References

Below is a bibliography with the key academic papers that were used in the development of MDAST.  These papers either informed the model structure in MDAST, or informed parameter values.  It should be pointed out that the structure of the underlying transmission model is heavily based on Griffin, Hollingsworth, et al. (2010), and we recommend users look at this paper to understand many of the details of MDAST.

1.             Van den Berg, H., Global status of DDT and its alternatives for use in vector control to prevent disease, Stockholm Convention on Persistent Organic Pollutants, Editor 2007: Geneva, Switzerland.

2.             Djogbénou, L., V. Noel, and P. Agnew, Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malaria Journal, 2010. 9(12).

3.             Reimer, L., et al., Relationship Between kdr Mutation and Resistance to Pyrethroid and DDT Insecticides in Natural Populations of Anopheles gambiae. Journal of Medical Entomology, 2008. 45(2): p. 260-266.

4.             Nauen, R., Insecticide resistance in disease vectors of public health importance. Pest Management Science, 2007. 63: p. 628-633.

5.             Müller, P., et al., Field-Caught Permethrin-Resistant <italic>Anopheles gambiae</italic> Overexpress CYP6P3, a P450 That Metabolises Pyrethroids. PLoS Genet, 2008. 4(11): p. e1000286.

6.             Okoye, P.N., et al., Relative developmental and reproductive fitness associated with pyrethroid resistance in the major southern African malaria vector, Anopheles funestus. Bulletin of Entomological Research, 2007. 97: p. 599-605.

7.             Rowland, M., Behaviour and fitness of Gamma-HCH Dieldrin resistant and susceptible female Anopheles gambiae and Anopheles stephensi. Med Vet Entomol, 1991. 5: p. 193-206.

8.             Rowland, M., Activity and mating competitiveness of Gamma-HCH Dieldren resistant and susceptible male and virgin female Anopheles gambiae and Anopheles stephensi mosquitoes, with an assessment of an insecticide-rotation strategy. Med Vet Entomol, 1991. 5: p. 207-222.

9.             Agnew, P., et al., Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution, 2004. 58(3): p. 579-586.

10.          Stump, A.D., et al., Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. American Journal of Tropical Medicine and Hygiene, 2004.

11.          Sarita, K., et al., Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector, Aedes aegypti L. Top Biomed, 2009. 26(2): p. 155-64.

12.          Raymond, M., et al., Insecticide resistance in the mosquito Culex pipens: what have we learned about adaptation? Genetica, 2001. 112-113: p. 287-296.

13.          Penilla, P.R., et al., Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Medical and Veterinary Entomology, 1998. 12(3): p. 217-233.

14.          Trape, J.-F., et al., Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. The Lancet Infectious Diseases, 2011.

15.          Lubell, Y., et al., The impact of response to the results of diagnostic tests for malaria: cost-benefit analysis. BMJ, 2008. 336: p. 202-205.

16.          Bornman, R., C. D. Jager, et al. (2009). “DDT and urogenital malformations in newborn boys in a malarial area.” BJU International 106(3): 405-411.

17.          Chitnis, N., A. Schapira, et al. (2010). “Comparing the effectiveness of malaria vector-control interventions through a mathematical model.” American Journal of Tropical Medicine and Hygiene 83(2).

18.          Cohen, J. and P. Dupas (2010). “Free Distribution or Cost-Sharing? Evidence from as Randomized Malaria Prevention Experiment.” Quarterly Journal of Economics 125(1): 1-45.

19.          Griffin, J. T., T. D. Hollingsworth, et al. (2010). “Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies.” PLoS Med 7(8): e1000324.

20.          Guyatt, H. L., J. Kinnear, et al. (2002). “A comparative cost analysis of insecticide-treated nets and indoor residual spraying in highland Kenya.” Health Policy Plan. 17(2): 144-153.

21.          Kramer, R. A., K. L. Dickinson, et al. (2009). “Using decision analysis to improve malaria control policymaking.” Health Policy 92(2): 133-140.

22.          Laxminarayan, R. (2004). “ACT Now or Later? Economics of malaria resistance.” American Journal of Tropical Medicine and Hygiene 7(2).

23.          Read, A. F., P. A. Lynch, et al. (2009). “How to Make Evolution-Proof Insecticides for Malaria Control.” PLoS Biology 7(4).

24.          Reimer, L., E. Fondjo, et al. (2008). “Relationship Between kdr Mutation and Resistance to Pyrethroid and DDT Insecticides in Natural Populations of Anopheles gambiae.” Journal of Medical Entomology 45(2): 260-266.

25.          Rowe, A. K. and R. W. Steketee (2007). “Predictions of the Impact of Malaria Control Efforts on All-Cause Child Mortality in Sub-Saharan Africa.” American Journal of Tropical Medicine and Hygiene 77(6).

26.          Shaukat, A. M., J. G. Breman, et al. (2010). “Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission.” Malaria Journal 9(122).

27.          White, L., R. Maude, et al. (2009). “The role of simple mathematical models in malaria elimination strategy design.” Malaria Journal 8(1): 212.

28.          Worrall, E., S. J. Connor, et al. (2007). “A model to simulate the impact of timing, coverage and transmission intensity on the effectiveness of indoor residual spraying (IRS) for malaria control.” Tropical Medicine and International Health 12(1): 75-88.

29.          Worrall, E., S. J. Connor, et al. (2008). “Improving the cost-effectiveness of IRS with climate informed health surveillance systems.” Malaria Journal 7(263).

30.          Zongo, I., G. Dorsey, et al. (2007). “Artemether-lumefantrine versus amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Burkina Faso: a randomised non-inferiority trial.” The Lancet 369(9560): 491-498.