In section 2.4
we state four of the main theorems of this paper, Theorems 2.17, 2.18, 2.19, 2.20, which
characterize homeostasis patterns combinatorially. Section 3 provides an overview of the
proofs of these main results. In section 4, we consider combinatorial characterizations of the
input-output networks \scrG (\scrK ) that are obtained by repositioning the output node on a given
input-output network from o to \kappa . Sections 5 and 6 determine the structural and appendage
homeostasis pattern, respectively. In section 7 we discuss properties of homeostasis induction.
Specifically we show that a homeostasis pattern uniquely determines its homeostasis type.
This result is a restatement of Theorem 7.3.

The paper ends in section 8 with a brief discussion of various types of networks that
support different aspects of infinitesimal homeostasis. These networks include gene regula-
tory networks (GRNs), input-output networks with input node = output node, and higher
codimension types of infinitesimal homeostasis.

2. Aspects of input-output networks. In this section, we recall additional basic termi-
nology and results on infinitesimal homeostasis in input-output networks from [27].

2.1. Homeostasis subnetworks. Wang et al. [27, Definition 1.14] associate a homeostasis
subnetwork \scrK \eta \subset \scrG with each homeostasis block B\eta (recall Theorem 1.6) and give a graph-
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HOMEOSTASIS PATTERNS 2271

theoretic description of each \scrK \eta . More precisely, the subnetwork \scrK \eta of \scrG associated with the
homeostasis block B\eta is defined as follows. The nodes in \scrK \eta are the union of nodes p and q,
where fp,xq

is a nonzero entry in B\eta and the arrows of \scrK \eta are the union of arrows q\rightarrow p where
p \not = q.

Definition 2.1 (Definition 1.15 of [27]). Let \scrG be a core input-output network.
(a) A simple path from node \kappa 1 to node \kappa 2 in \scrG is a directed path that starts at \kappa 1, ends

at \kappa 2, and visits each node on the path exactly once. We denote the existence of a
simple path from \kappa 1 to \kappa 2 by \kappa 1\rightsquigarrow \kappa 2. A simple cycle is a simple path whose first and
last nodes are identical.

(b) An \iota o-simple path is a simple path from the input node \iota to the output node o.
(c) A node \sigma is simple if it lies on an \iota o-simple path. A node \tau is appendage if it is not

simple.
(d) A simple node \rho is super-simple if it lies on every \iota o-simple path.

We typically use \sigma to denote a simple node, \rho to denote a super-simple node, and \tau to
denote an appendage node when the type of the node is assumed a priori. Otherwise, we use
\kappa to denote an arbitrary node. Note that \iota and o are super-simple nodes.

Let \rho 0, \rho 1, . . . , \rho q, \rho q+1 be the super-simple nodes, where \rho 0 = \iota and \rho q+1 = o. The super-
simple nodes are totally ordered by the order of their appearance on any \iota o-simple path, and
this ordering is independent of the \iota o-simple path. We denote an \iota o-simple path by

\iota \rightsquigarrow \rho 1\rightsquigarrow \cdot \cdot \cdot \rightsquigarrow \rho q\rightsquigarrow o ,

where \rho j \rightsquigarrow \rho j+1 indicates a simple path from \rho j to \rho j+1. The ordering of the super-simple
nodes is denoted by

\rho 0 \prec \rho 1 \prec \cdot \cdot \cdot \prec \rho q \prec \rho q+1,

and \prec is a total ordering. The ordering \prec extends to a partial ordering of simple nodes, as
follows. If there exist a super-simple node \rho and an \iota o-simple path such that

\iota \rightsquigarrow \sigma 1\rightsquigarrow \rho \rightsquigarrow \sigma 2\rightsquigarrow o

then the partial orderings

\sigma 1 \prec \rho , \rho \prec \sigma 2 , \sigma 1 \prec \sigma 2

are valid. In this partial ordering every simple node is comparable to every super-simple
node, but two simple nodes that lie between the same adjacent super-simple nodes need not
be comparable.

We recall the definition of transitive (or strong) components of a network. Two nodes are
equivalent if there is a path from one to the other and back. A transitive component is an
equivalence class for this equivalence relation.

Definition 2.2.
(a) Let S be an \iota o-simple path. The complementary subnetwork of S is the network CS

whose nodes are nodes that are not in S and whose arrows are those that connect nodes
in CS.
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2272 DUNCAN ET AL.

(b) An appendage node \tau is super-appendage if for each CS containing \tau , the transitive
component of \tau in CS consists only of appendage nodes.

Note that this definition of super-appendage leads to a slightly different, but equivalent,
definition of homeostasis subnetwork from the one given in [27]. However, this change enables
us to define pattern networks in a more straightforward way (see Remark 2.6).

Now we start with the definition of structural subnetworks.

Definition 2.3. Let 1 \leq j \leq q + 1 and \rho j - 1 \prec \rho j be two consecutive super-simple nodes.
Then the jth simple subnetwork \scrL \prime \prime 

j , the jth augmented simple subnetwork \scrL \prime 
j, and the jth

structural subnetwork \scrL j are defined in four steps as follows:
(a) The jth simple subnetwork \scrL \prime \prime 

j consists of simple nodes \sigma where

\rho j - 1 \prec \sigma \prec \rho j

and all arrows connecting these nodes. Note that \scrL \prime \prime 
j does not contain the super-simple

nodes \rho j - 1 and \rho j, and \scrL \prime \prime 
j can be the empty set.

(b) An appendage but not super-appendage node \tau is linked to \scrL \prime \prime 
j if for some complemen-

tary subnetwork CS the transitive component of \tau in CS is the union of \tau , nodes in
\scrL \prime \prime 
j , and non-super-appendage nodes. The set of jth-linked appendage nodes Tj is the

set of non-super-appendage nodes that are linked to \scrL \prime \prime 
j .

(c) The jth augmented simple subnetwork \scrL \prime 
j is

\scrL \prime 
j =\scrL \prime \prime 

j \cup Tj

and all arrows connecting these nodes.
(d) The jth structural subnetwork \scrL j consists of the augmented simple subnetwork \widetilde \scrL j and

adjacent super-simple nodes, that is,

\scrL j = \{ \rho j - 1\} \cup \scrL \prime 
j \cup \{ \rho j\} 

and all arrows connecting these nodes.

Definition 2.4. Define \sigma 1 \preceq \sigma 2 if either \sigma 1 \prec \sigma 2, \sigma 1 = \sigma 2 is a super-simple node, or \sigma 1 and
\sigma 2 are in the same simple subnetwork.

Next we define the appendage subnetworks, which were defined in section 1.7.2 of [27]
as any transitive component of the subnetwork consisting only of appendage nodes and the
arrows between them.

Definition 2.5. An appendage subnetwork \scrA is a transitive component of the subnetwork
of super-appendage nodes.

Remark 2.6. Wang et al. [27] define an appendage subnetwork as a transitive component
of appendage nodes \scrA that satisfy the ``no cycle"" condition. This condition is formulated in
terms of the nonexistence of a cycle between appendage nodes in \scrA and the simple nodes in
CS for all simple \iota o-simple paths S. Here, we define an appendage subnetwork as a transitive
component of super-appendage nodes, which are defined in terms of transitive components
with respect to CS for all simple \iota o-simple paths S. These two definitions are equivalent
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HOMEOSTASIS PATTERNS 2273

because two nodes belong to the same transitive component if and only if both nodes lie on
a (simple) cycle.

Wang et al. [27] show that each homeostasis subnetwork of \scrG is either structural (satisfies
Definition 2.3(d)) or appendage (satisfies Definition 2.5).

2.2. Homeostasis pattern network. In this subsection we construct the homeostasis pat-
tern network \scrP associated with \scrG (see Definition 2.12), which serves to organize the home-
ostasis subnetworks and to clarify how each homeostasis subnetwork connects to the others.

The homeostasis pattern network is defined in the following steps. First, we define the
structural pattern network \scrP \scrS in terms of the structural subnetworks of \scrG . Second, we define
the appendage pattern network \scrP \scrA in terms of the appendage subnetworks of \scrG . Finally, we
define how the nodes in \scrP \scrS connect to nodes in \scrP \scrA , and conversely.

Definition 2.7. The structural pattern network \scrP \scrS is the feedforward network whose nodes
are the super-simple nodes \rho j and the backbone nodes \widetilde \scrL j, where \widetilde \scrL j is the augmented structural
subnetwork \scrL \prime 

j treated as a single node. The nodes and arrows of \scrP \scrS are given as follows:

\iota = \rho 0 \rightarrow \widetilde \scrL 1 \rightarrow \rho 1 \rightarrow \widetilde \scrL 2 \rightarrow \cdot \cdot \cdot \rightarrow \widetilde \scrL q+1 \rightarrow \rho q+1 = o .(2.1)

If a structural subnetwork \scrL consists of an arrow between two adjacent super-simple nodes
(Haldane homeostasis type), then the corresponding augmented structural subnetwork \scrL \prime is
the empty network; nevertheless the corresponding backbone node \widetilde \scrL must be included in the
structural pattern network \scrP \scrS .

Definition 2.8. The appendage pattern network \scrP \scrA is the network whose nodes are the
components \widetilde \scrA in the condensation of the subnetwork of super-appendage nodes. Such a node\widetilde \scrA is called an appendage component. An arrow connects nodes \widetilde \scrA 1 and \widetilde \scrA 2 if and only if there
are super-appendage nodes \tau 1 \in \widetilde \scrA 1 and \tau 2 \in \widetilde \scrA 2 such that \tau 1 \rightarrow \tau 2 in \scrG .

The condensation \scrG c of a network \scrG is defined as follows. The vertices of \scrG c are strong
components (or transitive components) of \scrG , and the edge in \scrG c is present only if there exists
at least one edge between the vertices of corresponding connected components.

To complete the homeostasis pattern network, we describe how the nodes in \scrP \scrA and the
nodes in \scrP \scrS are connected. To do so, we take advantage of the feedforward ordering of the
nodes in \scrP \scrS and the feedback ordering of the nodes in \scrP \scrA .

Definition 2.9. A simple path from \kappa 1 to \kappa 2 is an appendage path if some node on this
path is an appendage node and every node on this path, except perhaps for \kappa 1 and \kappa 2, is an
appendage node.

How \bfscrP \bfscrA connects to \bfscrP \bfscrS .
Definition 2.10. Given a node \widetilde \scrA \in \scrP \scrA , we construct a unique arrow from \widetilde \scrA to the structural

pattern network \scrP \scrS in two steps:
(a) Consider the collection of nodes \scrV in \scrP \scrS for which there exist a simple node \sigma \in \scrV 

and appendage node \tau \in \widetilde \scrA , such that there is an appendage path from \tau to \sigma .
(b) Let \scrV max( \widetilde \scrA ) be a maximal node in this collection, that is, the most downstream in \scrP \scrS .

It follows from (2.1) that \scrV max is either a super-simple node \rho j or a backbone node \widetilde \scrL j.
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2274 DUNCAN ET AL.

Maximality implies that \scrV max is uniquely defined. We then say that there is an arrow
from \widetilde \scrA to \scrV max \in \scrP \scrS .

How \bfscrP \bfscrA is connected from \bfscrP \bfscrS .
Definition 2.11. Given a node \widetilde \scrA \in \scrP \scrA we choose uniquely an arrow from the structural

pattern network \scrP \scrS to \widetilde \scrA in two steps:
(a) Consider the collection of nodes \scrV in \scrP \scrS for which there exist a simple node \sigma \in \scrV 

and appendage node \tau \in \widetilde \scrA , such that there is an appendage path from \sigma to \tau .
(b) Let \scrV min( \widetilde \scrA ) be a minimal node in this collection, that is, the most upstream node

in \scrP \scrS . Then \scrV min is either a super-simple node \rho j or a backbone node \widetilde \scrL j, and the
minimality implies uniqueness of \scrV min. We then say that there is an arrow from
\scrV min \in \scrP \scrS to \widetilde \scrA .

Since we consider only core input-output networks, all appendage nodes are downstream
from \iota and upstream from o. Hence, for any node \widetilde \scrA \in \scrP \scrA , there always exist nodes
\scrV min,\scrV max \in \scrP \scrS as mentioned above.

Definition 2.12. The homeostasis pattern network \scrP is the network whose nodes are the
union of the nodes of the structural pattern network \scrP \scrS and the appendage pattern network
\scrP \scrA . The arrows of \scrP are the arrows of \scrP \scrS , the arrows of \scrP \scrA , and the arrows between \scrP \scrS and
\scrP \scrA as described above.

Remark 2.13. Note that the super-simple nodes in \scrP correspond to the super-simple
nodes of \scrG . Each super-simple node \rho j \in \scrG (for 1 \leq j \leq q) belongs to exactly two structural
subnetworks \scrL j - 1 and \scrL j . Thus they are not associated to a single homeostasis subnetwork
of \scrG .

It follows from Remark 2.13 that there is a correspondence between the homeostasis sub-
networks of \scrG and the non-super-simple nodes of \scrP .

Remark 2.14.
(a) Each structural subnetwork \scrL \subseteq \scrG corresponds to the backbone node \widetilde \scrL \in \scrP \scrS . Note

that the augmented structural subnetworks \scrL \prime \subsetneq \scrL are not homeostasis subnetworks.
(b) Each appendage subnetwork \scrA \subset \scrG corresponds to an appendage component \widetilde \scrA \in \scrP \scrA .
(c) For simplicity in notation we let \scrV \scrS denote a node in \scrP \scrS . Further we let \widetilde \scrV denote a

non-super-simple node of \scrP and \scrV denote its corresponding homeostasis subnetwork.

2.3. Homeostasis induction. Here we define homeostasis induction in the homeostasis
pattern network \scrP , which is critical to determining the homeostasis pattern ``triggered"" by
each homeostasis subnetwork.

Definition 2.15. Assume that the output node o is homeostatic at (X0,\scrI 0), that is, x\prime o(\scrI 0)=0
for some input value \scrI 0.

(a) We call the homeostasis subnetwork \scrK \eta homeostasis inducing if h\scrK \eta 
\equiv det(B\eta ) = 0 at

(X0,\scrI 0).
(b) Homeostasis of a node \kappa \in \scrG is induced by a homeostasis subnetwork \scrK , denoted \scrK \Rightarrow \kappa ,

if generically for f in (1.3) \kappa is homeostatic whenever \scrK is homeostasis inducing.
(c) A homeostasis subnetwork \scrK induces a subset of nodes \scrN (\scrK \Rightarrow \scrN ) if \scrK \Rightarrow \kappa for each

node \kappa \in \scrN \subset \scrG .
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HOMEOSTASIS PATTERNS 2275

ρj−1L̃j−1 L̃j
ρj · · · L̃q o

Figure 3. An example of structural network induced by structural homeostasis. Suppose the backbone node\widetilde \scrL j in red is homeostasis inducing. Then Theorem 2.17 implies that the blue nodes in the structural pattern
network are all homeostatic.

By definition, every homeostasis subnetwork \scrK induces homeostasis in the output node o,
that is, \scrK \Rightarrow o.

The main point of introducing the homeostasis pattern network \scrP is to relate homeostatic
induction between the set of homeostasis subnetworks of \scrG to induction between nodes in \scrP .
In Definition 2.16 below we formalize this notion. Hence, every node in a homeostasis pattern
(which can be backbone or appendage) is induced by either a backbone node or an appendage
node in the homeostasis pattern network \scrP .

Definition 2.16. Let \widetilde \scrV 1, \widetilde \scrV 2 \in \scrP be non-super-simple nodes, and let \rho \in \scrP be a super-simple
node. Let \scrV 1,\scrV 2 \subset \scrG be the corresponding homeostasis subnetworks to \widetilde \scrV 1, \widetilde \scrV 2 \in \scrP . We say that\widetilde \scrV 1 induces \widetilde \scrV 2, denoted by \widetilde \scrV 1 \Rightarrow \widetilde \scrV 2, if and only if \scrV 1 \Rightarrow \scrV 2. We say that \widetilde \scrV 1 induces \rho , denoted
by \widetilde \scrV 1 \Rightarrow \rho , if and only if \scrV 1 \Rightarrow \rho .

We exclude super-simple nodes of \scrP from being ``homeostasis inducing"" because they
are not associated to a homeostasis subnetwork of \scrG (see Remark 2.13). However, when a
backbone node \widetilde \scrL j \in \scrP induces homeostasis on other nodes of \scrP , it is the corresponding
structural subnetwork \scrL j , with its two super-simple nodes \rho j - 1, \rho j that induce homeostasis.

2.4. Characterization of homeostasis patterns. As explained before, the homeostasis
pattern network \scrP allows us to characterize homeostasis patterns by reducing to four possi-
bilities that are covered by Theorems 2.17--2.20.

Structural homeostasis patterns are given by the following two theorems.

Theorem 2.17 (structural homeostasis \Rightarrow structural subnetworks). A backbone node \widetilde \scrL j \in \scrP \scrS 
induces every node of the structural pattern network \scrP S strictly downstream from \widetilde \scrL j, but no
other nodes of \scrP S.

See Figure 3 for an application of Theorem 2.17.

Theorem 2.18 (structural homeostasis \Rightarrow appendage subnetworks). A backbone node \widetilde \scrL j \in 
\scrP \scrS induces every appendage component of \scrP \scrA whose \scrV min (see Definition 2.11) is strictly
downstream, but no other nodes of \scrP \scrA .

See Figure 4 for an application of Theorem 2.18.
The appendage homeostasis patterns are characterized by the following two theorems.

Theorem 2.19 (appendage homeostasis \Rightarrow structural subnetworks). An appendage compo-
nent \widetilde \scrA \in \scrP \scrA induces every super-simple node of \scrP S downstream from \scrV max( \widetilde \scrA ) (see Defi-
nition 2.10), but no other super-simple nodes. Further, an appendage component \widetilde \scrA \in \scrP \scrA 
induces a backbone node \widetilde \scrL j if and only if \widetilde \scrL j is strictly downstream from \scrV max( \widetilde \scrA ).

See Figure 5 for an application of Theorem 2.17.
Please recall Definitions 2.10 and 2.11 before reading the next theorem.
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2276 DUNCAN ET AL.

ρj−1 L̃j
ρj

Ã1 Ã2 Ã3

Figure 4. An example of appendage subnetworks induced by structural homeostasis. Suppose the backbone
node \widetilde \scrL j in red is homeostasis inducing. Then by Theorem 2.18 and the fact that the super-simple node \rho j is
strictly downstream from \widetilde \scrL j the blue appendage components downstream from \rho j are homeostatic.

ρj−1L̃j−1 L̃j · · · o

Ã
Figure 5. An example of structural subnetworks induced by appendage homeostasis. Suppose the appendage

component \widetilde \scrA in red is homeostasis inducing. Since \widetilde \scrA connects to the super-simple node \rho j - 1, then by Theorem
2.19 the blue nodes in the structural pattern network are homeostatic.

ρj−1 L̃j
ρj

Ã1 Ã2 Ã3 Ã4 Ã5

Figure 6. An example of appendage subnetworks induced by appendage homeostasis. Suppose the appendage
component \widetilde \scrA 3 in red is homeostasis inducing. Since \widetilde \scrA 3 has only one path to the blue appendage component\widetilde \scrA 5 containing the super-simple node \rho j, then by Theorem 2.20 \widetilde \scrA 5 is homeostatic, but no other appendage
subnetwork is homeostatic.

Theorem 2.20 (appendage homeostasis \Rightarrow appendage subnetworks). An appendage compo-
nent \widetilde \scrA i \in \scrP \scrA induces an appendage component \widetilde \scrA j \in \scrP \scrA if and only if \widetilde \scrA i is strictly up-

stream from \widetilde \scrA j and every path from \widetilde \scrA i to \widetilde \scrA j in \scrP contains a super-simple node \rho satisfying

\scrV max( \widetilde \scrA i)\preceq \rho \preceq \scrV min( \widetilde \scrA j).

See Figure 6 for an application of Theorem 2.20.

Example 2.21. We consider homeostasis patterns for the admissible systems in (1.1) ob-
tained from Figure 1. Specifically, we show how the theorems in this section lead to the
determination of the homeostasis patterns that were derived by direct calculation from equa-
tions (1.7). The corresponding homeostasis pattern network \scrP is shown in Figure 7. The
answer is listed in Table 1.

Case (a). f\tau 3,\tau 3 = 0 at \scrI 0: homeostasis is induced by the node \widetilde \scrA 3 of \scrP \scrA . Theorem 2.19

shows \widetilde \scrA 3 induces \{ o\} , which is the only super-simple node of \scrP \scrS downstream from \scrV max( \widetilde \scrA 3).
And \widetilde \scrA 3 induces no backbone node. Theorem 2.20 shows \widetilde \scrA 3 induces no appendage component.
Therefore, in this case the homeostasis pattern is \{ o\} .
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Figure 7. Pattern network \scrP obtained from input-output network \scrG shown in Figure 1.

Case (b). f\tau 1,\tau 1 = 0 at \scrI 0: homeostasis is induced by the node \widetilde \scrA 1 of \scrP \scrA . Theorem 2.19

shows \widetilde \scrA 1 induces \{ \iota , o\} , which are the super-simple nodes of \scrP \scrS downstream from \scrV max( \widetilde \scrA 1).
Also \widetilde \scrA 1 induces \{ \widetilde \scrL 1\} , which is the backbone node of \scrP \scrS downstream from \iota . Theorem 2.20
shows \widetilde \scrA 1 induces \{ \widetilde \scrA 2, \widetilde \scrA 3\} , which are the nodes of \scrP \scrA downstream from \widetilde \scrA 1 and each path
contains the super-simple node o with \scrV max( \widetilde \scrA 1) \preceq o \preceq \scrV min( \widetilde \scrA 2) or \scrV min( \widetilde \scrA 3). Therefore, in
this case the homeostasis pattern is \{ \iota , \sigma , o, \tau 2, \tau 3\} .

Case (c). f\tau 2,\tau 2 = 0 at \scrI 0: homeostasis is induced by the node \widetilde \scrA 2 of \scrP \scrA . Theorem 2.19

shows \widetilde \scrA 2 induces \{ o\} , which is the super-simple nodes of \scrP \scrS downstream from \scrV max( \widetilde \scrA 2).
And \widetilde \scrA 2 induces no backbone node. Theorem 2.20 shows \widetilde \scrA 2 induces \{ \widetilde \scrA 3\} , which is the node
of \scrP \scrA downstream from \widetilde \scrA 2 and each path contains the super-simple node o with \scrV max( \widetilde \scrA 2)\preceq 
o\preceq \scrV min( \widetilde \scrA 3). Therefore, in this case the homeostasis pattern is \{ o, \tau 3\} .

Case (d). det(
f\sigma ,\iota f\sigma ,\sigma 

fo,\iota fo,\sigma 
) = 0 at \scrI 0: homeostasis is induced by node \widetilde \scrL 1 of \scrP \scrS . Theorem 2.17

shows \widetilde \scrL 1 induces \{ o\} , which is the node of \scrP \scrS downstream from \widetilde \scrL 1. Theorem 2.18 shows \widetilde \scrL 1

induces \{ \widetilde \scrA 2, \widetilde \scrA 3\} , whose \scrV min are strictly downstream from \widetilde \scrL 1. Therefore, in this case the
homeostasis pattern is \{ o, \tau 2, \tau 3\} .

3. Overview of proofs of Theorems 2.17--2.20. The theorems that we characterize here
give the homeostasis patterns \widetilde \scrV 1 \Rightarrow \widetilde \scrV 2 or \widetilde \scrV 1 \not \Rightarrow \widetilde \scrV 2 between any two nodes \widetilde \scrV 1, \widetilde \scrV 2 in the
homeostasis pattern network \scrP . Their proofs are done by transferring to the pattern network
\scrP the corresponding results on the input-output network \scrG . These proofs are achieved in
three steps.

The first step solves the following. Given a node \kappa \in \scrG and a homeostasis subnetwork
\scrK \subset \scrG , determine whether \scrK \Rightarrow \kappa for each of the four possibilities:

(1) \scrK structural and \kappa simple,
(2) \scrK structural and \kappa appendage,
(3) \scrK appendage and \kappa simple,
(4) \scrK appendage and \kappa appendage.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

52
.3

.4
3.

46
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2278 DUNCAN ET AL.

In the first step the proof proceeds by fixing a node \kappa \in \scrG and considering the input-output
network \scrG (\kappa ) defined as the input-output network \scrG with input node \iota and output node \kappa 
(see Definition 4.2).

The following result describes the role of the network \scrG (\kappa ) in showing that \scrK \Rightarrow \kappa for
some subnetwork \scrK .

Lemma 3.1. Let \scrK be a homeostasis subnetwork of \scrG . Then \scrK induces \kappa if and only if \scrK 
is a homeostasis subnetwork of \scrG (\kappa ).

Proof. The lemma follows by recalling Definition 2.15 of homeostasis induction and by
applying Theorem 1.6 to \scrG (\kappa ).

The proofs of statements (1)--(4) above reduce to purely combinatorial statements. Specif-
ically given a homeostasis subnetwork \scrK of \scrG and a node \kappa \in \scrG , solve the following two
problems.

Determine when \bfscrK is a structural subnetwork of \bfscrG (\bfitkappa ). The answer is given by Lem-
mas 4.5 and 4.6 in section 4.2.

Determine when \bfscrK is an appendage subnetwork of \bfscrG (\bfitkappa ). The answer is given by
Lemmas 4.8--4.12 in section 4.3.

At this step in the proof we work directly with the input-output networks \scrG and \scrG (\kappa ).
The second step consists of lumping together the induced/non-induced nodes \kappa into the

corresponding homeostasis subnetworks. That is, if \scrK \Rightarrow \kappa , then \scrK \Rightarrow \scrK \prime , where \scrK \not = \scrK \prime and
\kappa \in \scrK \prime . This is done in several propositions in sections 5 and 6.

The third step consists of transferring the relations of induction/noninduction between
homeostasis subnetworks to relations between the nodes of the homeostasis pattern network \scrP .
Since \scrP is obtained by collapsing certain subsets of nodes of \scrG , this step follows automatically
from the previous step.

4. Combinatorial characterization of the input-output networks \bfscrG (\bfitkappa ).

4.1. The input-output networks \bfscrG (\bfitkappa ).
Definition 4.1. Let \scrG be an input-output network with input node \iota and output node o, and

let \kappa \in \scrG be a node. Define the input-output network \scrG (\kappa ) to be the network \scrG with input node
\iota and output node \kappa .

Definition 4.2. Let \scrG be an input-output network, and let \kappa \in \scrG be a node. Define the nodes
\sigma u(\kappa ) and \sigma d(\kappa ) as follows:

(a) If \kappa is simple, then \sigma u(\kappa ) = \kappa = \sigma d(\kappa ).
(b) If \kappa is appendage, then \sigma u(\kappa ) is a minimal upstream simple node with an appendage

path to \kappa and \sigma d(\kappa ) is a maximal downstream simple node with an appendage path
from \kappa .

Remark 4.3. Let \scrA be an appendage subnetwork. Since \scrA is a transitive component, we
can choose an arbitrary node \tau \in \scrA and observe that \sigma u(\scrA ) = \sigma u(\tau ) and \sigma d(\scrA ) = \sigma d(\tau ).

If \kappa is an appendage node, then \sigma u(\kappa ) is upstream from \kappa and \sigma d(\kappa ) is downstream from \kappa .
If \kappa is a node in an appendage subnetwork \scrA , then \sigma u(\kappa ) is contained in some structural
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HOMEOSTASIS PATTERNS 2279

subnetwork or is a super-simple node \scrV with an arrow \widetilde \scrV \rightarrow \widetilde \scrA and \sigma d(\kappa ) is contained in some
structural subnetwork or is a super-simple node \scrV with an arrow \widetilde \scrA \rightarrow \widetilde \scrV .

Lemma 4.4. An appendage node \tau is in the jth linked appendage subnetwork Tj if and only
if there is a simple cycle C that contains \tau and a node in the simple subnetwork \scrL \prime \prime 

j , but C
does not contain any super-simple node.

Proof. Recall that \tau \in Tj if, for some complementary subnetwork CS , the transitive com-
ponent of \tau in CS is the union of \tau , nodes in \scrL \prime 

j , and non-super-appendage nodes. The
statement then follows because two nodes belong to the same transitive component if and
only if some cycle includes them.

4.2. Structural subnetworks of \bfscrG (\bfitkappa ). We start with a lemma that characterizes the
super-simple nodes of \scrG that are super-simple nodes of \scrG (\kappa ).

Lemma 4.5. Let \rho be a super-simple node of \scrG and let \kappa be a node in \scrG . Then \rho is a
super-simple node of \scrG (\kappa ) if and only if \rho \preceq \sigma u(\kappa ).

Proof. (\Leftarrow =) Suppose \rho \preceq \sigma u(\kappa ). Consider a simple path p = \iota \rightsquigarrow \kappa . Let \sigma \prime be the last
simple node on this path. We show that \rho is super-simple in two parts. If \kappa is a simple node,
then \sigma u(\kappa ) = \kappa and \sigma \prime = \kappa because it is the last simple node in p. Then \rho \preceq \sigma \prime and p contains
\rho . If \kappa is an appendage node, then \rho \preceq \sigma \prime since \sigma u(\kappa ) is minimal. Consequently, p contains \rho .
Since the simple path from \iota to \kappa was arbitrary, \rho is super-simple in \scrG (\kappa ).

(=\Rightarrow ) Suppose \sigma u(\kappa ) \prec \rho . Then there is a simple path \iota \rightsquigarrow \sigma u(\kappa ) which avoids \rho . If
\sigma u(\kappa ) \not = \kappa , there is an appendage path \sigma u(\kappa )\rightsquigarrow \kappa , which by definition avoids \rho . There is a
simple path \iota \rightsquigarrow \sigma u(\kappa ) which avoids \rho since \sigma u(\kappa ) \prec \rho . The concatenation of these paths,
\iota \rightsquigarrow \sigma u(\kappa ) \rightsquigarrow \kappa , avoids \rho and shows \rho is not super-simple in \scrG (\kappa ). If \sigma u(\kappa ) = \kappa , then the
simple path \iota \rightsquigarrow \sigma u(\kappa ) shows \rho is not super-simple in \scrG (\kappa ).

The next result shows that a structural subnetwork of \scrG is a structural subnetwork of
\scrG (\kappa ) when its two super-simple nodes are super-simple nodes of \scrG (\kappa ).

Lemma 4.6. Let \kappa \in \scrG be a node, and let \scrL j be the jth structural subnetwork of \scrG . Suppose
\rho j - 1, \rho j \in \scrL j are adjacent super-simple nodes of \scrG (\kappa ). Then \scrL j is a structural subnetwork of
\scrG (\kappa ).

Proof. Let \scrL j(\kappa ) be the structural subnetwork of \scrG (\kappa ) that has super-simple nodes \rho j - 1

and \rho j . Since \rho j - 1 and \rho j are adjacent super-simple nodes of both \scrG and \scrG (\kappa ), the simple
networks \scrL \prime \prime 

j and \scrL \prime \prime 
j (\kappa ) are equal. We need to show that the linked appendage nodes Tj and

Tj(\kappa ) are equal.
Suppose there exists \tau \in Tj(\kappa ) with \tau /\in Tj . By Lemma 4.4, there is a simple cycle C that

contains \tau , a node of \scrL \prime 
j , and no super-simple nodes of \scrG (\kappa ). Since \tau /\in Tj , C must contain

a super-simple node \rho of \scrG that is not super-simple in \scrG (\kappa ). By Lemma 4.5, this implies
\rho j \prec \rho . But C also contains a simple node \sigma \in \scrL \prime 

j , so this implies there is a simple path
\iota \rightsquigarrow \sigma \rightsquigarrow \tau \rightsquigarrow \rho \rightsquigarrow o, contradicting \tau being appendage in \scrG . Therefore \tau \in Tj . Reversing the
roles of Tj and Tj(\kappa ) in the above argument shows that if \tau \in Tj , then \tau \in Tj(\kappa ), completing
the proof that Tj = Tj(\kappa ).

Now \rho j - 1 and \rho j are super-simple in \scrG (\kappa ), \scrL \prime \prime 
j =\scrL \prime \prime 

j (\kappa ), and Tj = Tj(\kappa ). Therefore \scrL j is a
structural subnetwork of \scrG (\kappa ).
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2280 DUNCAN ET AL.

Remark 4.7. The network \scrG (\kappa ) may have other structural subnetworks, but we study the
homeostasis pattern induced by homeostasis subnetworks of \scrG . Hence, we focus on whether
a structural subnetwork of \scrG is still a structural subnetwork of \scrG (\kappa ).

An appendage subnetwork \scrA of \scrG is not a structural subnetwork of \scrG (\kappa ), because \scrA is
transitive and thus has no super-simple nodes.

4.3. Appendage subnetworks of \bfscrG (\bfitkappa ).
Lemma 4.8. Let \scrA be an appendage subnetwork of \scrG , and let \sigma 1, \sigma 2 be simple nodes of \scrG 

with appendage paths \scrA \rightsquigarrow \sigma 1 and \sigma 2 \rightsquigarrow \scrA . Then \sigma 1 \preceq \sigma 2. Moreover, either \sigma 1 = \sigma 2 is a
super-simple node or \sigma 1 \prec \sigma 2.

Proof. Since \sigma 1, \sigma 2 are simple nodes there are simple paths \iota \rightsquigarrow \sigma 2 and \sigma 1\rightsquigarrow o that contain
only simple nodes. By contradiction, suppose that \sigma 2 \prec \sigma 1. Then \sigma 2 is not on the path \sigma 1\rightsquigarrow o
and \sigma 1 is not on the path \iota \rightsquigarrow \sigma 2. By concatenating paths we produce a simple path

\iota \rightsquigarrow \sigma 2\rightsquigarrow \scrA \rightsquigarrow \sigma 1\rightsquigarrow o,

which contradicts \scrA being an appendage subnetwork.
Next we show that it is impossible for both \sigma 1 and \sigma 2 to be contained in the same simple

subnetwork \scrL \prime \prime . By contradiction, suppose there exists a simple subnetwork \scrL \prime \prime such that
\sigma 1, \sigma 2 \in \scrL \prime \prime . There are three possibilities:

(a) If there is a simple path \iota \rightsquigarrow \sigma 1\rightsquigarrow \sigma 2\rightsquigarrow o, then there exists a simple path

\iota \rightsquigarrow \sigma 1\rightsquigarrow \scrA \rightsquigarrow \sigma 2\rightsquigarrow o,

contradicting that \scrA is an appendage subnetwork.
(b) If there is a simple path \iota \rightsquigarrow \sigma 2\rightsquigarrow \sigma 1\rightsquigarrow o, then the cycle

\sigma 1\rightsquigarrow \scrA \rightsquigarrow \sigma 2\rightsquigarrow \sigma 1

contradicts the fact that every node in \scrA is super-appendage.
(c) If neither of the above paths exists, then there is a simple path \iota \rightsquigarrow \sigma 1\rightsquigarrow o that avoids

\sigma 2 and a path \iota \rightsquigarrow \sigma 2\rightsquigarrow o that avoids \sigma 1. In this case, the path

\iota \rightsquigarrow \sigma 1\rightsquigarrow \scrA \rightsquigarrow \sigma 2\rightsquigarrow o

contradicts the fact that \scrA is an appendage subnetwork.
We can now conclude that either \sigma 1 = \sigma 2 is a super-simple node or \sigma 1 \prec \sigma 2.

Lemma 4.9. Let \scrA be an appendage subnetwork of \scrG , and let \kappa \in \scrG be a node that is not
in \scrA . If there is a path from \scrA to \kappa and every such path passes through a super-simple node
\rho of \scrG satisfying \sigma d(\scrA )\preceq \rho \preceq \sigma u(\kappa ), then \scrA is an appendage subnetwork of \scrG (\kappa ).

Proof. First we show that the nodes of \scrA are appendage in \scrG (\kappa ). By contradiction,
suppose \tau \in \scrA is a simple node of \scrG (\kappa ). Let p= \iota \rightsquigarrow \tau \rightsquigarrow \kappa be a simple path in \scrG (\kappa ). Let \sigma 1
be the last simple node of \scrG on the path \iota \rightsquigarrow \tau . Let \sigma 2 and \rho \prime be the first simple node and
first super-simple node of \scrG on the path \tau \rightsquigarrow \kappa , respectively.

If \rho \prime \preceq \sigma 1, then the path \iota \rightsquigarrow \sigma 1 passes through \rho \prime , contradicting that p is a simple path.
Otherwise, suppose \sigma 1 \prec \rho \prime . Since there are appendage paths \sigma 1\rightsquigarrow \scrA and \scrA \rightsquigarrow \sigma 2 and \sigma 1 \not = \sigma 2,
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HOMEOSTASIS PATTERNS 2281

by Lemma 4.8, \sigma 2 \prec \sigma 1. There is therefore a super-simple node \rho \prime \prime of \scrG with \sigma 2 \preceq \rho \prime \prime \preceq \sigma 1.
The segments \iota \rightsquigarrow \sigma 1 and \sigma 2\rightsquigarrow \rho \prime of p thus both contain \rho \prime \prime , contradicting that p is a simple
path. We conclude that each node \tau \in \scrA is an appendage node of \scrG (\kappa ).

Next we show that if there is a cycle \scrA \rightsquigarrow \tau \rightsquigarrow \scrA consisting only of appendage nodes of
\scrG (\kappa ), then \tau is an appendage node of \scrG . Suppose not; then there exists a cycle \scrA \rightsquigarrow \tau \rightsquigarrow \scrA 
containing a simple node of \scrG but only appendage nodes of \scrG (\kappa ). Let \sigma be the first simple
node of \scrG on the cycle, starting from \scrA . Since \sigma is not a simple node of \scrG (\kappa ), by Lemma 4.5,
either \sigma \succ \sigma u(\kappa ) or \sigma and \sigma u(\kappa ) are incomparable. On the other hand, there is an appendage
path from \scrA to \sigma which implies \sigma \preceq \sigma d(\scrA ) or \sigma and \sigma d(\scrA ) are incomparable. But this implies
\sigma u(\kappa )\prec \sigma d(\scrA ), which contradicts the assumption \sigma d(\scrA )\preceq \rho \preceq \sigma u(\kappa ).

Now we claim that there is no appendage subnetwork \scrA \prime of \scrG (\kappa ), such that \scrA \subsetneq \scrA \prime .
Suppose not, i.e., there exists such an appendage subnetwork \scrA \prime . Then \scrA \prime is a transitive com-
ponent consisting of only appendage nodes of \scrG . Hence, \scrA \prime must be an appendage subnetwork
of \scrG containing \scrA . This contradicts \scrA an appendage subnetwork of \scrG that is not transitive
with other appendage subnetworks.

Finally, we show that \scrA is a transitive component of super-appendage nodes of \scrG (\kappa ); that
is, \scrA is an appendage subnetwork of \scrG (\kappa ). Suppose not; then each node \tau \in \scrA is linked to a
simple subnetwork \scrL \prime \prime of \scrG (\kappa ). By Lemma 4.4, there is a simple cycle C that avoids super-
simple node of \scrG (\kappa ) and contains \tau as well as a simple node of \scrG (\kappa ). Since \scrA is a transitive
component of the appendage nodes of \scrG , C must contain a simple node of \scrG . But \tau is not a
linked appendage node of \scrG , so C must contain a super-simple node \rho \prime of \scrG . Since \rho \prime is not
super-simple in \scrG (\kappa ), by Lemma 4.5 \rho \succ \sigma u(\kappa ). Let \sigma be the first simple node of \scrG on the
path \scrA \rightsquigarrow \rho \prime in C. We have \sigma \preceq \sigma d(\scrA ) or \sigma and \sigma d(\scrA ) are incomparable. But then the path
\sigma \rightsquigarrow \rho \prime passes through \rho . Since \rho \preceq \sigma u(\kappa ), \rho is a super-simple node of \scrG (\kappa ) by Lemma 4.5,
contradicting that C avoids super-simple nodes of \scrG (\kappa ). We conclude that \scrA is an appendage
subnetwork of \scrG (\kappa ).

Lemma 4.10. Let \scrA be an appendage subnetwork of \scrG , and let \kappa be a node in \scrG . Suppose
a cycle C in \scrG contains some node \tau \in \scrA and some node that is not in \scrA . Suppose also that
C avoids super-simple nodes of \scrG (\kappa ). Then \scrA is not an appendage subnetwork of \scrG (\kappa ).

Proof. The cycle C can take three possible forms, and we will show that \scrA is not an
appendage subnetwork of \scrG (\kappa ) in each case.

(a) \bfitC \bfc \bfo \bfn \bfs \bfi \bfs \bft \bfs \bfo \bff \bfs \bfi \bfm \bfp \bfl \bfe \bfn \bfo \bfd \bfe \bfs \bfo \bff \bfscrG (\bfitkappa ). Since C contains a node \tau \in \scrA , this immedi-
ately implies \scrA is not an appendage subnetwork of \scrG (\kappa ).

(b) \bfitC \bfc \bfo \bfn \bfs \bfi \bfs \bft \bfs \bfo \bff \bfa \bfp \bfp \bfe \bfn \bfd \bfa \bfg \bfe \bfn \bfo \bfd \bfe \bfs \bfo \bff \bfscrG (\bfitkappa ). A node \tau \in \scrA forms a cycle with
appendage nodes of \scrG (\kappa ) that are not in \scrA . Consequently, \scrA is not a transitive
component of appendage nodes of \scrG (\kappa ) and therefore not an appendage subnetwork.

(c) \bfitC \bfc \bfo \bfn \bfs \bfi \bfs \bft \bfs \bfo \bff \bfb \bfo \bft \bfh \bfs \bfi \bfm \bfp \bfl \bfe \bfa \bfn \bfd \bfa \bfp \bfp \bfe \bfn \bfd \bfa \bfg \bfe \bfn \bfo \bfd \bfe \bfs \bfo \bff \bfscrG (\bfitkappa ). By Lemma 4.4, any
appendage node \eta of \scrG (\kappa ) on C is linked to the simple nodes of \scrG (\kappa ) on C and hence
\eta is a non-super-appendage node. Therefore any node \tau \in \scrA on C is either simple or
non-super-appendage in \scrG (\kappa ). We conclude that \scrA is not an appendage subnetwork
of \scrG (\kappa ).

Lemma 4.11. Let \scrA be an appendage subnetwork of \scrG , and let \kappa be a node in \scrG . If
\sigma u(\kappa )\prec \sigma d(\scrA ), then \scrA is not an appendage subnetwork of \scrG (\kappa ).
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2282 DUNCAN ET AL.

Proof. By Lemma 4.8, \sigma d(\scrA )\preceq \sigma u(\scrA ). Then there exists a simple cycle C =\scrA \rightsquigarrow \sigma d(\scrA )\rightsquigarrow 
\sigma u(\scrA )\rightsquigarrow \scrA where two segments \scrA \rightsquigarrow \sigma d(\scrA ) and \sigma u(\scrA )\rightsquigarrow \scrA are appendage paths while every
simple node of \scrG on C is in the segment \sigma d(\scrA )\rightsquigarrow \sigma u(\scrA ).

Now we claim that C does not contain a super-simple node of \scrG (\kappa ). Given the claim,
Lemma 4.10 implies \scrA is not an appendage subnetwork of \kappa . Thus it remains to prove the
claim.

Consider any simple node \sigma of \scrG on the segment \sigma d(\scrA ) \rightsquigarrow \sigma u(\scrA ) in C. Since \sigma u(\kappa ) \prec 
\sigma d(\scrA ), this implies that \sigma u(\kappa )\prec \sigma . Thus there is a simple path \iota \rightsquigarrow \sigma u(\kappa ) that avoids every
simple node of \scrG on C.

If \kappa is a simple node, then \sigma u(\kappa ) = \kappa . This gives an input-output path in \scrG (\kappa ) that avoids
every node in C, verifying the claim. If \kappa is an appendage node, then \sigma u(\kappa ) \not = \kappa . There
is an appendage path \sigma u(\kappa ) \rightsquigarrow \kappa . For the sake of contradiction, suppose there is a node \tau 
on \sigma u(\kappa ) \rightsquigarrow \kappa that is also on C. Either \tau is on the segment \scrA \rightsquigarrow \sigma d(\scrA ) or the segment
\sigma u(\scrA ) \rightsquigarrow \scrA . If \tau is on \scrA \rightsquigarrow \sigma d(\scrA ), then there is an appendage path \sigma u(\kappa ) \rightsquigarrow \tau \rightsquigarrow \sigma d(\scrA ).
Since \sigma u(\kappa )\prec \sigma d(\scrA ), this gives an input-output simple path

\iota \rightsquigarrow \sigma u(\kappa )\rightsquigarrow \tau \rightsquigarrow \sigma d(\scrA )\rightsquigarrow o ,

which contradicts that \tau is appendage in \scrG . If \tau is on \sigma u(\scrA )\rightsquigarrow \scrA , then this gives an appendage
path \sigma u(\kappa )\rightsquigarrow \tau \rightsquigarrow \scrA . Since \sigma u(\kappa ) \prec \sigma u(\scrA ), this contradicts that \sigma u(\scrA ) is a minimal simple
node with an appendage path to \scrA . We conclude that the appendage path \sigma u(\kappa )\rightsquigarrow \kappa does
not contain a node of C. Therefore, the simple path \iota \rightsquigarrow \sigma u(\kappa )\rightsquigarrow \kappa is an input-output path
in \scrG (\kappa ) that avoids C. This proves the claim.

Lemma 4.12. Let \scrA be an appendage subnetwork of \scrG , and let \kappa be a node in \scrG . If both
\sigma u(\kappa ) and \sigma d(\scrA ) are nodes in a simple subnetwork \scrL \prime \prime 

j of \scrG , then \scrA is not an appendage
subnetwork of \scrG (\kappa ).

Proof. The proof proceeds by stating two claims, proving the lemma from the claims, and
then proving the claims.

Claim 1. There exists a simple path p = \rho j - 1 \rightsquigarrow \rho j , such that \rho j - 1 is the only super-simple
node of \scrG (\kappa ) on p.

Claim 2. The appendage path \sigma u(\scrA )\rightsquigarrow \scrA does not contain super-simple nodes of \scrG (\kappa ).
Assuming the claims, we consider the relation between \sigma d(\scrA ) and the path p= \rho j - 1\rightsquigarrow \rho j

in the first claim and split the proof into two cases as follows.

Assume \bfitsigma \bfitd (\bfscrA ) is on the path \bfitp . Then there is a simple path \sigma d(\scrA )\rightsquigarrow \rho j that avoids
super-simple nodes of \scrG (\kappa ). By Lemma 4.8, \sigma d(\scrA ) \prec \rho j \preceq \sigma u(\scrA ) so there is a simple path
\sigma d(\scrA )\rightsquigarrow \sigma u(\scrA ) which avoids super-simple nodes of \scrG (\kappa ). If an appendage path \scrA \rightsquigarrow \sigma d(\scrA )
contains a super-simple node of \scrG (\kappa ), then the simple path \iota \rightsquigarrow \sigma d(\scrA )\rightsquigarrow \scrA \rightsquigarrow \kappa which contains
this super-simple node shows \scrA is not an appendage subnetwork of \scrG (\kappa ). If an appendage path
\scrA \rightsquigarrow \sigma d(\scrA ) does not contain a super-simple node of \scrG (\kappa ), then we have found a super-simple
node avoiding cycle

C =\scrA \rightsquigarrow \sigma d(\scrA )\rightsquigarrow \sigma u(\scrA )\rightsquigarrow \scrA ,

and by Lemma 4.10, \scrA is not an appendage subnetwork of \scrG (\kappa ).
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HOMEOSTASIS PATTERNS 2283

Assume every path \bfitrho \bfitj  - \bfone \rightsquigarrow \bfitsigma \bfitd (\bfscrA )\rightsquigarrow \bfitrho \bfitj contains a super-simple node of \bfscrG (\bfitkappa ) other

than \bfitrho \bfitj  - \bfone . If there is a path \sigma d(\scrA )\rightsquigarrow \rho j that does not contain a super-simple node of \scrG (\kappa ),
then there is a simple path \sigma d(\scrA )\rightsquigarrow \sigma u(\scrA ) that avoids super-simple nodes of \scrG (\kappa ). This is
the same situation deduced in case when \sigma \bfitd (\bfscrA ) is on the path, so \scrA is not an appendage
subnetwork of \scrG (\kappa ). Suppose there is a path \sigma d(\scrA )\rightsquigarrow \rho j which contains a super-simple node
\rho (\kappa ) of \scrG (\kappa ). Since there is a path p = \rho j - 1 \rightsquigarrow \rho j that avoids super-simple nodes of \scrG (\kappa ),
there is a simple path

p1 = \iota \rightsquigarrow \rho j - 1\rightsquigarrow \sigma u(\scrA )\rightsquigarrow \scrA \rightsquigarrow \sigma d(\scrA )\rightsquigarrow \rho (\kappa ).

Let p2 = \rho (\kappa )\rightsquigarrow \kappa be a simple path. If p1 and p2 do not overlap, then the concatenation of p1
and p2 shows \scrA is not an appendage subnetwork of \scrG (\kappa ). If p1 and p2 overlap, they overlap
in an appendage node \tau of \scrG . If \tau is on the segment \sigma u(\scrA )\rightsquigarrow \scrA , then this implies there is an
appendage path from \widetilde \scrL j to \scrA , contradicting that \sigma u(\scrA ) is minimal. Therefore, \tau is on the
segment \scrA \rightsquigarrow \sigma d(\scrA ). Let \tau be the first node on p1 which is on p2. The simple path

p1 = \iota \rightsquigarrow \rho j - 1\rightsquigarrow \sigma u(\scrA )\rightsquigarrow \scrA \rightsquigarrow \tau \rightsquigarrow \kappa 

shows that \scrA is not an appendage subnetwork of \scrG (\kappa ).
We now proceed to prove the claims.

Proof of Claim 1. Suppose \rho j - 1 \preceq \sigma u(\kappa ) is the most downstream super-simple node of
\scrG . Consider a path \rho j - 1 \rightsquigarrow \sigma u(\kappa ). From Lemma 4.5, \rho j - 1 is a super-simple node of \scrG (\kappa ).
If there is no other super-simple node of \scrG (\kappa ) on this path, then we take p to be the path
\rho j - 1\rightsquigarrow \sigma u(\kappa )\rightsquigarrow \rho j . If there exist other super-simple nodes of \scrG (\kappa ) on \rho j - 1\rightsquigarrow \sigma u(\kappa ), let \sigma be
the first super-simple node of \scrG (\kappa ) on this path. Since \sigma is a simple node of \scrG , there is a path
p= \rho j - 1\rightsquigarrow \rho j which avoids \sigma . If p contained any super-simple node of \scrG (\kappa ) other than \rho j - 1,
then this would contradict that \sigma is super-simple in \scrG (\kappa ). Therefore p is the desired path.

Proof of Claim 2. If \kappa is a simple node so that \sigma u(\kappa ) = \kappa , then \kappa \prec \sigma u(\scrA ) implies there is a
simple path \iota \rightsquigarrow \kappa which avoids \sigma u(\scrA ), validating the claim. If \kappa is an appendage node, suppose
\sigma u(\scrA )\rightsquigarrow \scrA contains a super-simple node \rho (\kappa ) of \scrG (\kappa ). Then the appendage path \sigma u(\kappa )\rightsquigarrow \kappa 
passes through \rho (\kappa ) and in particular there is an appendage path \sigma u(\kappa )\rightsquigarrow \rho (\kappa )\rightsquigarrow \scrA , which
contradicts that \sigma u(\scrA ) is a minimal simple node with an appendage path to \scrA .

Remark 4.13. As in Remark 4.7, \scrG (\kappa ) may have other appendage subnetworks, but we
only need to check whether an appendage subnetwork of \scrG is still an appendage subnetwork
of \scrG (\kappa ). Any structural subnetwork \scrL j of \scrG is not an appendage subnetwork of \scrG (\kappa ), since
\scrL j is not transitive, that is, there is no path from \rho j to \rho j - 1 in \scrL j .

5. Structural homeostasis pattern. Here we prove Theorems 2.17 and 2.18, which char-
acterize the structural homeostasis pattern. We separate the proof of each theorem into two
propositions, one that identifies the nodes which are induced by a structural subnetwork and
the other that identifies the nodes that are not induced by a structural subnetwork. We recall
that we denote the nodes of \scrP \scrS by \scrV \scrS , the backbone nodes or the appendage components of
\scrP by \widetilde \scrV , and the corresponding homeostasis subnetwork of \scrG by \scrV .

The following two propositions identify nodes in structural and appendage subnetworks
that are not induced by \scrL j .
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2284 DUNCAN ET AL.

Proposition 5.1. Let \scrL j be the jth structural subnetwork of \scrG , and let \widetilde \scrV \in \scrP \scrS be a backbone
node of \scrP \scrS that is upstream from \rho j. If \kappa \in \scrV and \kappa \not = \rho j, then \scrL j \not \Rightarrow \kappa .

Proof. Let \kappa \in \scrV be a simple node of \scrG , and let \sigma u(\kappa ) be as in Definition 4.2. Since \widetilde \scrV is
upstream from \rho j in \scrP \scrS and \kappa \not = \rho j , \sigma 

u(\kappa )\prec \rho j . By Lemma 4.5, \rho j is not a super-simple node
of \scrG (\kappa ). Therefore, \scrL j is not a structural subnetwork of \scrG (\kappa ), so \scrL j \not \Rightarrow \kappa .

Proposition 5.2. Let \scrL j be the jth structural subnetwork of \scrG , and let \scrA be an appendage

subnetwork of \scrG . Let \scrV \scrS \rightarrow \widetilde \scrA be the arrow in \scrP from \scrP \scrS to \widetilde \scrA , and suppose \scrV \scrS is strictly
upstream of \rho j. If \tau \in \scrA , then \scrL j \not \Rightarrow \tau .

Proof. Let \tau \in \scrA be an appendage node of \scrG , and let \sigma u(\tau ) be as in Definition 4.2. We
have \sigma u(\tau ) \in \scrV \scrS and \scrV \scrS is strictly upstream of \rho j , which implies \sigma u(\tau )\prec \rho j . By Lemma 4.5,
\rho j is not a super-simple node of \scrG (\tau ). Therefore, \scrL j is not a structural subnetwork of \scrG (\tau )
and so \scrL j \not \Rightarrow \tau .

The next two propositions identify nodes in structural and appendage subnetworks that
are induced by \scrL j , respectively.

Proposition 5.3. Let \scrL j be the jth structural subnetwork of \scrG , and let \widetilde \scrV be a backbone

node of \scrP \scrS that is strictly downstream of \widetilde \scrL j. If \kappa \in \scrV , then \scrL j induces \kappa , which is denoted
by \scrL j \Rightarrow \kappa .

Proof. Since \widetilde \scrV is strictly downstream of \widetilde \scrL j and \kappa \in \scrV is a simple node of \scrG , then we
have \rho j \preceq \sigma u(\kappa ). By Lemma 4.5, \rho j - 1 and \rho j are adjacent super-simple nodes of \scrG (\kappa ). By
Lemma 4.6, \scrL j is a structural subnetwork of \scrG (\kappa ) and so \scrL j \Rightarrow \kappa .

Proposition 5.4. Let \scrL j be the jth structural subnetwork of \scrG , and let \scrA be an appendage

subnetwork of \scrG . Let \scrV \scrS \rightarrow \widetilde \scrA be the arrow in \scrP from \scrP \scrS to \widetilde \scrA and suppose \scrV \scrS is strictly
downstream from \widetilde \scrL j. If \tau \in \scrA , then \scrL j \Rightarrow \tau .

Proof. Let \tau \in \scrA be an appendage node of \scrG , and let \sigma u(\tau ) be as in Definition 4.2. Then
\sigma u(\tau )\in \scrV \scrS and \scrV \scrS is strictly downstream from \widetilde \scrL j , which implies \rho j \preceq \sigma u(\tau ). By Lemma 4.5,
\rho j - 1 and \rho j are adjacent super-simple nodes of \scrG (\kappa ). Lemma 4.6 then implies that \scrL j is a
structural subnetwork of \scrG (\tau ) and so \scrL j \Rightarrow \tau .

Proof of Theorems 2.17 and 2.18. Recalling Definition 2.16, suppose \rho \in \scrP is a super-simple
node and \widetilde \scrV 1, \widetilde \scrV 2 \in \scrP are non-super-simple nodes with \scrV 1,\scrV 2 \subset \scrG being their corresponding
homeostasis subnetworks. We say \widetilde \scrV 1 \Rightarrow \widetilde \scrV 2 if and only if \scrV 1 \Rightarrow \scrV 2, and \widetilde \scrV 1 \Rightarrow \rho if and only if
\scrV 1 \Rightarrow \rho .

Then we conclude Theorem 2.17 from Propositions 5.1 and 5.3. Theorem 2.18 follows
from Propositions 5.2 and 5.4.

6. Appendage homeostasis pattern. Here we prove Theorems 2.19 and 2.20. Each the-
orem will follow from a series of propositions. The propositions are organized according to
whether they make a statement about which nodes an appendage subnetwork \scrA induces or
about which nodes \scrA does not induce.

The following two propositions identify nodes in structural and appendage subnetworks
that are induced by \scrA .
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Proposition 6.1. Let \scrA be an appendage subnetwork of \scrG , and let \scrL j be the jth structural

subnetwork of \scrG . Let \widetilde \scrA \rightarrow \scrV \scrS be the arrow in \scrP from \widetilde \scrA to \scrP \scrS and suppose \scrV \scrS is strictly
upstream of \widetilde \scrL j. If \kappa \in \scrL j, then \scrA induces \kappa , which is denoted by \scrA \Rightarrow \kappa .

Proof. Since \widetilde \scrA \rightarrow \scrV \scrS \in \scrP and \scrV \scrS is strictly upstream of \widetilde \scrL j , then \sigma d(\scrA ) \in \scrV \scrS and
\sigma d(\scrA ) \preceq \rho j - 1. On the other hand, \kappa \in \scrL j implies \rho j - 1 \preceq \sigma u(\kappa ). Applying Lemma 4.9, we
conclude \scrA \Rightarrow \kappa .

Proposition 6.2. Let \scrA 1 and \scrA 2 be distinct appendages subnetworks of \scrG . Let \widetilde \scrA 1 \rightarrow \scrV \scrS 1
be

the arrow in \scrP from \widetilde \scrA 1 to \scrP \scrS , and let \scrV \scrS 2
\rightarrow \widetilde \scrA 2 be the arrow in \scrP from \scrP \scrS to \widetilde \scrA 2. Suppose

there is a path from \widetilde \scrA 1 to \widetilde \scrA 2 in \scrP and every such path passes through a super-simple node \rho 
satisfying \scrV \scrS 1

\preceq \rho \preceq \scrV \scrS 2
. If \tau \in \scrA 2, then \scrA 1 \Rightarrow \tau .

Proof. Since \sigma d(\scrA 1) is the maximal (downstream) simple node with an appendage path
from \scrA 1, we have \sigma d(\scrA 1) \in \scrV \scrS 1

. Let \tau \in \scrA 2 be an appendage node of \scrG , and let \sigma u(\tau ) be
as in Definition 4.2. Then \sigma u(\tau ) \in \scrV \scrS 2

and every path from \widetilde \scrA 1 to \widetilde \scrA 2 in \scrP passes through
a super-simple node \rho satisfying \sigma d(\scrA 1) \preceq \rho \preceq \sigma u(\kappa ). Therefore, it follows from Lemma 4.9
that \scrA \Rightarrow \tau .

The next five propositions identify nodes in structural and appendage subnetworks that
are not induced by \scrA .

Proposition 6.3. Let \scrA be an appendage subnetwork of \scrG , and let \scrL \prime 
j be the jth augmented

simple subnetwork of \scrG . Let \widetilde \scrA \rightarrow \scrV \scrS be the arrow in \scrP from \widetilde \scrA to \scrP \scrS and suppose \scrV \scrS is
downstream from or equal to \widetilde \scrL j. If \kappa \in \scrL \prime 

j, then \scrA \not \Rightarrow \kappa .

Proof. Let \kappa be a node in \scrL \prime 
j . If \scrV \scrS is strictly downstream from \widetilde \scrL j , then \sigma u(\kappa )\prec \sigma d(\scrA ),

and by Lemma 4.11 \scrA \not \Rightarrow \kappa . If \widetilde \scrV = \widetilde \scrL j , then \sigma d(\scrA ) \in \scrL \prime 
j and \sigma u(\kappa ) \in \scrL \prime 

j , so by Lemma 4.12
\scrA \not \Rightarrow \kappa .

Proposition 6.4. Let \scrA be an appendage subnetwork of \scrG , and let \rho j be the jth super-simple

node of \scrG . Let \widetilde \scrA \rightarrow \scrV \scrS be the arrow in \scrP from \widetilde \scrA to \scrP \scrS , and suppose \scrV \scrS is strictly downstream
from \rho j. Then \scrA \not \Rightarrow \rho j.

Proof. If \scrV \scrS is strictly downstream from \rho j , then \rho j \prec \sigma d(\scrA ). By Lemma 4.11, \scrA \not \Rightarrow \rho j .

Proposition 6.5. Let \scrA be an appendage subnetwork of \scrG and \tau \in \scrA . Then \scrA \not \Rightarrow \tau .

Proof. Since the node \tau is the output node of \scrG (\tau ), thus it is a simple node of \scrG (\tau ). We
conclude that \scrA is not an appendage subnetwork of \scrG (\tau ), so \scrA \not \Rightarrow \tau .

Proposition 6.6. Let \scrA 1 and \scrA 2 be distinct appendage subnetworks of \scrG and \tau \in \scrA 2. Let\widetilde \scrA 1 \rightarrow \scrV \scrS 1
be the arrow in \scrP from \widetilde \scrA 1 to \scrP \scrS , and let \scrV \scrS 2

\rightarrow \widetilde \scrA 2 be the arrow in \scrP from \scrP \scrS to\widetilde \scrA 2. If there is no path from \widetilde \scrA 1 to \widetilde \scrA 2 in the pattern network \scrP or \scrV \scrS 2
\prec \scrV \scrS 1

, then \scrA 1 \not \Rightarrow \tau .

Proof. Let \tau \in \scrA 2 be an appendage node of \scrG , and let \sigma u(\tau ) be as in Definition 4.2. We
consider \sigma d(\scrA 1), which is the maximal (downstream) simple node with an appendage path
from \scrA 1. Since there is no path from \widetilde \scrA 1 to \widetilde \scrA 2 in \scrP or \scrV \scrS 2

\prec \scrV \scrS 1
, we have \sigma u(\tau 2)\prec \sigma d(\scrA 1).

By Lemma 4.11, \scrA \not \Rightarrow \tau 2.

Proposition 6.7. Let \scrA 1 and \scrA 2 be distinct appendage subnetworks of \scrG and \tau \in \scrA 2. If
there is a path from \widetilde \scrA 1 to \widetilde \scrA 2 in \scrP that does not contain a super-simple node, then \scrA 1 \not \Rightarrow \tau .
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2286 DUNCAN ET AL.

Proof. There are two ways for a path p\in \scrP from \widetilde \scrA 1 to \widetilde \scrA 2 to avoid a super-simple node,
where p contains backbone nodes or has no backbone node. We consider each case separately.

The path \bfitp contains a backbone node \widetilde \bfscrL \bfitj . Then p is the concatenation of two appendage

paths: \widetilde \scrA 1\rightsquigarrow \widetilde \scrL j and \widetilde \scrL j\rightsquigarrow \widetilde \scrA 2. Let \tau \in \scrA 2 be an appendage node. Supposing \sigma d(\scrA 1)\prec \sigma u(\tau ),
there exists a super-simple node \rho of \scrG such that \sigma d(\scrA 1)\preceq \rho \preceq \sigma u(\tau ). Hence the path p from\widetilde \scrA 1 to \widetilde \scrA 2 must contain a super-simple node \rho , which contradicts the assumption. Thus we
derive \sigma u(\tau ) \preceq \sigma d(\scrA 1). Therefore, either \sigma u(\tau ) \prec \sigma d(\scrA 1) and Lemma 4.11 implies \scrA 1 \not \Rightarrow \tau 2,
or \sigma u(\tau ) and \sigma d(\scrA 1) belong to \scrL \prime \prime 

j , and by Lemma 4.12 \scrA 1 \not \Rightarrow \tau 2.

The path \bfitp contains no backbone node. Then there is an appendage path\scrA 1\rightsquigarrow \tau 2. Since
\tau 2 is an appendage node, any simple path p1 := \iota \rightsquigarrow \sigma u(\scrA 1) avoids \tau 2. There is an appendage
path p\prime := \sigma u(\scrA 1)\rightsquigarrow \scrA 1. Since both p and p\prime contain a node of \scrA 1 and the nodes of \scrA 1 are
path-connected, we may assume p and p\prime share a node \tau . A priori, \tau need not be a node of
\scrA 1, but, since p consists only of appendage nodes, \tau is an appendage node. Furthermore, the
subpath \tau \rightsquigarrow \scrA 1 on p\prime and the subpath \scrA 1 \rightsquigarrow \tau on p imply that \tau belongs to the transitive
component of \scrA 1 and thus \tau \in \scrA 1. Then there is a simple path \iota \rightsquigarrow \sigma u(\scrA 1)\rightsquigarrow \tau \rightsquigarrow \tau 2 so that
\tau is a simple node of \scrG (\tau 2). Since \tau \in \scrA 1 is not an appendage in \scrG (\tau 2), we conclude that \scrA 1

is not an appendage subnetwork of \scrG (\tau 2) and so \scrA 1 \not \Rightarrow \tau 2.

Proof of Theorems 2.19 and 2.20. Recalling the relation of homeostatic induction between
\scrG and \scrP in Definition 2.16, we conclude Theorem 2.19 from Propositions 6.1, 6.3, and 6.4.
Similarly, Theorem 2.20 follows from Propositions 6.2, 6.5, 6.6, and 6.7.

7. Properties of the induction relation (\Rightarrow ). In this section, we give three general results
about the induction relation. First, in Theorem 7.1 we prove that the induction relation is
characterized by its behavior on homeostasis subnetworks. Next, in Theorems 7.2 we prove
that induction applies in at least one direction for distinct homeostasis subnetworks and that
no subnetwork induces itself. Finally, in Theorem 7.3 we prove that distinct subnetworks have
distinct homeostasis patterns. That is, the set of nodes induced by a homeostasis subnetwork
is unique among all homeostasis subnetworks.

Theorem 7.1. Suppose \scrK 1 and \scrK 2 are distinct homeostasis subnetworks of \scrG . Let \kappa be a
node of \scrK 2 where \kappa \not = o. If \scrK 1 \Rightarrow \kappa , then \scrK 1 \Rightarrow \scrK 2.

Proof. There are four possibilities for \scrK 1 to induce \kappa . Each of these is determined by
the classification of \scrK 1 as an appendage or structural subnetwork and \kappa as an appendage or
simple node. The four possibilities are discussed next.

\bfscrK \bfone structural and \bfitkappa simple. Then \kappa \in \scrK 2 =\scrL and the proof follows from Propositions 5.3
and 5.1. We remark that when \kappa is a super-simple node, there are two structural subnetworks
(two \scrK 2's) containing \kappa . Further, if \kappa \in \scrK 1, then \scrK 1 only induces the structural subnetworks,
which is distinct from \scrK 1.

\bfscrK \bfone structural and \bfitkappa appendage. Then \kappa \in \scrK 2 =\scrA and the proof follows from Proposi-
tions 5.4 and 5.2.

\bfscrK \bfone appendage and \bfitkappa simple. Then \kappa \in \scrK 2 = \scrL and the proof follows from Proposi-
tions 6.1, 6.3, and 6.4.
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\bfscrK \bfone appendage and \bfitkappa appendage. Then \kappa \in \scrK 2 =\scrA and the proof follows from Proposi-
tions 6.2, 6.5, 6.6, and 6.7.

Theorem 7.2. Let \scrK 1 be a homeostasis subnetwork of \scrG . Then generically \scrK 1 \not \Rightarrow \scrK 1.
Moreover, let \scrK 2 be some other homeostasis subnetwork of \scrG . Then one of the following
relations holds:

(a) \scrK 1 \Rightarrow \scrK 2 and \scrK 2 \not \Rightarrow \scrK 1,
(b) \scrK 2 \Rightarrow \scrK 1 and \scrK 1 \not \Rightarrow \scrK 2,
(c) \scrK 1 \Rightarrow \scrK 2 and \scrK 2 \Rightarrow \scrK 1.

Proof. First we show that a homeostasis subnetwork does not induce itself. Let \scrK 1 be
a homeostasis subnetwork. If \scrK 1 is a structural subnetwork, then Proposition 5.1 implies
\scrK 1 \not \Rightarrow \scrK 1. If \scrK 1 is an appendage subnetwork, then Proposition 6.5 implies \scrK 1 \not \Rightarrow \scrK 1.

Next suppose \scrK 2 is a homeostasis subnetwork of \scrG where \scrK 2 \not = \scrK 1. We split the proof
into three cases based on whether \scrK 1 and \scrK 2 are structural or appendage subnetworks.

Both \bfscrK \bfone and \bfscrK \bftwo are structural subnetworks. Without loss of generality we assume \scrK 1

is strictly upstream from \scrK 2. Theorem 2.17 implies that \scrK 1 \Rightarrow \scrK 2 and \scrK 2 \not \Rightarrow \scrK 1.

Both \bfscrK \bfone and \bfscrK \bftwo are appendage subnetworks. Let \scrV 1
max, \scrV 1

min be nodes in \scrP \scrS with
arrows from and to \scrK 1 in \scrP , and let \scrV 2

max, \scrV 2
min be nodes in \scrP \scrS with arrows from and to \scrK 2

in \scrP . These connections with \scrK 1,\scrK 2 in \scrP are

\scrV 1
min \rightarrow \widetilde \scrK 1, \widetilde \scrK 1 \rightarrow \scrV 1

max, \scrV 2
min \rightarrow \widetilde \scrK 2, \widetilde \scrK 2 \rightarrow \scrV 2

max.

First assume without loss of generality that there is an appendage path from \scrK 2 to \scrK 1.
Theorem 2.20 implies \scrK 2 \not \Rightarrow \scrK 1. Since \scrK 1 and \scrK 2 are transitive components of appendage
nodes, so the existence of an appendage path \scrK 2\rightsquigarrow \scrK 1 precludes the existence of an appendage
path \scrK 1 \rightsquigarrow \scrK 2, and thus \scrV 1

min \preceq \scrV 2
min. Then Lemma 4.8 shows either \scrV 1

max \prec \scrV 1
min or

\scrV 1
max = \scrV 1

min is a super-simple node. Therefore every path from \widetilde \scrK 1 to \widetilde \scrK 2 follows \widetilde \scrK 1 \rightsquigarrow 
\scrV 1
max \rightsquigarrow \scrV 2

min \rightsquigarrow \widetilde \scrK 2, and it passes through a super-simple node \rho with \scrV 1
max \preceq \rho \preceq \scrV 2

min.
Theorem 2.20 shows \scrK 1 \Rightarrow \scrK 2.

Second assume there is no appendage path between \scrK 1 and \scrK 2. With loss of generality,
we further assume \scrV 1

min \preceq \scrV 2
min. Similarly, Lemma 4.8 shows \scrV 1

min \prec \scrV 1
min or \scrV 1

min = \scrV 1
min is

a super-simple node. Then every path from \widetilde \scrK 1 to \widetilde \scrK 2 passes through a super-simple node \rho 
with \scrV 1

max \preceq \rho \preceq \scrV 2
min. Theorem 2.20 shows \scrK 1 \Rightarrow \scrK 2. Moreover, if \scrV 1

min = \scrV 2
min = \scrV 2

max is a
super-simple node, we also have \scrK 2 \Rightarrow \scrK 1.

\bfscrK \bfone is an appendage subnetwork and \bfscrK \bftwo is a structural subnetwork. Let \scrV 1
max, \scrV 1

min

be nodes in \scrP \scrS with arrows from and to \scrK 1 in \scrP . These connections with \scrK 1 in \scrP are

\scrV 1
min \rightarrow \scrA , \scrA \rightarrow \scrV 1

max.

Lemma 4.8 shows that either \scrV 1
max \prec \scrV 1

min or \scrV 1
max = \scrV 1

min is a super-simple node. Therefore

either \widetilde \scrK 2 is upstream of \scrV 1
min or \scrV 1

max is upstream from \widetilde \scrL j in \scrP \scrS . By Theorems 2.18 and 2.19,
either \scrA \Rightarrow \scrL j or \scrL j \Rightarrow \scrA . We remark that a similar argument can be achieved when \scrK 2 is an
appendage subnetwork and \scrK 1 is structural subnetwork because of symmetry.

Theorems 7.1 and 7.2 imply that each homeostasis subnetwork has a unique homeostasis
pattern associated to it. We state this specifically in the following theorem.
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Theorem 7.3. Let \scrK 1 and \scrK 2 be two distinct homeostasis subnetworks of \scrG . Then the set
of subnetworks induced by \scrK 1 and the set of subnetworks induced by \scrK 2 are distinct.

Proof. Considering any two distinct homeostasis subnetworks \scrK 1 and \scrK 2 of \scrG , it is suffi-
cient to find a homeostasis subnetwork \scrK \subset \scrG such that \scrK 1 \Rightarrow \scrK and \scrK 2 \not \Rightarrow \scrK . By Theorem 7.2,
we have at least one of \scrK 1 \Rightarrow \scrK 2 and \scrK 2 \Rightarrow \scrK 1 holds. We may assume without loss of general-
ity that \scrK 1 \Rightarrow \scrK 2. Note that Theorem 7.2 also shows that \scrK 2 \not \Rightarrow \scrK 2. Therefore we set \scrK =\scrK 2

and thus \scrK 1 \Rightarrow \scrK and \scrK 2 \not \Rightarrow \scrK .

8. Discussion. Wang et al. [27] show that an input-output network \scrG with an input pa-
rameter \scrI can, under certain circumstances, lead to several different infinitesimal homeostasis
types. Sections 4--7 show that each homeostasis type corresponds to a unique infinitesimal
homeostasis pattern; that is, a subset of nodes in \scrG varies homeostatically as \scrI varies.

There are, are least, two relevant ways to modify the theory of homeostasis in input-output
networks, which in turn open up new avenues for applications.

The first modification concerns homeostasis in gene regulatory networks (GRNs). See
Antoneli et al. [1, 2] and Golubitsky and Stewart [16]. The important difference between a
GRN and an input-output network is the assumption that each node (a ``gene"") in a GRN
consists of a pair of state variables (the protein and mRNA concentrations). One way to deal
with this ``discrepancy"" is to consider a subclass of input-output networks that we call PRNs
(protein-mRNA networks). This notion leads to somewhat different infinitesimal homeostasis
types and patterns. The general theory of homeostasis types and patterns in PRN is developed
in [2].

A second modification considers input-output networks where the input and output nodes
are the same node. Such networks seem to occur frequently in metal ion homeostasis. For
example, see Chifman et al. [7, 8] for iron homeostasis, Cui and Kaandorp [10] for calcium
homeostasis, and Claus et al. [9] for zinc homeostasis.

Finally, there are two generalizations of homeostasis theory that are motivated by codi-
mension arguments in bifurcation theory. The first is chair homeostasis where the homeostasis
in input-output functions is flatter than expected. See Nijhout, Best, and Reed [22], Golu-
bitsky and Stewart [15], and Reed et al. [24]. The second is mode interaction where two
infinitesimal homeostasis types occur at the same equilibrium. See Duncan et al. [11]. In-
terestingly, the simultaneous appearance of different homeostasis types leads to bifurcation
in the family of equilibria that generates the homeostasis. An example of this phenome-
non is discussed in Duncan and Golubitsky [12]. A related biochemical example of multiple
types of infinitesimal homeostasis occurring on variation of just one parameter is found in
Reed et al. [24].

An important research direction to pursue is the application of infinitesimal homeostasis
to biological problems. By this we mean the study of an input-output network associated
to a mathematical model for a biological phenomenon. In this context, an application of
infinitesimal homeostasis is more than just the computation of the homeostasis types and
homeostasis patterns, as we have done with the network from Figure 1. In fact, one can
produce dozens of examples by going through the 4-node input-output networks classified in
Huang and Golubitsky [17]. In a biological application the purpose is to understand how a
biological mechanism gives rise to biological behavior. This requires deep understanding of
the underlying biology.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

52
.3

.4
3.

46
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



HOMEOSTASIS PATTERNS 2289

There are two promising examples that are currently under investigation. The first is a
model of intracellular iron regulation, adapted from Chifman et al. [8], that takes into account
free iron ions in the cytosol and in the mitochondria [3]. In this example the input-output
network has eight nodes and two homeostasis patterns. The second is a model of intracellular
cholesterol regulation proposed by Pool, Sweby, and Tindall [23] after model reduction by
quasi-steady state approximation [3]. In this example the input-output network has 12 nodes
and we find 4 homeostasis types/patterns.

Let us give some details of the analysis of the intracellular cholesterol regulation. Starting
with the reduced nondimensional system of Pool, Sweby, and Tindall [23, eqs. 36--48] we write
down the ``generic admissible system,"" that is, the most general system of ODEs that have the
same state variables on the right-hand side as the original system. From the generic admissible
system it is easy to obtain the input-output network \scrG ---including the input parameter, the
input node, and the output node; see Figure 8. The names of the nodes are the state variables
defined in Pool, Sweby, and Tindall [23] and they reflect the biology of the intracellular
cholesterol signaling network. The next step is to construct the homeostasis pattern network \scrP 
from the input-output network \scrG ; see Figure 9. Note that \scrG has four homeostasis subnetworks.
Finally, using this paper, we can compute the homeostasis patterns on \scrP ; see Figure 10.

lRB

lE

vE

vRB vI

rI

rf

lI

mr

mh h

c

Figure 8. Input-output network \scrG associated to the intracellular cholesterol regulation model from Pool,
Sweby, and Tindall [23]. The input parameter \omega affects the input node vE. The output node is c.

Input vE L̃1 c Output

Ã1 Ã2Ã3

Figure 9. Homeostasis pattern network \scrP associated to the 12-node input-output network \scrG from Figure 8.
The only structural pattern subnetwork is \widetilde \scrL 1 = \{ mr, IE , IRB , iI , vRB , vI , rf , rI\} . The appendage pattern subnet-

works are \widetilde \scrA 1 = \{ mh\} , \widetilde \scrA 2 = \{ h\} , \widetilde \scrA 3 = \{ mr\} .
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vE L1 c

A1 A2A3

(a) Pattern from L1

vE L1 c

A1 A2A3

(b) Pattern from A1

vE L1 c

A1 A2A3

(c) Pattern from A2

vE L1 c

A1 A2A3

(d) Pattern from A2

Figure 10. Homeostasis patterns on network \scrP . Homeostatic nodes in blue; triggering node in red.

Table 2
Infinitesimal homeostasis patterns and their corresponding homeostasis subnetworks.

Homeostasis type Homeostasis pattern Figure 10

\scrL 1 \{ c,mh, h,mr\} (a)
\scrA 1 \{ c,mr\} (b)
\scrA 2 \{ c,mh,mr\} (c)
\scrA 3 \{ c,mh, h\} (d)

In Table 2 we list the nodes in \scrG that are simultaneously homeostatic in each homeostasis
pattern. In the terminology of Golubitsky and Stewart [16] this is the ``model independent""
part of the analysis.

Now comes the most interesting and challenging step, in which one has to resort to the
original biological model and the underlying biology to determine which homeostasis patterns
occur in the particular model and which are biologically significant. The development of
these ideas would depart from the subject matter of this paper and is deferred to a future
publication [4].

Acknowledgment. We thank Marcus Tindall for helpful discussions.
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