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Synopsis Phenotypes are remarkably robust to genetic and environmental variation. Although the general control

principles of robustness are well understood in simple systems, the actual mechanisms that convey robustness in real-

istically complex systems have been little studied. We have studied the origins and properties of robustness in a complex

metabolic system that is relevant to human health: folate-mediated one-carbon metabolism (FOCM). The FOCM network

consists of several interlocking cycles, and reactions in the system contain the rate-limiting steps for DNA synthesis, the

reactions for DNA methylation, and the synthesis of glutathione, the primary endogenous anti-oxidant. Defects in FOCM

can arise from mutations in enzymes, or from nutritional deficiencies such as folic acid and vitamins B6 and B12, and are

associated with birth defects, anemia, cardiovascular disease, and cancer. We show that this metabolic network has

evolved as diverse homeostatic mechanisms that stabilize critical reactions against genetic and environmental variation.

These mechanisms achieve stability dynamically, by continually altering some reaction rates in order to keep critical

reactions stable. Robustness is a systems property and exists only in restricted regions of genotype space, and we show

that natural standing genetic variation in human populations is concentrated in these regions. We show how genetic

perturbations and/or environmental shifts that disrupt the homeostatic regime can increase phenotypic variation and the

correlation between standing genetic variation and phenotypic variation. Robustness and stability are never perfect and,

because they are maintained dynamically, can be readily perturbed by both genetic and environmental factors. The

tightrope between stability and change sways easily and, through the release of genetic variation, may be an important

enabler of rapid phenotypic evolution. Although we use examples from a metabolic system in which quantification of

mechanism is particularly accessible, we note that the same principles obtain in other homeostatic systems in physiology

and development.

Introduction

Phenotypes are said to be robust to genetic varia-

tion if their variation is uncorrelated, or only weakly

correlated, with variation in specific genetic loci. There

are two reasons why variation in a gene could have

no effect on a phenotype. It could be because the

gene in question is irrelevant to the ontogeny or

function of that particular phenotype. Or it could be

because the gene plays an important role in the func-

tion of the trait and some mechanisms exist that make

the phenotype (relatively) insensitive to variation in

that particular gene. Only the latter case is biologically

interesting. The most common way of assessing robust-

ness of a phenotype to mutation is to measure the cor-

relation between a mutation and a phenotype in

different genetic backgrounds or in different environ-

ments (de Visser et al. 2003; Gibson and Dworkin 2004;

Kaneko 2012b). If the magnitude of the correlation

depends on the genetic background then one may con-

clude that in some genetic backgrounds, the phenotype

is more robust (or better canalized) than in others. The

same result can be achieved by testing whether, and

how, the correlation changes under different environ-

mental conditions (Kaneko 2012a; Stewart et al. 2012).

If the correlation does not change, no matter what the
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genetic background, it is impossible to say whether this

is due to a mechanism that conveys robustness or

simply because the mutation is irrelevant.

Robustness to environmental variation is ascer-

tained similarly. Just as with genes, some environ-

mental variables are simply irrelevant to the

ontogeny or function of a trait. So when a phenotype

does not change as a particular environmental vari-

able changes that does not mean the trait is robust to

that particular environment. If the correlation be-

tween environmental variation and phenotypic vari-

ation depends on genetic background, then it is

possible to determine in what genetic background

the trait is most robust against variation in that par-

ticular environmental variable.

Methods employing correlation and covariance

have two limitations. First, they cannot say anything

about the mechanism by which robustness is

achieved. Second, because they can only measure

the linear relationships among factors they cannot

deal with the consequences of nonlinearity. This is

problematic because not only is nonlinearity in bio-

logical systems pervasive, it is also essential for the

development and evolution of robustness.

Nonlinearity and robustness

The processes that give rise to biological form and

function are non-linear: the kinetics of biochemical

and molecular reactions are non-linear, feedback

mechanisms are non-linear, transport mechanisms

are non-linear, the kinetics of signaling pathways

are non-linear, and growth processes are non-

linear; indeed, any process that is regulated is inher-

ently non-linear.

Robustness is due to the non-linear relationship

between genotype and phenotype. This is perhaps

easiest to visualize by a graphical example (Fig. 1).

Relationships between genotype and phenotype, or

between cause and effect, or input and output, are

typically sigmoidal; at low levels of input there is no

output, then there is a more-or-less gradual increase

in the response, which eventually saturates at very

high inputs (Fig. 1A). In regulated systems, there

can also be a chair-shaped relationship in which at

low inputs there is a positive relationship between

input and output, followed by a region in which

increasing input has little effect on output, and

then a region in which higher inputs are accompa-

nied by ever higher outputs (Fig. 1B). Networks of

chemical reactions, signaling cascades, and con-

strained growth (e.g. logistic or Gompertz growth)

are examples of the first kind of nonlinearity. The

second kind is found in homeostatic mechanisms. In

both cases there are regions where the output (phe-

notype) is robust and unvarying with respect to var-

iation in the input (genotype), and regions where it

is not.

This is an important point: phenotypes are not

unconditionally robust. Rather, their robustness is

context-dependent: context being provided by the

underlying mechanisms that give rise to the particu-

lar shape of the genotype/phenotype curve and by

the particular value of the genotype. For some

range of values there is robustness, but for adjacent

values there may not be.

The general control mechanisms that can produce

robustness are well known; they include negative

feedback, auto-regulation, positive feedback, coop-

erativity, feed-forward control, lateral inhibition,

source–sink gradients, oscillators, saturation kinetics,

capacitance, modularity, redundancy, and parallel

pathways (Nijhout 2002; Eldar et al. 2004; Kitano

Fig. 1 Two common modes of nonlinearity. (A) sigmoidal rela-

tionships between cause and effect, where the output is stable at

low and at high levels of input, are typical of signaling systems and

systems exhibiting cooperativity. The right-hand side of the curve

depicts saturating relationships characteristic of many biochemical

systems. (B) Chair-like relationships, where the output is stable

for an intermediate range of inputs but not robust when inputs

are very low or very high, are found in homeostatic systems.
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2004; Alon 2007; Whitacre and Bender 2010). How

these mechanisms confer stability has been best stud-

ied in the great diversity of physiological homeostatic

mechanisms, but they have also been studied in gene

regulatory networks, signaling networks, metabolic

networks, cell motility, morphogenesis, neural cir-

cuits, and behavior.

Mathematical models

The mechanisms that give rise to robust phenotypes

are complex in the sense that they contain a very

large number of interacting parts whose kinetics are

nonlinear and that vary in time and space. Most

recent experimental and theoretical studies on mech-

anisms of robustness are carried out on small sys-

tems, often called toy systems or motifs, and the

principal aim has been to understand the general

principles of control. However, because the control

systems are nonlinear, and are, in nature, embedded

within much larger nonlinear systems, it is not guar-

anteed that the behavior they exhibit in isolation in

any way resembles their operation in situ.

The complexity and nonlinearity of real systems

make the effect of variation in any of its components

context-dependent. That is, the effect depends on the

state of other components in the casual network, and

as a consequence, the effect of a mutation is not a

property of a gene, but rather is a systems property

(Nijhout and Paulsen 1997).

Most real systems are sufficiently complex that it

is impossible to do simple thought experiments to

discover their probable function, or to deduce how

they would be affected by mutation or by

Fig. 2 (A) Reaction diagram of FOCM that is the foundation of the mathematical model whose results are described here. The

meaning of the acronyms and the structure of the mathematical model are described in detail by Nijhout et al. (2004, 2006) and Reed

et al. (2008). (B) Structure of some of the long-range allosteric interactions in which metabolites affect the activity of enzymes

elsewhere in the network (illustrated for the cytosolic components of the methionine and folate cycles).
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environment. Moreover, most systems are incom-

pletely understood either in terms of the component

parts, their interconnections, or their kinetics. The

only way in which we can test the quality of our

understanding of a system is by means of a mathe-

matical model.

A mathematical model is a quantitative descrip-

tion of what we believe to be the components of

a system and the kinetics through which they inter-

act. The adequacy of a mathematical model is tested

against experiments and data that did not go into the

original construction of the model. If the model does

not give the correct results it means that something

is wrong, or incomplete, in our understanding or

description of the mechanism. If a model succeeds

in reproducing the results of new experiments then

we may conclude that the mechanism it describes is

sufficient. Models are progressively modified and val-

idated against ever more diverse and detailed exper-

imental data until one gains confidence that the

model has captured the essential parts of the

mechanism.

Thus, in order to study the mechanisms that give

rise to robustness in real systems it is necessary to be

able to develop mathematical models for the entire

causal chain between genotype and phenotype

(Nijhout 2002). It is necessary to know the compo-

nent parts of the network and the kinetics by which

they operate. There are few systems in which this can

be done well. In most developmental systems, the

available data are essentially static snapshots, in

most physiological systems it is difficult to deduce

the effects of specific genes, and in gene regulatory

networks it is difficult to deduce higher-level pheno-

types. In most systems, it is necessary to evoke one

or more ‘‘black boxes’’ for some of the internal steps,

whose properties are generally assumed to be simple

and linear. More often than not, the kinetics by

which the different components operate are

unknown.

Metabolic networks are among the few systems in

which the structure of the entire system and the ki-

netics of the components are well enough under-

stood to be able to develop accurate mathematical

models. Moreover, the mechanisms by which many

metabolites affect higher-level phenotypes are, in

many cases, well understood. Metabolic systems

that are relevant to human health have been parti-

cularly well-studied with an abundant literature both

on the structure of the networks and the kinetics of

their component parts. They are among the few sys-

tems in which it is possible to study the mechanisms

of robustness in a real and non-trivial complex

system.

A complex metabolic network

We have studied robustness in a variety of metabolic

networks of biomedical importance (Nijhout et al.

2004, 2006, 2009; Reed et al. 2008, 2010; Best et al.

2009, 2010a, b; Gregory et al. 2013). Because defects

in these networks are associated with a variety of

human diseases, their components have been

extremely well studied. What we have done is put

all this information together into integrated models.

We study these systems by building models based on

differential equations. Here, we will consider only

models we have developed for folate-mediated one-

carbon metabolism (FOCM). The work below is

based on mathematical models of these mechanisms,

illustrated in Fig. 2 and described in detail by

Neuhouser et al. (2011), Nijhout et al. (2004,

2006), and Reed et al. (2006, 2008).

‘Folate-mediated one carbon metabolism’ consists

of the folate cycle, the methionine cycle, and gluta-

thione synthesis (Fig. 2). One of the functions of this

network is to take in amino acids (primarily serine

and glycine) and reduce them to methyl groups

(hence one-carbon) that are then used in a host of

methyl transfer reactions that build complex metab-

olites and are used in reactions such as DNA and

histone methylation, and the first steps in the syn-

thesis of purines and pyrimidines. The thymidylate

synthase (TS) reaction, for instance, is the rate-lim-

iting step for DNA synthesis (Chen et al. 2003) and

is therefore a target of chemotherapeutic anti-cancer

drugs (e.g. fluorouracil) because if DNA synthesis is

blocked, cell division stops.

Various forms of folate (also known as vitamin

B9) are the primary methyl-group carriers in the fo-

late cycle. Folate deficiency can lead to birth defects

such as anencephaly and spina bifida because the TS

reaction is slowed down such that cells cannot divide

rapidly enough during dorsal closure in early embry-

onic development and thus fail to close the neural

tube. A folate deficiency also causes the accumulation

of homocysteine (Hcy, one of the metabolites in the

methionine cycle), a highly reactive and toxic amino

acid that stimulates expression of Vascular Cell

Adhesion Molecule-1 (Silverman et al. 2002) that is

a major factor in vascular plaque formation and car-

diovascular disease. Deficiencies in the folate and

methionine cycles can lead to mis-methylation of

DNA, which results in inaccurate gene silencing

and is associated with various cancers. Methylation

reactions are required in the synthesis of dopamine

and serotonin, and defects in methylation capacity

are associated with a variety of neurological and af-

fective disorders (Reynolds 2006). Glutathione is the
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main endogenous antioxidant, and deficiencies that

lead to reduced glutathione synthesis impair the abil-

ity of cells and tissues to deal with oxidative stress.

Glutathione is also involved in a broad variety of

detoxification reactions of metabolic by-products

and ingested toxins.

The operation of FOCM depends on many genetic

and environmental factors. Genetic factors include

the genes for the enzymes and transporters.

Environmental factors include the amino acids that

serve as sources for methyl groups, and, in addition

to folate, vitamins B6 and B12, which act as cofactors

for a number of enzymes in the system (Nijhout

et al. 2009; Kräutler 2012). Deficiencies in FOCM

can arise from mutations in the genes for the en-

zymes or transporters, and from insufficiency in

the supply of amino acids or B vitamins. The phe-

notypes of FOCM are the outputs, for example,

purine and pyrimidine synthesis, capacity for DNA

methylation, levels of S-adenosylmethionine (SAM,

the universal methyl donor), and the rate of glu-

tathione (GSH) production.

Robustness and homeostasis in the
FOCM network

Defects in FOCM are associated with a broad range

of diseases such as anemia, spina bifida and other

neural-tube defects, atherosclerosis and cardiovascu-

lar disease, affective disorders, and various cancers,

most prominent among which are colorectal and

pancreatic cancer (Stover 2004; Bailey 2010). Yet,

in spite of the importance of FOCM in human

health and disease, the system is subject to a great

deal of environmental and genetic variation.

Environmental variation comes in the form of large

hourly, daily and seasonal fluctuations in input of

amino acids and B vitamins. In addition, most of

the enzymes have multiple functional polymorphisms

(see Table 1 for a sample) that occur at high fre-

quencies in human populations.

Our computational models have revealed that these

systems are stabilized by numerous and diverse regu-

latory mechanisms, many involving activating and in-

hibitory allosteric regulation of enzymes by

metabolites far removed in the pathway (Fig. 2).

Because the FOCM network is highly interconnected

and multicyclical, every element is both upstream and

downstream of all others, so it is difficult to charac-

terize these allosteric interactions as standard feedback

or feed-forward regulations. In addition to allosteric

interactions, there are many parallel pathways and

many reactions in the folate cycle that are subject to

product inhibition and substrate inhibition (Nijhout

et al. 2004; Reed et al. 2010). These various structural

and regulatory mechanisms buffer the outputs against

short-term fluctuations due to environmental varia-

tion in the inputs. They also make the outputs rela-

tively insensitive to genetic variation. The robustness

against environmental and genetic variation has some

very interesting properties.

Dynamic stability against environmental
variation

In our models, we can simulate natural daily fluctu-

ations in amino acid input with meals (Nijhout et al.

2008; Reed et al. 2008). Figure 3 shows how several

metabolites and reaction velocities in FOCM fluctu-

ate with daily variation in amino acids. Many

Table 1 Selected mutations in FOCM and their effects on the activities of the respective enzymes

Protein* Mutation % Activity wrt Wild type* Cofactor Vitamin References

MS** A2756G 50 B12 (cobalamin) Harmon et al. (1999), Ma et al. (1999) and Tsai et al. (2000)

MS D919G 60

MTHFR C677T 40 B2 (Riboflavin) Weisberg et al. (1998) and Lievers et al. (2001)

MTHFR A1298C 68 B9 (folate)

TS 2rpt/3rpt 42 B9 (folate) Trinh et al. (2002) and Kealey et al. (2005)

TS 1494del6 24

CBS M173V 38 B6 (pyridoxal-P) Pogribna et al. (2001) and Urreizti et al. (2006)

CBS A226T 19

CBS R548Q 60

CBS Down 150

*Activity of the homozygous mutant. Many of these mutations are recessive at the phenotypic level, but we model them as co-dominant at the

biochemical level. MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase; TS, thymidylate synthase; CBS, cystathionine-�-

synthase.

**Activity of MS alleles has not been measured; we calculate it here as the activity required to change homocysteine levels reported in the

literature.
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fluctuate severely, and some reactions (e.g. SHMT)

even reverse direction, but the critical reaction in the

system: purine and pyrimidine synthesis (represented

by the AICART and TS reactions, respectively),

methylation of DNA, and synthesis of glutathione

remain very steady. The important feature here is

that the overall steady-state of the system is not

stable but varies dynamically with variation in

input. Only the most important outputs of the net-

work are robust, and the fluctuations elsewhere are

designed to actively maintain that stability. Thus, ro-

bustness to environmental variation has the charac-

teristics of physiological homeostasis: the dynamics

of the system change continually, thereby actively

maintaining one or more outcomes at a particular

set-point. This stability depends on several of the

allosteric interactions. When we eliminate the repres-

sion of DNA-methyltransferase (DNMT) by S-ade-

nosylhomocysteine (SAH), the DNMT reaction

becomes much more sensitive to variation in

amino-acid input (Fig. 3).

Homeostasis and cryptic genetic
variation

Many functional polymorphisms in the genes for the

enzymes in FOCM have been described that have

severe effects on the activities of the relevant

enzymes, but the association with health outcomes

is quite variable among individuals and populations

(Sharp and Little 2004; Ulrich et al. 2005; Bailey

2010; Kennedy et al. 2012). We investigated whether

our mathematical models could help explain why

phenotypes are relatively insensitive to this genetic

variation. Figure 4 illustrates several phenotypic

landscapes for FOCM. Phenotypic landscapes are

graphs of how the phenotype changes with variation

in one or more of the underlying causal factors. In

these cases, the X and Y axes represent gene (or

enzyme) activities for two genes whose effect on phe-

notypic variation we wish to assess. The Z axes are

the relevant phenotypes. Because the relationship

between causal factors and the phenotype is non-

linear, their interaction produces rather complex

nonlinear landscapes. The shape of the landscape is

a systems property and is determined by all the

causal factors that are not being graphed. A muta-

tional change in one of those factors will change the

shape of the phenotypic landscape and will thus alter

the relationship of the phenotype to the two causal

factors in the graphs.

The values of the X and Y axes are shown as per-

cent deviations from the wild-type genotype (we

assume wild-type to be the most common genotype

in the population). The positions of the wild types

are shown by the large white circles. In all cases, the

wild-type is located in a region of the landscape that

is relatively flat and normal to the Z axis. These are

the regions where genetic variation has the least

Fig. 3 (A, B, and C) Variation of reaction velocities and metab-

olite levels during a 24-h period in response to variation in

amino-acid input associated with three meals (gray bars in panel

C), based on Nijhout et al. (2008) and Reed et al. (2008).

Reaction velocities are shown as % deviation from the mean;

values below �100% signify reversals of direction of the reaction.

(D) Eliminating feedback from SAH increases the sensitivity of the

DNMT reaction to variation in amino-acid input.
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effect on the phenotype. We also plot the positions

of several of the polymorphisms (from Table 1). The

landscapes illustrate how it is that polymorphisms

with a large effect on the activity of the enzyme

nevertheless have relatively little effect on the pheno-

type. This is because there is a rather large ‘‘safe

zone’’ around the wild type where the landscape is

relatively flat. The phenotypic landscapes show that

the effect of allelic variation is contingent on the

genetic background. This can be seen in any of the

landscapes by observing how the relationship be-

tween one gene and the phenotype changes when

one holds the second gene constant at different

values. The phenotypic landscapes that are illustrated

can thus be seen as sections through a multidimen-

sional space of causal factors where all other factors

are held constant. Just as the relationship of one gene

depends on the value of the other gene, so does it

depend on the values of all other genes in the system.

Mutations in the genes that are being graphed move

a point across the landscape, whereas mutations in

genes not being graphed have their effect by altering

the shape of the landscape, as we will see below.

Destabilizing homeostasis releases
cryptic genetic variation

The slope of the phenotypic landscape is a measure of

robustness. The slopes around the wild-type are small,

but seldom zero, so although the wild-type phenotype

is robust to genetic variation, it is not perfectly so.

The clustering of standing genetic variation within the

safe zone where the phenotypic landscape has a low

slope shows that this variation is, in effect, cryptic;

it has little or no effect on the phenotype. We exam-

ined whether this robustness to genetic variation was

due to the allosteric interactions within the network.

Using our mathematical models, we selectively

Fig. 4 Phenotypic landscapes that show the effect of variation of four pairwise combinations of enzymes on phenotypes in FOCM.

Large white circles indicate location of wild types. Smaller circles indicate locations of polymorphisms of enzymes depicted on the X

and Y axes, taken from Table 1. The wild type and most mutations lie in regions where the landscape is relatively flat. Although genetic

variation along the X and Y axes is large, mutations have relatively little effect of the phenotype (Z axis). MS, methionine synthase; TS,

thymidylate synthase; MTHFR, methylenetetrahydrofolate reductase; AICART, aminoimidazolecarboxamide ribonucleotide transferase;

Hcy, homocysteine.
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canceled some of the allosteric interactions in FOCM.

The effects on the shapes of the phenotypic landscapes

were dramatic (Fig. 5). In all cases, reducing or elim-

inating the allosteric effects of SAM or 5mTHF in-

creased the slope of the phenotypic landscape. The

phenotypes are now extremely sensitive to what was

previously cryptic genetic variation.

Thus, disruption of a stabilizing mechanism pro-

vided by the allosteric interactions releases cryptic

genetic variation. This study thus supports the theo-

retical notion that disruption or destabilization

of canalizing or homeostatic mechanisms can

enhance phenotypic variability by releasing previ-

ously cryptic genetic variation (Gibson and

Dworkin 2004; Suzuki and Nijhout 2006; West-

Eberhard 2003, 2005).

Environmental destabilization

The X and Y axes of the phenotypic landscapes can

also represent environmental variation. For instance,

the enzyme methionine synthase (MS in Figs. 4 and

6) requires vitamin B12 as a cofactor. A vitamin

deficiency reduces the activity of the enzyme and

will thus have the same effect as a mutation that

reduces its activity. This puts genes and environment

on the same footing. If the effect of an environmen-

tal factor on any of the causal factors of the pheno-

type is known, then that effect can be graphed as a

phenotypic landscape.

A folate deficiency is a well-established risk factor

for birth defects, cardiovascular disease, and some

cancers (Stover 2004; Bailey 2010). We examined

the effect of a folate deficiency on the phenotypic

landscape for FOCM and illustrated the landscape

for homocysteine (Fig. 6A). The landscape is tilted

and the phenotypic effects of standing genetic var-

iation become much bigger than they were under a

sufficient folate status. Vitamin B12 deficiencies are

associated with a variety of illnesses, such as

anemia, hyperhomocysteinemia, cardiovascular dis-

ease, and various neurological disorders. Vitamin

Fig. 5 Eliminating an allosteric interaction destabilizes the phenotype and makes it more sensitive to standing genetic variation. The gray

landscapes are the same as the four landscapes illustrated in Fig. 4. The colored landscapes are those obtained when a regulatory

feedback is eliminated.
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B12 is a required co-factor for MS and a defi-

ciency affects the kinetics of both the methionine

and folate cycles. In Fig. 6B, we illustrate the

effect of a vitamin B12 deficiency on the capacity

for methylation, taken here as the rate of the

DNMT reaction. The vitamin deficiency profoundly

alters the shape of the phenotypic landscape for

DNMT and, as in the case of a folate deficiency,

increases the phenotypic effects of standing genetic

variation.

Population distributions

The phenotypic landscapes graphed in Figs. 4–6 are

individual landscapes. This means that an individual

(e.g. wild-type) is represented by a point on that

landscape and it is implicit that nothing else, either

environment, or genotype, varies. Individuals in a

population, however, differ in both genotypic

makeup and environmental exposure, and therefore

each individual lives on a slightly different pheno-

typic landscape.

A large number of SNPs have been identified for

almost every gene in FOCM, and large population

samples, such as the NHANES studies (http://www.

cdc.gov/nchs/nhanes.htm), have revealed a very large

range of individual variation in metabolite values

that must be due to individual genetic and environ-

mental variation. We developed a variant of our

FOCM model that allows us to introduce a range

of variation in enzyme activities and nutrient

inputs and generate a population of virtual individ-

uals (Duncan et al. 2013). Distributions of metabo-

lite concentrations in these virtual populations

closely resemble those of the NHANES cohorts

(Duncan et al. 2013). An example of such a popula-

tion is shown in Fig. 7 where we plot the relationship

between methylenetetrahydrofolate reductase

(MTHFR) and capacity for methylation of DNA,

partitioned into three cohorts of individuals that

differ in TS genotypes. It is clear that there is a

great deal of individual variability, that the relation-

ship is not linear, and that this relationship is, again,

context-dependent.

Fig. 6 Environment affects the shapes of phenotypic landscapes.

(A) Effect of a folate deficiency. The horizontal transparent plane

(a) shows the effect of variation in MTHFR and TS on the

AICART reaction under normal folate. The inclined plane (b)

shows the relationship under a folate deficiency. (B) Effect of a

vitamin B12 deficiency. The more horizontal transparent plane (a)

shows the effect of variation in MTHFR and TS on DNA meth-

ylation with adequate vitamin B12. The inclined plane (b) shows

the relationships under a vitamin B12 deficiency. The white circle

indicates the position of the wild-type.

Fig. 7 Distribution of a population of virtual individuals with

variation in both genetic makeup and environmental exposure

based on the model described by Duncan et al. (2013), parti-

tioned by the 2rpt/3rpt TS genotype from Table 1. High, low, and

medium TS refer to the values of the two homozygotes and

heterozygotes, respectively.
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Discussion and conclusions

Robustness is contingent and never absolute. We il-

lustrate this by means of well-validated mathematical

models of a complex metabolic system. The system

we studied has profound implications for human

health and diseases and, as a consequence, the struc-

ture of the network and the kinetics of its compo-

nent parts have been exceptionally well studied. In

this system, robustness is achieved by a variety of

mechanisms that include feedback, substrate-inhibi-

tion, long-range allosteric regulation, and parallel

pathways. All these mechanism operate simulta-

neously to stabilize the systems against both environ-

mental perturbations and genetic polymorphisms.

Using our mathematical models, we examined the

mechanisms by which genetic polymorphisms with

severe effects at the molecular level can have only

minor effects at the phenotypic level.

Robustness against short-term environmental per-

turbations is not due to the inherent stability of the

steady-state. Rather, it is achieved dynamically by

often severe fluctuations in many reactions in the

system that serve to stabilize a few critical reactions

that are the main phenotypic outputs of these sys-

tems (Fig. 3). Thus, robustness in this metabolic

system has the characteristics of physiological ho-

meostasis, where a particular set-point of the pheno-

type is stabilized by a diversity of ever-changing

kinetic measures and countermeasures. Interestingly,

the regulation of stability in some gene-activation

networks also has the characteristics of a homeostatic

system (MacNeil and Walhout 2011).

Robustness to functional mutations that alter the

activity of gene products depends on the same kinds

of interactions that stabilize phenotypes against

short-term perturbations. We illustrate robustness

by means of phenotypic landscapes: graphs that

show the relationships between genetic variation

and phenotypic variation. The slopes of phenotypic

landscapes are measures of robustness. The shapes of

phenotypic landscapes are systems properties and

depend on all the genetic and environmental factors

that affect the phenotype. Wild-type genotypes and

much of standing genetic variation occur in regions

of the landscapes that have a relatively low slope with

respect to the phenotype (Fig. 4). Thus, although the

genetic variation is large along the genotype axes, it

is, in most cases, quite small along the phenotype

axes. This standing genetic variation is nearly cryptic

in regard to its effect on the phenotype. It is never

perfectly cryptic, because the slopes are seldom, if

ever, zero. This is probably a general feature of

robust systems: robustness is never absolute.

More importantly, there are many ways in which

robustness can be perturbed. We showed that alter-

ing one or more of the allosteric interactions severely

tilts the phenotypic landscapes (Fig. 5). These results

show that the long-range allosteric interactions are

the mechanisms that stabilize the phenotypes (see

also Nijhout et al. 2006, 2008). Thus, mutations

that alter the strength of allosteric interactions can

release standing genetic variation (West-Eberhard

2003, 2005; Gibson and Dworkin 2004; Badyaev

2005). Environmental factors likewise can alter the

slopes of the phenotypic landscape (Fig. 6) and

make phenotypes more sensitive to a standing ge-

netic variation.

These molecular homeostatic mechanisms, just

like the well-studied heat shock protein HSP90, act

as capacitors for genetic variation (Rutherford and

Lindquist 1998; Milton et al. 2006; Rutherford

et al. 2007), although they do so by fundamentally

different mechanisms. HSP90 is a chaperone that

stabilizes the structure of metastable proteins and

essentially masks genetic variation that would alter

their structure. Environmental stressors can deplete

HSP90 and thus release accumulated genetic varia-

tion. Homeostatic mechanisms, by contrast, do not

abolish the effects of genetic variation on the activity

of proteins, but establish a set of systems properties

that act dynamically to make the phenotypes that

emerge from these complex interactions insensitive

to that variation. Environmental stressors, as well

as mutations, alter the internal dynamics of the

system and that causes standing genetic variation to

become more highly correlated with phenotypic

variation.

The mathematical properties of these homeostatic

mechanisms allow us to explain why genetic poly-

morphisms with rather large molecular effects, and

which would on the face of it appear to be deleteri-

ous, can nevertheless have small phenotypic effects

and thus accumulate and be maintained in a popu-

lation. They also allow us to understand why the

association between those polymorphisms and dis-

ease outcomes is extremely variable both within

and between populations. This is because no two

individuals are identical in genetic makeup or envi-

ronmental exposure and will therefore have different

phenotypic landscapes. Moreover, that landscape

changes as environmental exposures change and so-

matic mutations accumulate during a lifetime.

Genetic variation, therefore, does not have a fixed

relationship to the phenotype. Rather, it varies

among populations and among individuals, and

within an individual it varies over time. For instance,

many individuals develop a deficiency in vitamin B12
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as they age, and Fig. 6B illustrates that such a defi-

ciency could lead to inappropriate methylation of

DNA and therefore mis-expression of a variety of

genes, which could be associated with the diverse

symptoms associated with aging and senescence.

The most remarkable feature of the phenotypic

landscapes we explored is that in almost all cases

the wild-type phenotype/genotype is located where

the slope is smallest. This suggests that past evolution

must have operated to make the wild-type as robust

to genetic and environmental variation as possible.

Insofar as phenotypic landscapes are smooth and

continuous, the genetic neighborhoods around the

wild type will also be robust to genetic variation,

allowing for the accumulation of standing genetic

variation that has little effect on the phenotype.

Phenotypic landscapes, however, are plastic. This

is because they are defined by factors that vary spa-

tially and temporally, and they are affected equally by

genetic and environmental factors. Robustness is

therefore variable and context-dependent.

Individuals differ in the degree of robustness of

any given trait, and robust phenotypes can become

less (or more) robust during the life of an individual.

Organisms do not, therefore, have to ‘‘choose’’ be-

tween being robust or flexible (and evolvable); phe-

notypes can have different degrees of robustness that

can vary throughout life.

In this study, we used examples from a complex

metabolic network because we can account for all

steps and reactions in the mechanisms that connect

genotype and environment to phenotype, and because

the quantification of the kinetics of these mechanisms

is particularly accessible. We note, however, that the

same principles of dynamic stability and contingent

robustness obtain in all homeostatic systems in physi-

ology and development.
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