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Abstract

During an infectious-disease epidemic, a political leader imposes “stay-at-home or-

ders” (limiting activity) or “go-out orders” (mandating activity) whenever preferred by

the majority of the citizenry over the no-intervention status quo. We characterize the

resulting equilibrium epidemic trajectory in an economic-epidemiological model that

allows for asymptomatic infection and social-economic complementarities of activity,

assuming that citizens are myopic optimizers. We find that the qualitative features of

equilibrium policy dynamics hinge critically on whether the pathogen is transmitted

before or after infected people have developed symptoms. If transmission only occurs

symptomatically, then the leader never imposes stay-at-home orders on the healthy but

may impose go-out orders during some phases of the epidemic. However, if transmission

occurs asymptomatically, the leader never imposes go-out orders on the healthy.
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The COVID-19 pandemic has provided a stark example of how changes in behavior can

profoundly alter the course of a disease outbreak. Widespread physical-distancing measures

were initially effective at curbing the spread of the disease (Lau et al. (2020)), but the

resulting disruption to normal life came with enormous economic and social costs. For

instance, in early April 2020, the Wall Street Journal reported that “at least one quarter of

the U.S. economy has suddenly gone idle ... an unprecedented shutdown that economists say

has never occurred on such a wide scale” (Mitchell (2020)). Many willingly endured these

costs to reap the epidemiological benefits that come from mitigating disease spread (Faust

et al. (2021)),1 but early during the pandemic, many governments, firms, schools, and other

institutions imposed mandatory activity restrictions (e.g., lockdowns and “going remote”) as

a means to suppress disease transmission (Talic et al. (2021)). As the pandemic progressed,

however, many of these constraints were relaxed (Han et al. (2020)) and some firms even

began requiring employees to return to in-person work (King (2022)).

In this paper, we study the course of an infectious-disease epidemic in which policies that

limit or mandate the transmissive activity of a host population (e.g., citizens of a country,

workers in a firm) emerge endogenously depending on what sort of policy is most popular

among that population at each point in time. We consider a standard Susceptible-Carriage-

Infected-Recovered epidemiological model with asymptomatic infection and acquired immu-

nity, augmented by (i) an economic model in which each individual agent chooses their

level of activity, trading off the current risk of infection against the current social-economic

benefits associated with activity and (ii) a simple political model in which a policy that lim-

its activity (“stay-at-home orders”) or mandates activity (“go-out orders”) is put in place

whenever the majority of the population prefers that policy over the no-intervention status

quo.

Our epidemiological model emphasizes the role of asymptomatic carriage, that agents

can become infected prior to the onset of symptoms, and that pathogens may be more

or less transmissible during this asymptomatic phase. Such variable transmissibility is an

important factor for many real-world pathogens. For instance, the SARS-CoV-1 virus that

caused the 2003 SARS epidemic is capable of establishing asymptomatic infection but most

transmission occurs from those who are experiencing severe illness (Anderson et al. (2004)).

On the other hand, the HIV virus is 8-10 times more transmissible during the initial “acute

phase” when HIV infection causes cold-like symptoms, compared to later phases of infection

when AIDS-specific symptoms begin to emerge (Pilcher et al. (2004)).

1Whether individuals chose to distance from others early during the pandemic depended on many factors
that we abstract from in this paper’s analysis, such as whether they knew someone with direct personal
experience of the disease (Charoenwong et al. (2020)) and their ideological affiliation (Hsiehchen et al.
(2020)).
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Our key finding is that the qualitative features of equilibrium behavior during an epidemic

hinge on whether transmission occurs mainly before or during sickness. If transmission

only occurs symptomatically, then the political leader never imposes stay-at-home orders on

those who have not yet gotten sick but may impose go-out orders during some phases of the

epidemic. The reason for this, intuitively, is that activity by not-yet-sick agents creates a

positive externality for others when transmission only occurs from the sick. A go-out order

compelling not-yet-sick agents to be fully active could therefore sometimes be collectively

preferred by all not-yet-skc agents even if, individually, they would choose to minimize their

own activity.

By contrast, if transmission only occurs asymptomatically, then the leader never imposes

go-out orders on the not-yet-sick but may sometimes require them to stay home. The intu-

ition behind this finding is more nuanced, since not-yet-sick activity may create a positive

or negative externality for other not-yet-sick agents, depending on the state of the epidemic.

But as we show, not-yet-sick agents have a dominant strategy to go out whenever the epi-

demic state is such that going out creates a positive externality. By contrast, there may be

periods of time during the epidemic when not-yet-sick agents have an individual incentive

to go out but collectively prefer to all stay home.

Equilibrium epidemics in our model have some other interesting features as well, three of

which we highlight here. First, equilibrium policy dynamics can induce a “yo-yo effect” in

infection dynamics, whereby rapid oscillations in the equilibrium policy (repeatedly enforcing

and then relaxing constraints on agent behavior) cause the prevalence of infection to rapidly

rise and fall like a yo-yo for an extended period of time; see Figure 4. Second and similarly, the

policy-maker may in equilibrium need to randomize among policies over an extended period;

see Figure 6. Finally and perhaps most intriguingly, we find in a numerical example that the

overall social-welfare loss due to the disease is roughly linear in the severity of the disease.

This means that, at least in our example, the equilibrium benefits associated with reduced

activity due to preventing infection are roughly “cancelled out” by the social-economic costs

of this reduced activity; see Figure 8 and surrounding discussion.

Relation to the literature. The recent resurgence of interest in economic-epidemiological

models of infectious-disease epidemics2 builds on classic work by Philipson and Posner (1993),

Geoffard and Philipson (1996), Kremer (1996), Reluga (2010), Quercioli and Smith (2024),

and others. Like many papers in this literature, we derive an equilibrium epidemic trajectory

consistent with individual optimization at each point in time; some notable examples include

2Surveys of the recent COVID-inspired literature include Avery et al. (2020), McAdams (2021), and
Bloom et al. (2022). Influential earlier surveys include Philipson (2000), Gersovitz and Hammer (2003), and
Fenichel et al. (2011).
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Toxvaerd (2019), Farboodi et al. (2021), Keppo et al. (2020), Carnehl et al. (2023), and

McAdams et al. (2023). However, our modeling approach and motivation is distinctive from

the existing literature.

Most importantly, we consider a setting in which public-health-related policies at each

point in time emerge endogenously based on the will of the majority of the population and

hence are not necessarily optimal for the population as a whole. By contrast, there is a large

existing literature on lockdowns and other public-health interventions from a social-welfare

maximizing perspective, see e.g., Alvarez et al. (2021), Bethune and Korinek (2020), Forsyth

(2020), Jones et al. (2021), Rowthorn and Maciejowski (2020), Sims and Finnoff (2020),

Balazs Egert and Turner (2021), Budish (2024), and Rachel (2024).

If all agents were perfectly forward looking and sought to maximize overall social welfare,

then our model would generate the trivial outcome in which the policy-maker carries out

whatever policy is socially optimal. To focus on the novel implications of our approach, we

consider a world in which agents are neither forward looking nor altruistic. In particular, the

agents in our model are selfish myopic optimizers, trading off the current risk of becoming

infected against the current social-economic costs to themselves of reducing their own contact

with others. In this regard, the paper is closely related to Keppo et al. (2020) who also have

myopic-optimizing agents.

There are advantages and disadvantages to models with myopic-optimizing agents, com-

pared to the traditional approach of assuming perfect forward-looking optimization. The

most obvious disadvantage is that myopic-optimizing agents’ choices do not maximize their

overall lifetime welfare. The most obvious advantage is tractability, since one needs to con-

sider only the current state of the epidemic in order to determine agents’ incentives at that

time. This enhanced tractability makes it possible to characterize the equilibrium trajectory

of an epidemic when the pathogen has more complex biology. In particular, both Keppo

et al. (2020) and this paper are notable in being able to accommodate asymptomatic infec-

tion, whereas most prior work has focused on the simplest epidemiological models in which

infected agents immediately display symptoms. Finally, it is unclear whether actual agent

behavior is better captured by models with myopic optimization or forward-looking opti-

mization. Consequently, there is value in having both modeling approaches represented in

the literature

Another difference with most of the existing literature is that we follow McAdams (2020)

and McAdams et al. (2023) in highlighting the complementarities associated with social

activity.3 Following Geoffard and Philipson (1996), most recent work considers an especially

3Other notable works such as Philipson and Posner (1993), Toxvaerd (2017) and Toxvaerd (2021) have
analyzed complementarities in static or myopic-optimization frameworks.
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simple economic model with private benefits from activity, i.e., how much benefit an agent

gets from being active does not depend on the activity of others. Assuming that activity

only generates private benefits is technically convenient, since there can be a vast multiplicity

of equilibrium epidemic trajectories once complementarities are allowed, akin to how there

can be multiple equilibria in a standard coordination game. However, complementarities

are an essential aspect of much human activity and, as shown in McAdams et al. (2023),

some qualitative and quantitative findings about equilibrium epidemics derived in traditional

models without social-economic complementarities are not robust. Moreover, given that the

agents in our model are myopic, the political analysis here becomes trivial if there are no

complementarities. In particular, if the complementarity parameter (b2) equals zero so that

activity only generates private benefits, myopic not-yet-sick agents never perceive themselves

as facing a collective-action problem and hence never want the policy-maker to impose any

sort of restriction on their behavior.

The rest of the paper is organized as follows. Section 1 presents the model. Sections

2-3 provide the main analysis and equilibrium construction in the general case with both

symptomatic and asymptomatic transmission. Sections 4-5 then focus on the special cases

with symptomatic-only or asymptomatic-only transmission, respectively, highlighting dis-

tinctive features of the equilibrium trajectory in each case and considering some equilibrium

comparative statics. Section 6 concludes with some discussion of future research directions.

1 Model

This paper’s model combines a Susceptible-Carriage-Infected-Recovered (SCIR) epidemio-

logical model allowing for asymptomatic infection, an economic model with myopic decision-

makers that allows for social-economic complementarities of activity, and a simple political

model of epidemic-management policy dynamics. An epidemic is formally described as the

combination of an epidemiological process specifying the state of the epidemic at each point

in time t ≥ 0, an activity process specifying agents’ behavior at each time, and a policy

process specifying any behavioral constraints in effect at each time. These processes are

intertwined, with (i) epidemiological dynamics determined by agents’ behavior, (ii) agents’

behavior depending on the state of the epidemic and constrained by epidemic-management

policy, and (iii) epidemic-management policy depending on the state of the epidemic and

how agents would choose to behave if left free to choose what to do.

Epidemiological model. There is a fixed unit-mass host population with no births and

no deaths. At each point in time, each agent is in one of five epidemiological states (Figure 1):
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susceptible, S; infectious but asymptomatic, C (for “carriage”); infectious and symptomatic,

i.e., “sick,” I; recovered from carriage without ever having been symptomatic, RC ; and

recovered from sickness, RI .
4 We assume for simplicity that all recovered individuals are

henceforth immune to re-infection. Let S(t), C(t), I(t), RC(t), and RI(t) denote the mass

of agents in each of the five epidemiological states at any given time t ≥ 0. Since the overall

population has unit mass, these variables also capture the fraction of the population in each

epidemiological state.

Not-yet-sick

Asymptomatic

Symptomatic
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Figure 1: Flow diagram of epidemiological states. Box indicates all states with individuals
who have not yet displayed symptoms.

Each agent i chooses activity level ai(t) ∈ [α, 1] at each point in time, where 0 ≤ α < 1.

ai(t) = 1 is referred to as “going out” while ai(t) = α is referred to as “staying home.” Let

aω(t) be the average activity level across all agents in state ω ∈ {S,C, I, RC , RI}. Agent i

encounters an agent in state ω at rate ai(t)aω(t)ω(t). Encounters generate economic benefits

(discussed below) but also create opportunities for disease transmission. In particular, any

agent i who is currently susceptible becomes asymptomatically infected at rate

λi(t) = ai(t) (βCaC(t)C(t) + βIaI(t)I(t)) , (1)

where βC ∈ [0, 1] and βI ∈ [0, 1] are parameters capturing the transmissibility of the pathogen

during the asymptomatic and symptomatic phases of infection, respectively. Let λ(t) be

the average rate at which susceptible agents become infected, referred to as “the force of

infection”.

λ(t) = aS(t) (βCaC(t)C(t) + βIaI(t)I(t)) . (2)

4The model can be easily extended to allow for innate immunity, with innately-immune hosts in state RI

at time t = 0 if they know that they are immune or in state RC if they do not know that they are immune.
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Let σ be the rate at which asymptomatic infection progresses to sickness. Let γ be the rate

of recovery, assumed for simplicity to be the same in both infected states.

Epidemiological dynamics are governed by the system of differential equations

S ′(t) = −S(t)λ(t) (3)

C ′(t) = S(t)λ(t)− σC(t)− γC(t) (4)

I ′(t) = σC(t)− γI(t) (5)

R′
C(t) = γC(t) (6)

R′
I(t) = γI(t) (7)

plus the adding-up condition S(t) + C(t) + I(t) + RC(t) + RI(t) = 1. The initial condi-

tion has C(0) ≈ 0 and I(0) = RC(0) = RI(0) = 0, meaning that very few people are

initially infected and none of them has yet progressed to sickness. We refer to E(t) ≡
(S(t), C(t), I(t), RC(t), RI(t)) as the “epidemic state” and E = {E(t) : t ≥ 0} as the “epi-

demic trajectory.”

Agents know when they are sick and when they have recovered from sickness, but

those who have not yet been sick do not know whether they are susceptible to infec-

tion, asymptomatically infected, or recovered from asymptomatic infection. The states

{S,C,RC} are therefore in the same information class, denoted N and referred to collec-

tively as “not-yet-sick” (Figure 1). Let aN(t) denote the average activity level of all N -

agents. aN(t) = aS(t) = aC(t) = aRC
(t) since all agents in the same information class must

necessarily behave in the same way on average.

Let N(t) = S(t) + C(t) + RC(t) be the mass of not-yet-sick agents. Let q(t) be the

likelihood that a not-yet-sick agent is susceptible:

q(t) ≡ S(t)

N(t)
. (8)

So long as all N -agents have behaved symmetrically up to time t, each N -agent believes

that they remain susceptible with probability q(t).5 By equations (2-4,6) and the fact that

5If some N -agents have been more active in the past, then these agents would assess that they are more
likely to have been exposed in the past and hence less likely to be susceptible in the present. Such asymmetric
behavior does not arise in equilibrium in our model.
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d ln(q(t))
dt

= q′(t)
q(t)

= S′(t)
S(t)

− N ′(t)
N(t)

, we have

N ′(t) = −σC(t) (9)

q′(t)

q(t)
= −λ(t) +

σC(t)

N(t)
(10)

Economic model. Each agent i seeks to maximize a “time-t payoff” πi,t that depends only

on current epidemic conditions, their current activity, and the current activity of others.

Benefits of social-economic activity. Each agent gets a flow social-economic payoff consisting

of three parts: (i) a baseline level b0, capturing the value of physically-isolated activity, such

as reading a book or working and socializing online, which we can set without loss to b0 = 0;

(ii) an additional b1ai(t), with b1 > 0 capturing the value of individual activity that requires

entering spaces where transmissive encounters can occur but whose value does not derive

from social interaction, such as going shopping; and (iii) an additional b2ai(t)A(t) capturing

social-economic benefits, such as being able to chat with colleagues at work, where A(t) is

the average activity level across the population:

A(t) ≡ aN(t)N(t) + aI(t)I(t) + aRI
(t)RI(t). (11)

ai(t)A(t) is the rate at which agent i encounters someone else, i.e., their “social activity.”

Overall, each agent i’s social-economic flow payoff at time t is ai(t)(b1 + b2A(t)).

Harm from becoming infected. Sick agents incur flow “disease cost” d > 0 so long as they

remain in the I state. Each newly-infected agent progresses to sickness with probability
σ

γ+σ
and, once sick, remains sick for average duration 1

γ
. The expected total disease cost

associated with becoming infected (“harm of infection”) is

H ≡ dσ

γ(γ + σ)
. (12)

Time-t payoff of sick and previously-sick agents. Any agent who is currently sick (state I)

or recovered from sickness (state RI) is at no risk of becoming infected. For such agents,

their time-t payoff is simply their social-economic flow benefit:

πi,t = ai(t)(b1 + b2A(t)) for all i ∈ {I, RI}. (13)

Time-t payoff of not-yet-sick agents. For N -agents, πi,t includes both the social-economic

benefit from current activity and the expected harm due to potentially becoming infected
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from that activity. Each N -agent believes they are susceptible with probability q(t) = S(t)
N(t)

and, if susceptible, becomes infected at rate λi(t). Agent i’s expected rate of becoming

infected is therefore q(t)λi(t). This gives us

πi,t = ai(t) (b1 + b2A(t))− λi(t)q(t)H for all i ∈ N. (14)

Political model. A policy-maker (also referred to as “political leader”) decides at each

point in time whether to constrain the activity of agents in each information class ω ∈
{N, I,RI}. The policy-maker has three options for each class ω: (i) leave all ω-agents free

to choose, in which case their activity choices will be determined in Nash equilibrium given

agents’ time-t payoffs; (ii) force all ω-agents to choose the minimal activity level, ai(t) = α,

referred to as a “stay-at-home order” for N -agents and as “isolation of the sick” for I-agents;6

or (iii) force all ω-agents to choose the maximal activity level, ai(t) = 1, referred to as a

“go-out-home order”.

Agents left unconstrained seek to maximize their own time-t payoff. The policy-maker

evaluates each policy option based on what Nash equilibrium will be played by those left

unconstrained, and chooses a policy option that is most preferred by the majority of the

population. (We show in Section 2 that this “will of the majority” is well-defined.) Without

loss, suppose that the policy-maker only imposes constraints on agents that change their

behavior. In particular, a go-out (or stay-at-home) order for N -agents is never issued if they

would have chosen to be maximally (or minimally) active without any constraints in place.

Equilibrium concept. At each point in time t, a “time-t equilibrium” specifies (i) a policy

option that is politically optimal for the policy-maker and (ii) activity levels ai(t) that are

individually optimal for each agent i left free to choose. An equilibrium epidemic trajectory

is one generated by time-t equilibrium play at each point in time.

Welfare loss due to the pathogen. The pathogen harms people in the population di-

rectly due to suffering from the disease and indirectly due to lost social-economic benefits.

In a world in which the pathogen did not exist, all agents would earn flow payoff b1 + b2

at all times. By contrast, for each information class ω ∈ {N, I,RI}, type-ω agents’ average

social-economic flow payoff equals b1aω(t)+ b2aω(t)A(t). Moreover, mass I(t) of agents incur

6Our analysis can be easily extended to allow isolation of the sick to be more or less effective than
stay-at-home orders for the not-yet-sick.
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flow disease cost d. Let W (t) denote the flow of population-wide welfare losses at time t:

W (t) = dI(t) +
∑

ω∈{N,I,RI}

ω(t) (b1(1− aω(t)) + b2(1− aω(t)A(t))) . (15)

The (undiscounted) cumulative welfare loss due to the pathogen is
∫∞
0

W (t)dt.

1.1 Discussion of modeling assumptions

Here we discuss several of the model’s key simplifying assumptions. Some additional simpli-

fying features of the model, such as the lack of agent heterogeneity and the lack of diagnostic

tests, are discussed in the concluding remarks in the context of directions for future research.

Myopic agents. Sophisticated forward-looking agents understand that becoming infected

has a time-varying impact on lifetime welfare. For such agents, the “harm of infection” H

varies over time and depends endogenously on how the epidemic will unfold in the future. By

contrast, agents in our model treat the harm of infection as a fixed constant. This assumption

has substantial qualitative implications, as forward-looking agents will have different political

demands. For instance, suppose that the policy-maker can commit at time t = 0 to a

full policy path.7 Forward-looking agents will demand that the policy-maker commit to

the socially-optimal policy path. By contrast, a feature of our model is that agents may

myopically demand that the policy-maker take actions that ultimately reduce social welfare.

Frictionless policy-making to please the majority. The policy-maker in our model imposes

whatever policy is preferred by the majority, no matter how small that preference may be.

Policy-makers in practice may resist myopic demands and/or may only enact a new policy

once demand for that policy is sufficiently strong. Such considerations could lead to less

equilibrium policy-switching than we see in our model, especially in examples like in Figure

4 in which “yo-yo dynamics” of infection arise from repeated and rapid changes to equilibrium

policy. While interesting, we abstract from such nuances for the sake of tractability and to

make the novel aspects of our analysis as clear as possible.

Policy options. The policy-maker in our model has two policy levers, stay-at-home orders

and go-out orders, which can be targeted at agents according to their information class

(not-yet-sick, sick, or previously sick). This modeling choice allows us to highlight how

the policies that arise in equilibrium are qualitatively different depending on whether the

pathogen transmits mainly during sickness or mainly during the asymptomatic phase. Our

7In the case when agents are forward-looking and the policy-maker cannot commit, the problem of
characterizing the equilibrium policy path is much more complex and potentially intractable.
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analysis can be adapted to other settings where the policy-maker has more or fewer policy

options, but the resulting analysis may be much less clean. Here we provide three examples

of such alternative policy settings.8

First, suppose that stay-at-home orders are the only feasible policy option, perhaps be-

cause compelling people to be more active is not possible. As we show later, the time-t

game among N -agents may during some phases of the epidemic be a coordination game in

which N -agents collectively prefer to all go out; see Figure 2(c). If go-out orders cannot be

issued, there are two time-t equilibria: one in which all N -agents go out and another in which

they all stay home. How the epidemic progresses will depend on which time-t equilibrium is

played and, since such multiplicity can persist for an extended period, there may be a vast

multiplicity of epidemic trajectories that can arise in equilibrium. By contrast, in our model,

the policy-maker’s ability to impose go-out and/or stay-at-home orders pins down a unique

time-t equilibrium in all but certain boundary-case situations.

Second, suppose that the political leader is unable to target its policies to agents in

any specific information class, perhaps because information about agents’ health status is

unavailable. This affects N -agents’ policy preferences and thereby impacts what the political

leader will do throughout the epidemic. For instance, consider the case with symptomatic-

only transmission. When policies can be targeted, we show in Section 5 that N -agents may

prefer during certain phases of the epidemic for themselves to be subjected to a go-out order

while I-agents are isolated and RI-agents are left free to choose. If policy targeting is not

possible, then N -agents might support a general lockdown because that is the only feasible

way to constrain the activity of I-agents, or might support a general go-out order because

that is the only way to get their fellow N -agents to be more active.

Finally, suppose that it is only possible to implement a “test free” policy in which agents

are subjected to (continual) diagnostic testing that reveals their current health status and

are forced to stay home if and only if they are currently infected. Such testing changes the

information structure of the model, which in turn impacts agents’ individual incentives and

policy preferences. In particular, S-agents now know that they remain susceptible, which

increases their desire to avoid being exposed to infection and hence increases their support for

policies that isolate C- and I-agents. On the other hand, C-agents now know that they are

at no risk of infection, aligning them politically with I- and RI-agents and thereby increasing

political support for policies that increase activity.

Linear time-t payoffs. In our model, each agent i’s time-t payoff is linear in their own activity

level ai. In alternative models with decreasing marginal returns to activity, the time-t game

8We thank an anonymous referee for suggesting some of these alternative policy settings.
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that N -agents play may have Nash equilibria with intermediate levels of activity that are

collectively preferred by N -agents over either extreme scenario. If so, the policy-maker

strictly prefers not to impose any constraint on N -agents, something that never happens in

our model (proof of Prop 2), and the epidemic trajectory will be determined for a period of

time by how Nash equilibrium activity evolves during that period.

2 Equilibrium behavior in the “time-t game”

Because agents and the policy-maker are myopic decision-makers, we can focus on each

moment of time during the epidemic as its own “time-t game.” In this time-t game, (i)

the policy-maker chooses a politically-optimal policy, imposing a most-preferred policy of

whatever group of agents is currently in the majority, and (ii) agents who are left free

to choose make individually-optimal choices about how active to be. In this section, we

characterize the agent behavior that can potentially arise in equilibrium at each point in

time t. In Section 3, we then apply these findings to construct all equilibrium epidemic

trajectories that can arise from any given initial condition.

2.1 Once not-yet-sick agents are in the minority

Suppose that I(t) + RI(t) > 1
2
. Because I- and RI-agents prefer for everyone to be fully

active, we must have aN(t) = aI(t) = aRI
(t) = 1 in time-t equilibrium. Why? If some class

of agents were not fully active, the policy-maker could increase the time-t payoff of I- and

RI-agents by imposing a go-out order on all agents. Thus, any policy that does not result

in all agents being fully active is politically sub-optimal. Moreover, because agents do not

return to the susceptible state, I(t) + RI(t) is monotonically increasing and these agents

must remain in the majority at all future times as well. We conclude that, once a time t∗

is reached at which I(t∗) + RI(t
∗) = 1

2
, all subsequent equilibrium dynamics are trivially

determined by (2-7) and agent behavior aN(t) = aI(t) = aRI
(t) = 1 for all t > t∗.

2.2 While not-yet-sick agents remain in the majority

Now we turn to the less trivial case when N(t) > 1
2
, considering the potential time-t equi-

librium behavior of each class of agents.

RI-agents who have recovered from sickness. Because N -agents prefer for RI-agents

to be as active as possible, we must have aRI
= 1 in any time-t equilibrium at every time
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t. Since RI-agents also prefer to be fully active, this can be achieved simply by leaving

RI-agents free to choose.

I-agents who are currently sick. N -agents may or may not prefer for I-agents to be

isolated. Differentiating equation (14), we have

∂πi

∂aI
= ai(t)I(t)(b2 − q(t)βIH). (16)

The positive term ai(t)I(t)b2 in (16) reflects the social-economic benefit that N -agents get

from interacting with I-agents, while the negative term −ai(t)I(t)q(t)βIH reflects the ex-

pected harm from potentially being exposed to infection.

Let q∗I denote the level of q(t) so that the right-hand-side of (16) is zero:

q∗I ≡ b2
βIH

. (17)

If q(t) > q∗I , then N -agents prefer for I-agents to be less active. The policy-maker must

therefore isolate the sick. On the other hand, if q(t) < q∗I , then N -agents prefer for I-agents

to be more active and I-agents must be fully active in equilibrium.

Overall, we conclude that (i) aI(t) = α at all times t when q(t) > q∗I and (ii) aI(t) = 1

at all times t when q(t) < q∗I . In the last possibility that q(t) = q∗I , the policy-maker may

potentially impose a mixed policy in which I-agents are subjected to a stay-at-home order

with probability pstayI (t) ∈ [0, 1] and all go out with probability 1− pstayI (t).

Proposition 1 summarizes what we have shown about I-agent equilibrium activity.

Proposition 1 (I-agent activity at time t). Suppose that N(t) > 1
2
. (i) If q(t) > q∗I ,

then aI(t) = α in any time-t equilibrium. (ii) If q(t) < q∗I , then aI(t) = 1 in any time-t

equilibrium. (iii) If q(t) = q∗I , then N-agents get the same time-t payoff regardless of what

I-agents do.

N-agents who have not yet gotten sick. Early and late during the epidemic when

C(t), I(t) ≈ 0, N -agents are at negligible risk of infection and the time-t game among

N -agents is trivial: each N -agent has a dominant strategy to go out; N -agent activity

generates a positive externality for other N -agents; and the game among N -agents has

strategic complements. Consequently, N -agents all go out when free to choose and have no

desire for the policy-maker to impose any constraint on their ability to do so. But as the

epidemic progresses, the time-t game among N -agents may change in several ways: their

individual incentives may change, so that they no longer have a dominant strategy or have
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a dominant strategy to stay home; the externality on other N -agents from going out may

flip to negative; and the game itself may flip to having strategic substitutes.

Let ∆πaN (t) be the incremental benefit to any individual N -agent from going out rather

than staying home, given average activity aN across all N -agents:

∆πaN (t) = πi,t(ai = 1, aN)− πi,t(ai = α, aN). (18)

N -agents have a dominant strategy to go out if ∆π1(t) and ∆πα(t) are both positive, or a

dominant strategy to stay home if both are negative. The time-t game among N -agents has

strategic complements if ∆π1(t) > ∆πα(t), or strategic substitutes if ∆π1(t) < ∆πα(t).

What about the externalities associated with N -agent activity? Differentiating (14),

∂πi,t

∂aN
= ai(t)(b2N(t)− q(t)βCC(t)H). (19)

Let q∗N(t) denote the time-varying level of q(t) so that
∂πi,t

∂aN
= 0:

q∗N(t) ≡
b2N(t)

βCC(t)H
. (20)

N -agent activity generates a positive externality for other N -agents iff q(t) < q∗N(t).

When deciding what N -agent policy to put in place at each point in time, the policy-

maker considers how N -agents rank three time-t possibilities:

1. no constraints: N -agents play a Nash equilibrium (NE) of their time-t game;

2. go-out order: N -agents all go out; or

3. stay-at-home order: N -agents all stay home.

If the NE that they would play is strictly preferred over all going out and all staying home,

then placing no constraints on N -agents is the unique politically-optimal policy. On the

other hand, a go-out order or a stay-at-home order is (weakly) politically optimal so long as

either the NE they would play entails all N -agents going out or all staying home or that NE

generates (weakly) lower time-t payoffs for N -agents than all going out or all staying home.

Let χ(t) denote the incremental time-t payoff that N -agents get when all of them go out,

relative to all staying home:

χ(t) = πi,t(ai = 1, aN = 1)− πi,t(ai = α, aN = α). (21)
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If χ(t) > 0, then N -agents strictly prefer a go-out order over a stay-at-home order; so, a

stay-at-home order cannot be politically optimal. Similarly, if χ(t) < 0, then a go-out order

cannot be politically optimal. What about being left unconstrained? Could the time-t game

have a Nash equilibrium that N -agents prefer over both a stay-at-home order and a go-out

order? Proposition 2 establishes that this never happens in any of the time-t games that

can potentially arise during the epidemic. Consequently, N -agents’ equilibrium behavior is

uniquely determined at any given point in time when χ(t) is positive or negative.

Proposition 2 (N -agent activity at time t). Along any equilibrium trajectory: (i) If χ(t) >

0, then aN(t) = 1. (ii) If χ(t) < 0, then aN(t) = α. (iii) If χ(t) = 0 and q(t) ̸= q∗N , then

N-agents all stay home with probability pstayN (t) and all go out with probability 1− pstayN (t).9

The rest of this section provides the proof of Proposition 2, beginning with a useful

preliminary result.

Lemma 1. (i) q(t) < q∗N(t) if and only if
∂πi,t

∂aN
> 0 if and only if χ(t) > ∆π1(t) > ∆πα(t).

(ii) q(t) > q∗N(t) if and only if
∂πi,t

∂aN
< 0 if and only if χ(t) < ∆π1(t) < ∆πα(t).

Discussion of Lemma 1. The basic nature of the game among N -agents at any given time

depends on which of four key terms are positive or negative:

(i) ∆π1(t) ≡ πi,t(1, 1) − πi,t(α, 1): determines whether N -agents have an individual in-

centive to go out or stay home when all other N -agents go out, represented in the

schematic game diagrams of Figure 2 by an up-down arrow in the “out” column (this

arrow points up if ∆π1(t) > 0 and down if ∆π1(t) < 0);

(ii) ∆πα(t) ≡ πi,t(1, α) − πi,t(α, α): determines whether N -agents have an individual in-

centive to go out or stay home when all other N -agents stay home, represented by an

up-down arrow in the “home” column;

(iii) ∆π1(t) −∆πα(t): determines whether the time-t game among N -agents has strategic

complements (if ∆π1(t)−∆πα(t) > 0) or strategic substitutes (if ∆π1(t)−∆πα(t) < 0),

shown by the direction and relative magnitudes of the up-down arrows; and

(iv) χ(t) ≡ πi,t(1, 1)− πi,t(α, α): determines whether N -agents collectively prefer to all go

out or all stay home, represented by “+/-” in the (out, out) and (home, home) boxes.

Each of these four quantities can be positive or negative, so there are 16 basic types of

games that N -agents could conceivably play at different times. Lemma 1 implies that, in

9In the last possibility that χ(t) = 0 and q(t) = q∗N , the time-t game is a trivial one in which N -agents
get the same expected payoff no matter what they or other N -agents choose to do.
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Figure 2: Schematic diagrams showing the possibilities for the time-t game among N -agents.

fact, only 8 of these 16 possibilities can ever arise: three in which N -agents have a dominant

strategy to go out, including one with strategic complements (Fig 2(b)) and two with strategic

substitutes (Fig 2(a,h)); three with a dominant strategy to stay home, including one with

strategic substitutes (Fig 2(f)) and two with strategic complements (Fig 2(d,e)); one with

two pure-strategy Nash equilibria (PSNE) and a collective preference to all go out (Fig 2(c));

and one with no PSNE and a collective preference to all stay home (Fig 2(g)).

Proof of Lemma 1. The fact that
∂πi,t

∂aN
≷ 0 iff q(t) ≶ q∗N(t) is immediate from (20). By

equations (1,11,14,21,18), the expressions ∆π1(t), ∆πα(t), and χ(t) can be written as

∆π1(t) = Z(t) + (1− α)(b2N(t)− q(t)βCC(t)H) (22)

∆πα(t) = Z(t) + α(1− α)(b2N(t)− q(t)βCC(t)H) (23)

χ(t) = Z(t) + (1− α2)(b2N(t)− q(t)βCC(t)H) (24)

where

Z(t) = (1− α)(b1 + b2(aI(t)I(t) +RI(t))− q(t)aI(t)βII(t)H) (25)

To complete the proof, note that (a) b2N(t) − q(t)βCC(t)H ≷ 0 iff q(t) ≶ q∗N(t) and (b)

1− α2 > 1− α > α(1− α) > 0.

Proof of Proposition 2(i). Suppose that χ(t) > 0, so that N -agents collectively prefer all

going out over all staying home. There are four possibilities for what the time-t game among

N -agents may be like, as shown in Figure 2(a-d). (The up-down arrows in each figure capture

N -agents’ individual incentives, while the ± notation captures their collective preference for

all going out.) In each case, we will show that all N -agents must go out in equilibrium.

Case 1: ∆π1(t) ≥ χ(t) (Fig 2(a)). By Lemma 1, ∆π1(t) ≥ χ(t) implies that ∆πα(t) ≥
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∆π1(t); so, ∆πα(t) ≥ ∆π1(t) ≥ χ(t) > 0 and N -agents have a strictly dominant strategy to

go out. The policy-maker’s choice is therefore between all N -agents going out (by leaving

them unconstrained to play the unique NE or by imposing a go-out order) or all staying

home (by imposing a stay-at-home order). Since χ(t) > 0 and N -agents are in the majority,

any politically-optimal policy must induce them all to go out. We conclude as desired that

aN(t) = 1.

Case 2: χ(t) > ∆π1(t) and ∆πα(t) ≥ 0 (Fig 2(b)). By Lemma 1, χ(t) > ∆π1(t) implies

that q(t) < q∗N(t) and χ(t) > ∆π1(t) > ∆πα(t). Since ∆πα(t) ≥ 0, N -agents have a weakly

dominant strategy to go out and the time-t game has a NE in which all N -agents go out. If

∆πα(t) > 0, this is the unique NE and we conclude that aN(t) = 1 by the same argument

as in Case 1. If ∆πα(t) = 0, there is also a NE in which all N -agents stay home but no NE

in strictly mixed strategies. The policy-maker’s choice is once again between all N -agents

going out and all staying home, of which all going out is politically preferred since χ(t) > 0.

Case 3: χ(t) > ∆π1(t) > 0 > ∆πα(t) (Fig 2(c)). The time-t game is now a coordination

game with three NE: one in which all go out, another in which all stay home, and a mixed-

strategy NE in which N -agents have average activity a∗N ∈ (α, 1). In this mixed-strategy

NE, N -agents are indifferent whether to be active; so, πi,t(a
∗
N , a

∗
N) = πi,t(1, a

∗
N) = πi,t(α, a

∗
N).

However, by Lemma 1, χ(t) > ∆π1(t) implies that
∂πi,t(ai,aN )

∂aN
> 0; thus, πi,t(1, a

∗
N) < πi,t(1, 1).

Overall, πi,t(a
∗
N , a

∗
N) < πi,t(1, 1), meaning that N -agents strictly prefer being subjected to a

go-out order rather than playing the mixed-strategy equilibrium. We conclude that, under

any politically-optimal policy, N -agents must all go out.

Case 4: χ(t) > 0 ≥ ∆π1(t) > ∆πα(t) (Fig 2(d)). N -agents now have a weakly dominant

strategy to stay home and the time-t game has a NE in which all N -agents stay home. If

∆π1(t) < 0, this is the unique NE but N -agents collectively prefer being subjected a go-

out order rather than being left free to play this NE. If ∆π1(t) = 0, there is also a NE in

which all N -agents go out but no NE in strictly mixed strategies. Overall, then, the policy-

maker’s choice between all N -agents going out and all staying home, of which all going out

is politically preferred since χ(t) > 0.

Proof of Proposition 2(ii). Suppose that χ(t) < 0. There are again four possibilities for the

time-t game among N -agents, in each of which it must be that aN(t) = α in equilibrium:

Case 1: ∆π1(t) ≤ χ(t), with ∆πα(t) ≤ ∆π1(t) ≤ χ(t) < 0 by Lemma 1 (Fig 2(e)).

Case 2: χ(t) < ∆π1(t) and ∆πα(t) ≤ 0, with χ(t) < ∆π1(t) < ∆πα(t) ≤ 0 by Lemma

1 (Fig 2(f))
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Case 3: χ(t) < ∆π1(t) < 0 < ∆πα(t) (Fig 2(g))

Case 4: χ(t) < 0 ≤ ∆π1(t) < ∆πα(t) (Fig 2(h))

To save space, we omit the proofs that aN(t) = α in Cases 1,2,4, which exactly mirror the

proofs that aN(t) = 1 in Cases 1,2,4 in the proof of Prop 2(i). It remains to examine Case 3.

Case 3: χ(t) < ∆π1(t) < 0 < ∆πα(t) (Fig 2(g)). The time-t game is a chicken game with a

unique mixed-strategy NE in which N -agents have average activity a∗N ∈ (α, 1). In this NE,

N -agents are indifferent whether to be active; so, πi,t(a
∗
N , a

∗
N) = πi,t(1, a

∗
N) = πi,t(α, a

∗
N).

However, by Lemma 1, χ(t) < ∆π1(t) implies that
∂πi,t(ai,aN )

∂aN
< 0; thus, πi,t(α, a

∗
N) <

πi,t(α, α). Overall, πi,t(a
∗
N , a

∗
N) < πi,t(α, α), meaning that N -agents strictly prefer being

subjected to a stay-at-home order rather than playing the mixed-strategy equilibrium. We

conclude that, under any politically-optimal policy, N -agents must all stay home.

Proof of Proposition 2(iii). Suppose finally that χ(t) = 0. If q(t) > q∗N(t), then ∆πα(t) >

∆π1(t) > 0 and N -agents have a strictly dominant strategy to go out. In this case, the

policy-maker’s choice is between all N -agents going out (by leaving them unconstrained to

play the unique NE or by imposing a go-out order) or all staying home (by imposing a stay-

at-home order). Since χ(t) = 0, the policy-maker is indifferent between these outcomes and

may mix between them. Similarly, if q(t) < q∗N(t), then ∆πα(t) < ∆π1(t) < 0 and N -agents

have a strictly dominant strategy to stay home. In this case as well, the policy-maker’s

choice is between all N -agents going out (by imposing a go-out order) or all staying home

(by leaving them unconstrained or by imposing a stay-at-home order) and may mix due to

indifference.

3 Equilibrium Epidemic Analysis

This section characterizes how politically-optimal policy and agents’ resulting equilibrium

behavior change throughout the epidemic in the general case with both symptomatic and

asymptomatic transmission.

3.1 At the beginning of the epidemic

At the beginning of the epidemic, nearly everyone remains susceptible. Absent any restric-

tions on activity, each newly-infected person will infect R0 others on average before recovery,
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where R0 is the pathogen’s basic reproduction number:10

R0 =
βC

σ + γ
+

σβI

(σ + γ)γ
. (26)

Not-yet-sick all go out. When an N -agent i encounters another N -agent, i gets social-

economic benefit b2 and becomes infected with probability βCq(t)
C(t)
N(t)

, where q(t) = S(t)
N(t)

is

i’s probability of remaining susceptible. Because S(0) ≈ 1 and C(0) ≈ 0, we have q(0) ≈ 1

and βCq(0)
C(0)
N(0)

≈ 0. Thus, N -agents benefit when encountering other N -agents, and so the

policy-maker finds it politically optimal not to impose a stay-at-home order on N -agents.

Sick may or may not be isolated. Each time an N -agent encounters an I-agent, the N -agent

gets social-economic benefit b2 and becomes infected with probability βIq(t), for overall net

expected benefit b2 − βIq(t)H. Because q(0) ≈ 1, N -agents prefer for the sick to be isolated

at the beginning of the epidemic if the harm of infection H > b2
βI
, but not if H < b2

βI
.

3.2 At the end of the epidemic

In the limit as t → ∞, each agent is either still susceptible (i.e., never infected), recovered

from sickness, or recovered from asymptomatic infection. Let S∞ ≡ limt→∞ S(t) be the share

of agents who are never infected, let R∞
I ≡ limt→∞RI(t) be the share who became sick at

some point, and similarly for other notation.

If R∞
I > 1

2
, then N -agents will be in the minority at the end of the epidemic and the

policy-maker will find it politically optimal to ensure that everyone is fully active.

If R∞
I ≤ 1

2
, then N -agents remain in the majority throughout the epidemic. Because

C-agents transition to state I at rate σ and to state RC at rate γ, we have

R∞
I

σ
=

R∞
C

γ
. (27)

Using the facts that 1−S∞ = R∞
C +R∞

I and N∞ = S∞ +R∞
C , we have R∞

C = γ
σ+γ

(1− S∞)

10Since infected agents recover at rate γ and asymptomatic infection progresses to sickness at rate σ, the
asymptomatic phase has average duration 1

σ+γ , infection progresses to sickness with probability σ
σ+γ , and

sickness has average duration 1
γ . Thus, assuming that everyone is fully active, each newly-infected agent

will on average encounter 1
σ+γ others while asymptomatic and σ

(σ+γ)γ others while sick. At the start of the

epidemic, essentially all of these encounters are with susceptible agents, resulting on average in βC

σ+γ new

infections resulting from asymptomatic transmission and σβI

(σ+γ)γ from symptomatic transmission.
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and hence

q∞ (S∞) =
S∞

σ
σ+γ

S∞ + γ
σ+γ

∈ (0, 1). (28)

Note that q∞ (S∞) is strictly increasing in S∞ and hence decreasing in the overall number

of people who get infected during the epidemic, with q∞(1) = 1 and q∞(0) = 0.

Not-yet-sick are not subjected to stay-at-home orders. Because C∞ = 0, N -agents are at

no risk from other N -agents in the t → ∞ limit. Consequently, the policy-maker must

eventually leave N -agents free from any stay-at-home orders.

Political incentive to isolate the sick is weaker at the end than at the beginning. Each N -

agent gets net expected benefit b2 − βIq
∞ (S∞)H when encountering a sick agent. This is

higher than at the beginning of the epidemic, because each N -agent is only susceptible with

probability q∞ (S∞). Thus, depending on the harm of infection H and how many people

were previously infected, the policy-maker may find it politically optimal to isolate the sick

early during the epidemic but not at the end. This can create an unfortunate feedback

effect, whereby more infection early in the epidemic weakens the (myopic) political incentive

to isolate the sick, which in turn can potentially result in much more overall infection.

Example: Let βC = 0, βI = 1, γ = 1
10
, σ = 1

10
, α = 1

3
, b2 = 3, and H = 4. Instead of

starting from time t = 0 when S(0) ≈ 1 and C(0) ≈ I(0) = 0, supoose that we start from a

time t̂ at which S(t̂) = 1
2
and C(t̂) ≈ I(t̂) ≈ 0. This could arise if the population has already

endured a wave of disease in which half of the population was infected but infection has

now died down—and is kept down through a continued policy of isolating the sick. Because

transmission in this example only occurs during sickness, isolating the sick is an effective

way to curtail transmission.11

Will this policy-maker continue isolating the sick? At the beginning of the epidemic,

it would have been politically optimal to do so, since the harm H = 4 to N -agents from

being exposed to an I-agent is less than the social-economic benefit b2 = 3. However,

isolating the sick is now no longer politically optimal. Because γ = σ, half of all infected

people become sick before recovery. With S(t̂) = 1
2
and C(t̂) ≈ I(t̂) ≈ 0, this implies that

RC(t̂) ≈ RI(t̂) ≈ 1
4
. Thus, (i) N -agents are in the majority with about three-quarters of the

11If the sick are not isolated, the pathogen has basic reproductive number R0 = 5 by equation (26) and
herd immunity (meaning that each new infection causes at most one new infection) will not be achieved
until at least 1 − 1

R0
= 80% of the population has been infected. By contrast, if the sick are isolated in

perpetuity, the pathogen’s basic reproductive number is only 5α = 5
3 and herd immunity is reached once

40% of the population has been infected. If only half of the population is susceptible, each new infection
results in 5

6 = 1
2 × 5

3 new infections.
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population and (ii) each N -agent remains susceptible with probability q(t̂) = 2
3
. When an

N -agent encounters an I-agent, the social-economic benefit b2 = 3 outweighs the expected

harm 2
3
∗ 4 < 3 from the encounter. Consequently, there is political support for no longer

isolating the sick, even though this will ultimately result in a large second wave of infection.

3.3 In the middle of the epidemic

The epidemic trajectory is governed by the system of differential equations (3-7). Agent be-

havior enters this system solely through the force-of-infection term λ(t), which itself depends

only on (aS(t), aC(t), aI(t)), the activity levels of susceptible, asymptomatically infected, and

sick agents. Because S- and C-agents are each in the not-yet-sick information class, we have

aS(t) = aC(t) = aN(t). Moreover, because RI-agents cannot be infected or infect anyone,

they must all go out at all times in any equilibrium. It remains to characterize what I-agent

and N -agent activity can arise in equilibrium.

3.3.1 I-agent activity

There are three possibilities for I-agent behavior at each point in time, depending on the

likelihood q(t) that each N -agent remains susceptible (Prop 1):

Full activity: If q(t) < q∗I = b2
βIH

, then I-agents all go out and aI(t) = 1.

Full isolation: If q(t) > q∗I , then I-agents are isolated and aI(t) = α.

Mixed isolation: If q(t) = q∗I , then I-agents are isolated with some probability and

aI(t) ∈ [α, 1].

While the possibilities are fairly complex in general, there are important special cases in

which I-agent behavior is very simple to describe.

1. Transmissibility during sickness βI is sufficiently small.

When βI < b2
H
, the threshold q∗I > 1. N -agents therefore prefer for I-agents to be fully

active no matter what the epidemic state, and we must have aI(t) = 1 for all t.

2. Harm of infection H is sufficiently large.

Let E0 denote the epidemic trajectory that would result if all agents always went out, and

let S∞
0 ≡ limt→∞ S0(t) be the mass of agents who escape infection along this full-activity

trajectory. As can be easily checked (straightforward details omitted), S∞
0 is a uniform lower
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bound on S(t) at any time t along any epidemic trajectory. Since N(t) < 1, we conclude

that q(t) = S(t)
N(t)

> S∞
0 at all times no matter what agents’ behavior may be. Now, let HI be

the level of H so that q∗I = S∞
0 , i.e.,

HI ≡
b2

βIS∞
0

. (29)

So long as H > HI , q(t) must remain above q∗I throughout the entire epidemic, ensuring that

I-agents are always isolated in equilibrium, i.e., aI(t) = α for all t.

3. Sickness is sufficiently rare, i.e., σ
γ
is sufficiently small.

When σ
γ
≈ 0, very few infections result in sickness. Almost all infected agents pass di-

rectly from the C state to the RC state, with very few progressing to the I or RI states.

Consequently, N(t) ≈ 1 throughout the epidemic and therefore q(t) = S(t)
N(t)

≈ S(t) declines

monotonically over time as more people are infected. In equilibrium, I-agents remain sub-

jected to isolation until (if) a time t∗ is reached at which q(t∗) = q∗I , after which the sick are

no longer isolated; so, aI(t) = α for all t < t∗ and aI(t) = 1 for all t > t∗.

Having discussed some of the nuances of equilibrium isolation of the sick, and how it can

change over time, we will henceforth shut down this source of complexity in order to focus

more clearly on the equilibrium dynamics of N -agent behavior, which is our main interest. In

particular, we henceforth assume that I-agent behavior is constant throughout the epidemic,

either aI(t) = α for all t (as when H > HI) or aI(t) = 1 for all t (as when βI <
b2
H
). Under

this simplification, the epidemic trajectory is controlled entirely by N -agent activity.

3.3.2 N-agent activity

There are three possibilities for N -agent behavior at each point in time depending on N -

agents collective preference for all going out versus all staying home, as captured by χ(t) =

πi,t(1, 1)− πi,t(α.α) (Prop 2).

All Go Out: If χ(t) > 0, then N -agents must all go out, voluntarily if that is a Nash

equilibrium of their time-t game or subject to a go-out order, and aN(t) = 1.

All Stay Home: If χ(t) < 0, then N -agents must all stay home, voluntarily or subject

to a stay-at-home order, and aN(t) = α.

Collective Mixing: If χ(t) = 0, then N -agents either all go out or all stay home, each

with some probability, and aN(t) ∈ [α, 1].
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(a) Infection dynamics

(b) Activity/game dynamics

Figure 3: Illustration of the equilibrium epidemic trajectory in an example with both symp-
tomatic and asymptomatic transmission. Model parameters here are C(0) = 0.01, α = 0.25,
βC = 0.0143, βI = 0.431, σ = 0.0157, γ = 0.0171, b1 = 0.1, b2 = 0.1, d = 2.8.
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Figure 3 illustrates the equilibrium epidemic trajectory in a numerical example with

mostly symptomatic transmission: βC and βI are both positive but the ratio βI

βC
≈ 30.

Panel (a) shows how the mass of susceptible S-agents and infected C- and I-agents varies

throughout the epidemic. (S(t) is shown on a scale from 0 to 1, while C(t) and I(t) are shown

on a scale from 0 to 0.1.) Panel (b) shows how χ(t), ∆π1(t), and ∆πα(t) vary throughout the

epidemic, as well as N -agents’ equilibrium activity. This allows us to track how the time-t

game that N -agents play changes over time. For convenience, we have given names to each

of the possible game types documented earlier in Figure 2:

1. PD-Out: χ > 0, ∆π1 < 0, ∆πα < 0 (Fig 2(d)). Prisoners’ Dilemma game (PD) in

which N -agents collectively prefer all going out.

2. PD-Home: χ < 0, ∆π1 > 0, ∆πα > 0 (Fig 2(h)). PD in which N -agents collectively

prefer all staying home.

3. ND-Out: χ > 0, ∆π1 > 0, ∆πα > 0 (Fig 2(a-b)). “No Dilemma” game (ND) in which

N -agents each have a dominant strategy to go out and collectively prefer to do so.

4. ND-Home: χ < 0, ∆π1 < 0, ∆πα < 0 (Fig 2(e-f)). ND in which N -agents each have

a dominant strategy to stay home and collectively prefer to do so.

5. C-Out: χ > 0, ∆π1 > 0, ∆πα < 0 (Fig 2(c)). Coordination game (“C”) in which

N -agents do not have a dominant strategy, all going out and all staying out are both

pure-strategy Nash equilibria, and N -agents collectively prefer to go out.

6. D-Home: χ < 0, ∆π1 < 0, ∆πα > 0 (Fig 2(g)). Diversification game (“D”), i.e. a

Chicken game, in which N -agents do not have a dominant strategy, the unique Nash

equilibrium is in mixed strategies, and N -agents collectively prefer to stay home.

Panel (b) also shows how the time-t game transitions over time in this example through

several phases: (i) ND-Out, (ii) C-Out, (iii) ND-Home, (iv) PD-Out/ND-Home (meaning

that the time-t game remains on the boundary of these two game types, namely χ = 0,

∆π1 < 0, and ∆πα < 0), (v) PD-Out, (vi) C-Out, and (vii) ND-Out. Along the equilibrium

trajectory, the policy-maker imposes a pure go-out order during the PD-Out phase, enabling

N -agents to overcome their individual incentives to stay home and solve a collective-action

problem. During the “MIX” phase (iv), the policy-maker imposes a mixed go-out order,

meaning that go-out orders are imposed at each point in time with some probability between

zero and one. The policy-maker never imposes stay-at-home orders on N -agents.

24



3.3.3 Constructing the equilibrium epidemic trajectory.

Next, we show how to construct the equilibrium trajectory in general, highlighting when and

how the epidemic must transition from one behavioral regime to the next.

All Go Out initially. At the beginning of the epidemic, S(0) ≈ 1 and hence χ(0) ≈ (1−
α)b1+(1−α2)b2 > 0 by equation (24); so, aN(0) = 1. Let E1 denote the epidemic trajectory

generated by N -agent activity aN(t) = 1 for all t, and let χ(t; E1) be the collective benefit of
all going out under this trajectory. By construction, χ(t; E1) is continuously differentiable. If

χ(t; E1) > 0 for all t, then we are done: E1 is the unique equilibrium trajectory. Otherwise, let

t1 ≡ inf{t > 0 : χ(t; E1) < 0} be the first time at which χ(t; E1) crosses to become negative.

Since χ(t; E1) crosses zero from above at t1, it must be that χ′(t1; E1) ≤ 0.

Discussion: equilibrium uniqueness up to time t1. Let t0 ≡ min{t > 0 : χ(t; E1) = 0}. By

construction, t0 ≤ t1, with t0 = t1 so long as χ(t; E1) crosses zero the first time that it

touches zero. Up until time t0, χ(t) > 0 and all N -agents must go out in equilibrium; so, any

equilibrium trajectory must coincide with E1 up to time t0. But what if t0 < t1? The policy-

maker is indifferent at t0 between all going out and all staying home. In our equilibrium

construction, the policy-maker breaks such ties in favor of having N -agents continue to all

go out. However, if switching to staying home induces a downward kink in χ(t) at t0 (see the

discussion of kinks below), then there also are equilibrium trajectories in which N -agents’

behavior switches at time t0 from All Go Out to All Stay Home. However, this requires the

model parameters to be “just right” so that χ′(t0; E1) = 0 (and χ′′(t0; E1) > 0). As can be

easily shown (details omitted), this only occurs for parameters in a zero-measure subset of

the parameter space.

Transition from All Go Out ... If N -agents were to continue to all go out after time

t1, then χ(t) would become negative and the policy-maker would find it optimal to impose a

stay-at-home order immediately after t1, a contradiction. Thus, N -agents cannot all continue

going out. What exactly happens next depends on properties of the function χ(t). Recall

that χ(t) is the extra time-t payoff that N -agents get if they all go out versus all staying

home. χ(t) does not depend on N -agents’ actual activity choices at time t, but is rather a

statement about payoffs in the time-t game. That said, N -agent activity affects how χ(t)

changes over time by influencing the overall course of the epidemic. Expanding equation
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(24), we have

χ(t) = (1− α)(b1 + b2(aII(t) +RI(t))− q(t)aIβII(t)H) + (1− α2)(b2N(t)− q(t)βCC(t)H)

(30)

Switching N -agents at time t1 to all stay home decreases the encounter rate between sus-

ceptible and infected agents and hence decreases the flow of new infections. So, S ′(t) jumps

upward at time t1 (as S
′(t) becomes less negative) while C ′(t) jumps downward by the same

amount; see (2,3). This in turn causes a downward kink in I ′(t) and R′
C(t) at time t1; see

(5,6). On the other hand, N ′(t) and R′
I(t) do not have a jump or kink. Together this implies

that q′(t) = S′(t)N(t)−S(t)N ′(t)
N(t)2

jumps upwards at time t1.

Let ∆S ′(t) > 0, ∆C ′(t) = −∆S ′(t) < 0, ∆q′(t) > 0, and ∆χ′(t) be the amount that the

derivatives S ′(t), C ′(t), q′(t), and χ′(t) each would jump if N -agents were to switch from all

going out to all staying home at time t. We have

∆χ′(t) = −∆q′(t)
(
(1− α)aIβII(t)H + (1− α2)βCC(t)H

)
−∆C ′(t)(1− α2)q(t)βCH. (31)

Since ∆q′(t) > 0 > ∆C ′(t), ∆χ′(t) could potentially be positive or negative.

Let χ′(t; pout) be the slope of χ(t) to the right of t if N -agents all go out with probability

pout ∈ [0, 1] and all stay home with probability 1− pout:

χ′(t; pout) = χ′(t−) + pout∆χ′(t). (32)

Because χ(t; E1) becomes negative immediately after t1, we know that χ′(t1; 1) ≤ 0. What

happens immediately after time t1 depends on whether χ′(t1; 0) is positive or negative.

... into All Stay Home. Suppose first that χ′(t1; 0) < 0. Because χ′(t1; 1) < 0 as well,

χ′(t1; p
out) < 0 for all pout > 0. Thus, χ(t) must fall below zero and the epidemic must

transition immediately to an All Stay Home phase with aN(t) = α.

... into Collective Mixing. Suppose next that χ′(t1; 0) > 0.12 N -agents cannot switch

to All Stay Home because then χ(t) would rise above zero and N -agents would all have

to go out, a contradiction. So, the epidemic must immediately transition to a Collective

Mixing phase. Since χ′(t1; p
out) is linearly increasing in pout, there is a unique pout(t1) so

that χ′(t1; p
out(t)) = 0. Thus, the equilibrium probability that N -agents all stay out at t1 is

uniquely determined.

12Details for the case when χ′(t1; 0) = 0 are similar, except that the Collective Mixing phase may poten-
tially have zero length, and omitted to save space.
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Transition from Collective Mixing ... Once in the Collective Mixing phase, χ(t) must

remain equal to zero in order for N -agents to remain collectively indifferent between all

going out and all staying home. Moreover, we must have χ′(t; 1) ≤ 0 ≤ χ′(t; 0). Why?

Suppose first that χ′(t; 1) and χ′(t; 0) were both positive (or non-negative and not both

zero) during a Collective Mixing phase. Then χ′(t; pout) > 0 for all pout ∈ (0, 1), meaning

that χ(t) must become positive and N -agents strictly prefer to all go out immediately after

time t, a contradiction. Similarly, if χ′(t; 1) and χ′(t; 0) were both negative, χ(t) would

become negative and N -agents would strictly prefer all staying home, another contradiction.

Finally, so long as these inequalities are satisfied with at least one of χ′(t; 1), χ′(t; 0) being

non-zero,13 there is a unique mixing probability pout(t) such that χ′(t; pout(t)) = 0; this pins

down N -agents’ equilibrium behavior throughout the Collective Mixing phase.

... into All Stay Home. The Collective Mixing phase must continue until one of the

inequality conditions (a) χ′(t; 1) ≤ 0 or (b) χ′(t; 0) ≥ 0 holds with equality. Let t̃ denote

the first time at which either χ′(t; 1) = 0 or χ′(t; 0) = 0. Suppose first that χ′(t̃; 0) = 0 and

χ′(t̃; 1) < 0. N -agents cannot all go out with positive probability, since then χ(t) would fall

and N -agents would strictly prefer staying home, a contradiction. So, N -agents must all

stay home at time t̃, i.e., pout(t̃) = 0. What happens next depends on whether this causes

χ(t) to increase or decrease after time t̃. If χ(t) would fall below zero after t̃ as N -agents

all stay home, then N -agents strictly prefer all staying home and the epidemic enters an All

Stay Home phase. On the other hand, if χ(t) would rise above zero after t̃ as N -agents all

stay home, N -agents would then strictly prefer all going out after t̃, a contradiction. The

period of collective mixing must then continue beyond time t̃, until the next time (call it t̃2)

at which either χ′(t̃2; 0) = 0 and χ′(t̃2; 1) = 0, and so on until the epidemic eventually exits

the Collective Mixing phase.

... into All Go Out. Suppose next that χ′(t̃; 1) = 0 and χ′(t̃; 0) > 0. N -agents cannot

stay home with positive probability, since that would create a contradiction whereby they

all strictly prefer going out. So, it must be that pout(t̃) = 1, inducing χ(t) to have zero slope

to the right of t̃. If χ(t) would rise above zero after t̃ as a result of N -agents all going out,

then N -agents strictly prefer all going out and the epidemic enters an All Go Out phase.

On the other hand, if χ(t) would fall below zero after t̃, N -agents cannot continue all going

out, since this would cause them to strictly prefer all staying home immediately after t̃, a

13If χ′(t; 1) = χ′(t; 0) = 0 for some t, the equilibrium mixing probability pout(t) is not uniquely determined.
Moreover, there may be multiple continuation trajectories that can arise in equilibrium. For instance, the
Collective Mixing phase might continue past time t along one equilibrium continuation trajectory, while the
epidemic transitions immediately to an All Go Out or All Stay Home phase along another.
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contradiction. In that case, the period of collective mixing must continue beyond time t̃,

until the next time t̃2 at which either χ′(t̃2; 0) = 0 and χ′(t̃2; 1) = 0, and so on, until the

Collective Mixing phase eventually ends.

Transition from All Stay Home. Let t2 be the first time after a Stay At Home phase

begins at which χ(t) would become positive if N -agents continued to all stay at home. N -

agents cannot all continue staying home after t2 since, if they did, χ(t) would become positive

and they would prefer to all go out. This leaves two possibilities: N -agents either switch to

All Go Out or switch to Collective Mixing. Which of these occurs depends on what sort of

kink switching to all going out causes in χ(t) at t2, much as in our previous discussion of the

transition from All Go Out: If there is an upward kink or sufficiently small downward kink in

χ(t) at t2, then the epidemic must transition to All Go Out. But if there is a sufficiently large

downward kink that switching to all going out would cause χ(t) to fall, then the epidemic

must transition to Collective Mixing.

End of the epidemic: All Go Out. Late in the epidemic when infection is rare, χ(t) ≈
(1− α)(b1 + b2RI(t)) + (1− α2)b2N(t) > 0; so, the epidemic always ends in All Go Out.

4 Symptomatic Transmission

This section considers the special case in which the pathogen is transmitted only while

infected hosts are symptomatic, i.e., βI > 0 and βC = 0. Proposition 3 highlights distinctive

features of the equilibrium epidemic trajectory in this case.

Proposition 3. Suppose that βI > 0 and βC = 0. Along the equilibrium epidemic trajectory:

(i) the time-t game always exhibits strategic complements; (ii) N-agents are never subjected

to a stay-at-home order; and (iii) there is no interval of time with collective mixing.

Proof. (i-ii) When βC = 0, equations (22-24) simplify to

∆π1(t) = Z(t) + (1− α)b2N(t)

∆πα(t) = Z(t) + α(1− α)b2N(t)

χ(t) = Z(t) + (1− α2)b2N(t)

where Z(t) is defined in (25). Since b2N(t) > 0 and 1 − α2 > 1 − α > α(1 − α), it must

be that χ(t) > ∆π1(t) > ∆πα(t) at all times. In particular: every time-t game has strategic
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complements and the policy-maker only finds it politically optimal to impose a stay-at-home

order when N -agents already have a dominant strategy to stay home.

(iii) When βC = 0, equation (31) simplifies to

∆χ′(t) = −∆q′(t)(1− α)aIβII(t)H. (33)

Because ∆q′(t) > 0 (see the discussion after equation (30)), we have ∆χ′(t) < 0 and hence

χ′(t; 0) < χ′(t; 1). But that is inconsistent with the inequalities χ′(t; 1) ≤ 0 ≤ χ′(t; 0) that

must hold throughout any interval of time with collective mixing.

Figure 4 illustrates a numerical example with the same model parameters as Figure 3,

except that the asymptomatic-transmission rate βC is reduced from 0.0143 to zero. The

equilibrium epidemic trajectories is broadly similar as in Figure 3, which is unsurprising

since the parameters have only changed a little, but with a noticeable qualitative difference.

In Figure 3, there is a period during which the time-t game remains exactly on the boundary

between the Prisoners’ Dilemma game PD-Out and the No Dilemma game ND-Home, and

the prevalence of infection increases smoothly over time. By contrast, here in Figure 4, there

is a period during which the prevalence of infection rises and falls rapidly several times,

generating “yo-yo dynamics” of infection. During this period, N -agents have a dominant

strategy to stay home and the policy-maker alternates several times between letting them

stay home and forcing them to go out, resulting in a jagged infection trajectory.

4.1 Equilibrium comparative statics: progression to sickness.

Here we consider how varying the progression-to-sickness parameter σ affects the equilibrium

epidemic trajectory in the special case when all transmission is symptomatic. Increasing σ

has three distinct effects. First, infected agents spend less time in the asymptomatic state

C and more time in the symptomatic state I. Since transmission is symptomatic only,

increasing σ increases disease transmission holding behavior fixed. Second, because a larger

share of infected agents develop symptoms, not-yet-sick agents assess that they and other

N -agents are more likely to remain susceptible, changing their incentives. Finally, because

infected agents are more likely to get sick, the harm of infection H is increasing in σ; see

equation (21).

Figure 5(a) illustrates how the indirect “incentive effects” of higher σ on agent behavior

can be bigger than the direct “epidemiological effects” of higher σ on increased pathogen

transmissibility. In particular, consider the mass S∞ of agents who escape infection alto-

gether. If agent activity were fixed, S∞ would be unambiguously decreasing in σ. In this
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(a) Infection dynamics

(b) Activity/game dynamics

Figure 4: Illustration of the equilibrium epidemic trajectory in an example with
symptomatic-only transmission, featuring a period of “yo-yo dynamics” during the mid-
dle of the epidemic. Model parameters are the same as in Figure 3 except that βC is reduced
from 0.0143 to 0.
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(a) Mass of susceptibles (b) Mass of asymtomatically infected

(c) Mass of symptomatically infected (d) Cumulative welfare loss

Figure 5: Illustration of the equilibrium epidemic trajectory in an example
with symptomatic-only transmission and varying sickness-progression rate σ =
0.0071, 0.01, 0.0157. Other model parameters are C(0) = .01, b1 = 0.1, b2 = 0.1, α = 0.25,
d = 2.8, βI = 0.517, βC = 0, and γ = 0.0171.
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example, however, S∞ is higher when σ = 0.01 than when σ = 0.0157 because of incentive

effects. Moreover, as shown in panels (b-c), the qualitative features of the equilibrium epi-

demic trajectory are quite different depending on the level of σ. In particular, there is a

conventional single-humped trajectory in the case with σ = 0.0071, a two-waved epidemic

in the case with σ = 0.01, and a lengthy “yo-yo period” in the middle of epidemic when

σ = 0.0157, during which time N -agents repeatedly switch back and forth between all going

out and all staying home.

5 Asymptomatic Transmission

This section considers the special case in which the pathogen is transmitted only while

infected hosts are asymptomatic, i.e., βC > 0 and βI = 0. Proposition 4 highlights distinctive

features of the equilibrium epidemic trajectory in this case.

Proposition 4. Suppose that βC > 0 and βI = 0. Along the equilibrium epidemic trajectory:

(i) the time-t game has strategic complements sufficiently early and late during the epidemic;

(ii) N-agents are left free to choose whenever the time-t game has strategic complements;

and (iii) N-agents are never subjected to a go-out order.

Proof. (i) C(t) ≈ 0 early and late during the epidemic; so, q∗N(t) ≈ ∞ by equation (20),

implying that ∆π1(t) > ∆πα(t) by Lemma 1.

(ii) Given strategic complements, q(t) < q∗N(t) by Lemma 1 and the term b2N(t) −
q(t)βCC(t)H is positive. Moreover, because βI = 0, the term Z(t) in equations (22-24)

simplifies to

Z(t) = (1− α)(b1 + b2(aII(t) +RI(t))),

which is positive and does not depend on q(t). By equations (22-24), we conclude that

χ(t) > ∆π1(t) > ∆πα(t) > Z(t) > 0. In particular, the time-t game must be “No Dilemma:

Out,” in which the unique Nash equilibrium is for allN -agents to go out and the policy-maker

finds it politically optimal not to intervene.

(iii) If ∆π1 ≥ 0 and ∆πα > 0, then the time-t game has a unique NE in which all N -agents

go out and there is no need to impose a go-out order. So, suppose that ∆π1 < 0 and/or

∆πα ≤ 0. Because Z(t) > 0, each of these conditions is only possible when q(t) > q∗N(t),

so that the term b2N(t) − q(t)βCC(t)H is negative. But then χ(t) < ∆π1(t) < ∆πα(t) by

Lemma 1, implying that χ(t) < 0 and hence that a go-out order is not politically optimal.

Figure 6 illustrates the equilibrium epidemic trajectory in a numerical example with
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asymptomatic transmission. Along the epidemic trajectory, N -agents transition directly

from the initial All Go Out phase to a Collective Mixing phase and then to a final All Go

Out phase.

5.1 Equilibrium comparative statics: disease severity.

Figure 7 illustrates the equilibrium impact of increasing the disease-severity parameter d.

As disease symptoms grow more severe, agents have more incentive to avoid becoming in-

fected. This results in a lower and delayed peak in infections (panels (b-c)) as well as fewer

cumulative infections over the course of the entire epidemic (panel (a)). What about the

disease’s overall welfare impact? Because there are fewer infections when d is higher, the

health-associated welfare loss due to the disease is concave in d. However, as panel (d)

shows, the overall welfare loss approximately doubles when d doubles from 1 to 2. What

this means is that, as people’s equilibrium behavior changes due to the disease being more

severe, the health benefits associated with that behavioral change of having fewer infections

are approximately “canceled out” by the extra social-economic cost associated with these

more intensive efforts to avoid infection.

To explore this intriguing observation, we considered a wider range of disease severities.

See Figure 8, which plots disease severity on the x-axis against cumulative welfare loss over

the entire epidemic on the y-axis, holding all other parameters the same. We find that the

approximate linearity of the cumulative welfare loss extends over a substantially wider range

of disease severities in this numerical example.

Cumulative welfare loss being (approximately) linear in disease severity has rather pro-

found implications.14 When d ≈ 0, there is zero social distancing in equilibrium and the

epidemic runs unchecked through the host population. Equilibrium cumulative welfare loss

being approximately linear in disease severity d means that the social-economic harm that

people endure throughout the epidemic in equilibrium is so great that people’s overall suf-

fering is approximately the same as if everyone remained fully active throughout the entire

epidemic—as if nothing were done at all to slow disease spread. Intuitively, the reason why

this can happen is that people’s efforts to avoid a more serious disease slow down trans-

mission, which in turn drags out the epidemic and increases the window of time in which

people need to make social-economic sacrifices to protect themselves. Thus, even though the

social-economic cost of protecting oneself at any given time remains the same, people incur

these costs for longer in equilibrium when the disease is more serious. See Atkeson (2022)

for a related quantitative analysis in the context of COVID-19.

14In future work, it would be worthwhile to conduct further numerical explorations of this phenomenon
under parametric conditions calibrated to SARS-CoV-2 or other diseases of specific interest.
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(a) Infection dynamics
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(b) Activity/game dynamics

Figure 6: Illustration of the equilibrium epidemic trajectory in an example with
asymptomatic-only transmission. Model parameters here are C(0) = 0.01, α = 0.25,
βC = 0.23, βI = 0, σ = 0.055, γ = 0.06, b1 = 0.1, b2 = 0.1, d = 1.8.
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(a) Mass of susceptibles (b) Mass of asymtomatically infected

(c) Mass of symptomatically infected (d) Cumulative welfare loss

Figure 7: Illustration of the equilibrium epidemic trajectory in an example with
asymptomatic-only transmission and varying disease severity d = 0, 1, 2. Other model pa-
rameters are C(0) = 0.01, α = 0.25, βC = 0.4, βI = 0, σ = 0.055, γ = 0.06, b1 = 0.1,
b2 = 0.1.
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Figure 8: Cumulative welfare loss as a function of disease severity d, holding all other
parameters fixed as in Figure 7.

6 Concluding remarks

This paper has introduced and analyzed a tractable model of endogenous collective action

during an infectious-disease epidemic, in a setting with myopic-optimizing agents, social-

economic complementarities from activity, and public-health policies that are responsive to

the will of the majority. We characterize the unique equilibrium trajectory of the epidemic

in this context, showing how the epidemic can progress through several qualitatively distinct

phases—and how the nature of these epidemic phases depends critically on whether disease

transmission occurs during the symptomatic or asymptomatic phases of infection.

For pathogens such as SARS-CoV-2 that spread mostly while people are not yet sick,15

we find that policy-makers may find it politically optimal to impose constraints that limit

healthy people’s ability to be fully active (“stay-at-home orders”) during some phases of the

epidemic, but will never require people to be more active than they would otherwise choose

to be (“go-out orders”). This is consistent with what has happened, as the vast majority of

government interventions during the Covid pandemic have been to limit activity.

On the other hand, for pathogens such as SARS-CoV-1 that spread mostly while people

are sick, our analysis makes the opposite prediction: policy-makers may sometimes find it

politically optimal to compel healthy people to be more active than they would otherwise

choose to be, but will never force people to limit their activity. This also appears to be

consistent with actual events during the 2003 SARS-CoV-1 outbreak. Public-health officials

in Toronto and other places actively sought to isolate the sick (and quarantine their close

15The findings summarized here apply to hypothetical pathogens that transmit only while asymptomatic or
only while symptomatic. SARS-CoV-1 had low transmissibility prior to the onset of symptoms (Anderson et
al. (2004)) and so came close to our symptomatic-only ideal. For SARS-CoV-2, the majority of transmission
occurs during the pre-symptomatic phase (Johansson et al. (2021)), but there is also a substantial amount
of transmission during sickness.
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contacts), but no efforts were made to compel healthy people in general to limit their activity.

In fact, the opposite was true, as the government in Toronto tried (unsuccessfully) to soothe

the public’s panic and encourage them to reengage in social-economic life (Blendon et al.

(2004)).16

There are several natural and interesting directions for future work that might build on

this paper’s analysis. First, agents in our model are ex ante identical, differing only during

the epidemic due to changes in their health status. In future work, it would be interesting

to explore richer models that account for sources of agent heterogeneity as in Ellison (2024).

Such heterogeneity could impact people’s public-health policy preferences. For instance,

the young and old may differ in their epidemic-management policy preferences because of

differing health risks, differing need for social activity, and so on; see Anderson et al. (2012),

Brotherhood et al. (2020) and Acemoglu et al. (2021). Similarly, because poorer people

have less flexibility to socially distance early during an epidemic (Basu et al. (2021)), their

likelihood of remaining susceptible may be much lower later in the epidemic, leading to a

divergence between the policy preferences of the rich and the poor within a society.

Second, agents in our model have only one way to protect themselves from becoming

infected, by “staying home.” However, people in practice may also have access to treatments

to reduce disease severity or duration and vaccination to reduce the likelihood of becoming

infected. The impact of treatment and vaccination on equilibrium behavior during an epi-

demic has been previously studied, see e.g., Chen (2006) and Chen and Toxvaerd (2014) on

vaccination, Rowthorn and Toxvaerd (2012) on treatment together with non-vaccine preven-

tion, and Avery et al. (2023) on vaccination together with social distancing. However, being

able to access a treatment and/or vaccine also impacts an agent’s support for public-health

interventions that impact social-economic life, since they are at less personal risk of being

infected. If public-health measures are determined politically, as in our model, inequitable

access to treatments and vaccines could drive subsequent inequitable policies.

Third, each agent i’s social-economic benefit in our model is linear in i’s activity level and

in the population-average activity level. However, in many social situations, social-economic

benefits are more naturally concave in overall activity. For instance, employees benefit from

being able to chat with colleagues as soon as even a few people are returning to the office.

Doubling the number of others present might double the number of chance encounters that

agent i has, approximately doubling i’s likelihood of being exposed,17 but is unlikely to

16Most people infected with SARS-CoV-1 were hospitalized before they could transmit the pathogen
widely. This allowed SARS-CoV-1 to be effectively contained, so much so that fewer than 10,000 people
became sick worldwide. Despite the low likelihood of being exposed, people in many affected countries
dramatically curtailed their activity, resulting in billions of dollars in economic losses (Popescu (2022)).

17Chen (2012) has examined the impact of congestion in transmission, where each agent’s rate of trans-
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double their social-economic benefits. Such social congestion could have substantial impacts

on healthy agents’ political demands. In particular, so long as there is enough N -agent

activity to meet most of N -agents’ social-economic needs, there could be much stronger

political demand to isolate the sick, especially late during the epidemic when isolation would

only impact a small number of sick people.

Finally, our analysis assumes that there are no diagnostics available to determine whether

one has asymptomatic infection or acquired immunity to re-infection. Such tests, which are

now possible due to recent advances in molecular biology, change agents’ behavior by chang-

ing their beliefs about their own likelihood of being susceptible. Previous work has high-

lighted how having better information about one’s health status need not necessarily improve

epidemic outcomes, since people who learn that they are infected have a self-interested incen-

tive to increase their own activity; see Acemoglu et al. (2023) and Deb et al. (2022).18 Future

work building on our analysis could also investigate the political-economic implications of

diagnostics.
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