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Abstract

An innovation (e.g., new product or idea) spreads like a virus, transmitted by those

who have previously adopted it. We characterize equilibrium adoption dynamics

and the resulting lifecycle of virally-spread innovations. Herding on adoption can oc-

cur but only early in the innovation lifecycle, and adoption eventually ceases for all

virally-spread innovations. A producer capable of advertising directly to consumers

finds it optimal to wait and allow awareness to grow virally initially after launch.

When most innovations would otherwise be mostly high (or low) quality absent any

viral spread, running an optimal-length viral campaign decreases (or increases) equi-

librium investment in innovation quality.
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When a novel virus enters a population, infected hosts expose others who, if success-
fully infected, will start spreading the virus as well. In such an infectious-disease epidemic,
virus strains that are more successful at causing infection spread more quickly through
the population. In the same way, when a new product is launched, a new idea espoused,
or a new method developed, an epidemic diffusion process ensues in which those who
have purchased the product, accepted the idea, or adopted the method spread awareness
and cause others to consider it as well. Those exposed later during such an adoption epi-
demic can make inferences about quality based on how long it took for them to be exposed.
For example, in a local political election, seeing a lawn sign promoting a candidate rela-
tively early during the campaign season may prompt people who see it to learn about that
candidate and potentially post their own sign, spreading awareness in epidemic fashion
and ultimately increasing that candidate’s share of the vote (Green et al. (2016)). Similarly,
hearing a friend recommend an anime series (Ameri et al. (2019)), Netflix show, or TikTok
recipe may prompt you to try it out yourself and potentially recommend it to others as
well.

Our economic-epidemic model adapts the susceptible-infected-recovered (SIR) model
of viral epidemiology1 to an economic context in which consumers receive informative
private signals about quality and decide whether to adopt a new innovation. There is a
unit-mass population of consumers and an “innovation” that is “good” with probability α

and “bad” with probability 1 − α. When first exposed to the innovation, each consumer i
receives a conditionally independent private signal si ∈ {G, B} that matches the true state
with probability ρ ∈ (1/2, 1). Consumer i then decides whether to adopt the innovation,
preferring to adopt whenever she believes that the innovation is more likely to be good
than bad. Those who adopt are “infected” and subsequently expose others, while those
who choose not to adopt are “immune/recovered” and do not expose anyone else to the
innovation.

A consumer who adopts in our model is making a choice to spread awareness of the
innovation, which in some applications may be distinct from the decision to use or act on
it. For example, in our local-election example, “adopting” does not correspond to voting
for a candidate but rather putting up a lawn sign or volunteering for their campaign.
A key assumption of our model is that consumers only want to make that decision to
spread awareness when the innovation in question is sufficiently likely to be good.2 An

1The SIR model was formulated in 1908 by Ronald Ross (who also famously discovered that malaria
is transmitted by mosquito) and developed further by Kermack and McKendrick (1927). It remains the
workhorse model of the field; see Anderson (1991) and Blackwood and Childs (2018).

2In a simpler alternative model, consumers get a direct benefit from sharing things that they like (i.e.,
when they get a favorable private signal) but ultimately don’t care whether the innovation is good or bad.
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implication of this assumption is that consumers find it optimal to account for the time it
has taken for them to hear about the innovation, in addition to their own private signal.
Indeed, we show that consumers find it optimal during some phases of the epidemic to
ignore their own private signals, “herding” on adoption or non-adoption.

Our first main finding is that the adoption epidemic has a unique equilibrium epi-
demic trajectory, which depends on (i) consumers’ ex ante belief α ∈ [0, 1] about the like-
lihood that the innovation is good, (ii) the precision ρ ∈ (1/2, 1) of consumers’ private
signals, and (iii) the fraction L of the consumer population that learns about the innova-
tion at “launch” at time t = 0. The case with L = 1 is relatively trivial since all consumers
are exposed to the innovation at time t = 0 and simultaneously decide whether to adopt;
we refer to this as a “traditional ad campaign.” By contrast, when L ≈ 0, almost all
consumers encounter the innovation socially; we refer to this case as a “viral campaign.”

The qualitative features of the equilibrium trajectory of a viral campaign depend on
whether or not the innovation is more likely to be good than bad, i.e., is α > 1/2 or
α < 1/2? When 1/2 < α < ρ,3 we show that consumers herd on adoption imme-
diately after launch, but this herding phase eventually ends and is followed by sub-
sequent phases in which newly-exposed consumers are less and less likely to adopt—
until eventually all adoption ceases, an endogenous obsolescence. By contrast, when
1 − ρ < α < 1/2, consumers do not herd on adoption immediately after launch and
newly-exposed consumers’ belief about innovation quality initially rises over time. How-
ever, as when 1/2 < α < ρ, newly-exposed consumers eventually become sufficiently
pessimistic about quality that all adoption ceases.

In an extension, we allow the producer of the innovation to launch the innovation
virally but then end the viral campaign at any time T ∈ [0, ∞) with an ad that reaches
all still-unexposed consumers. Our main finding in this extension is that a traditional ad
campaign (corresponding to T = 0) leads to strictly less overall adoption than an optimal-
length viral campaign.4 On the other hand, we also show that it is never optimal to run a
viral campaign forever.

In a further extension, we model the producer as deciding whether to make a costly in-
vestment to increase the likelihood that their innovation is good. We find that equilibrium
investment is more moderate when the producer uses an optimal-length viral campaign

Innovation infectivity remains constant over time in such a model, whereas in our model infectivity is
endogoneous and eventually falls to zero in equilibrium.

3If α > ρ (or α < 1 − ρ), then consumer behavior is trivial with everyone (or no one) adopting.
4In our analysis, we characterize the minimal campaign length T∗ that maximizes the mass of consumers

who adopt the innovation. If the producer prefers quicker adoption, such as when adoption corresponds to
purchasing a new product and the producer is a firm that discounts profits, then the producer may prefer
running a traditional ad campaign even though doing so leads to less overall adoption.
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than in a non-viral benchmark in which the producer’s only option is to run a traditional
ad campaign. In particular, let α̂ and α∗ denote the equilibrium likelihood of a good inno-
vation in the non-viral benchmark and when the producer runs an optimal-length viral
campaign, respectively. We show that α̂ < α∗ < 1/2 if α̂ < 1/2 but that α̂ > α∗ > 1/2 if
α̂ > 1/2.

Intuitively, whether optimal-length viral marketing increases or decreases the pro-
ducer’s incentive to invest in innovation quality depends on the relative strength of two
competing effects. First, because those exposed early on during a viral campaign experi-
ence positive word of mouth, they are more likely to adopt when the innovation is good.
This “word-of-mouth effect” gives the producer more incentive to invest in quality, to
drive early adoption and cause more consumers to encounter the innovation while word
of mouth remains positive. On the other hand, we show that viral campaigns can also
cause some consumers to adopt even after a negative private signal. This “herding effect”
reduces the importance of quality in driving adoption and hence reduces the producer’s
incentive to invest.

A key simplifying assumption of our main analysis is that consumers receive equally-
informative binary private signals. This allows us to characterize the equilibrium tra-
jectory of the adoption epidemic in an especially simple way, in terms of a sequence of
several clearly-delineated phases (Figure 2). However, this is not essential. In Appendix
B, we extend the model to a setting in which consumers differ in the precision of their pri-
vate signals, characterize the unique equilibrium epidemic trajectory, and show how the
basic qualitative features of the equilibrium trajectory in our binary-signal model carry
over to this richer context.

Relation to the literature. The idea that ideas can spread like a virus is widely appre-
ciated5 and well-studied, with some going even further to explore how ideas mutate as
they circulate through a population; see e.g., Simmons et al. (2011), Adamic et al. (2016),
and Jackson et al. (2022). We abstract from the possibility of mutation, but push the lit-
erature forward by modeling becoming infected as an economic choice. In doing so, we
characterize the equilibrium dynamics of the epidemic and show how these dynamics
change over time, passing through several phases with distinctive patterns of adoption.

Most closely related is Banerjee (1993), who pioneered the study of adoption epi-
demics in the context of rumors, when only those exposed at launch have informative
private signals about quality. Our model differs from Banerjee (1993)’s by allowing all

5See e.g., “The Age of the Viral Idea” by Bill Davidow, The Atlantic, Nov 17, 2011 and “The Internet
Catches a Viral Epidemic” by Bill Wasik, Wired, April 16, 2013.
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consumers to receive informative private signals. To highlight the significance of this
difference, we compare our “innovation model” (studied in the main text) with a much
simpler “rumor model” variation in which only those exposed at launch are privately in-
formed (Appendix A). We find that several qualitative features of equilibrium adoption
dynamics differ fundamentally between these cases:

- In the rumor model, more delay in hearing about a rumor is always bad news about
its quality. By contrast, in the innovation model, consumer beliefs about the like-
lihood that an innovation is good can be non-monotone in the time that it takes to
hear about the innovation.

- In the rumor model, either a traditional ad campaign or a viral campaign that lasts
forever is always optimal. By contrast, in the innovation model, neither a traditional
ad campaign nor a viral campaign that lasts forever is ever optimal.

- In the rumor model, optimal-length viral marketing never reduces equilibrium ru-
mor quality. By contrast, in the innovation model, allowing the producer to run an
optimal-length viral campaign reduces equilibrium innovation quality whenever
equilibrium quality would otherwise be high.

Because awareness of the innovation in our model spreads by word of mouth, the pa-
per connects with the broader economic literature on diffusion; see e.g., Campbell (2013),
Campbell et al. (2017), Leduc et al. (2017), and Sadler (2020). The main difference is
that this literature mostly focuses on consumers’ search technology and social network,
whereas we focus on the impact of consumers’ private information about quality. There
is also a literature in marketing and consumer behavior on the diffusion of new prod-
ucts through influentials, e.g. Dodson Jr. and Muller (1978) and Van den Bulte and Joshi
(2007). This literature also develops compartmental models where consumers transit be-
tween different states marking their awareness of the product and/or their adoption be-
havior. However, consumers in these models typically make decisions according to rules
governed by exogenous parameters; see Watts and Dodds (2007) for a comprehensive
survey. By contrast, the consumers in our analysis are Bayesian utility maximizers.

An extensive literature endogenizes the diffusion dynamics of an infectious pathogen;
see e.g., Newman (2002) on disease spread over a social network, Lipsitch et al. (2007) and
Toxvaerd and Rowthorn (2022) on when best to deploy antiviral treatment during a viral
epidemic, Bauch and Bhattacharyya (2012) on the dynamics of vaccine scares, Laxmi-
narayan and Brown (2001) and McAdams (2017) on when to switch to a new antibiotic
in the face of rising resistance, and Farboodi et al. (2021) and McAdams et al. (2023) on
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the impact of social distancing during the outbreak and endemic phases of an epidemic.
The basic difference with this literature is that agents in an infectious-disease epidemic
prefer to avoid infection, whereas being “infected” in our model may or may not benefit
consumers depending on whether the innovation is good or bad.

Finally, the paper relates indirectly to the literature on social learning. In the classic
social learning model (Bikhchandani et al. (1992), Banerjee (1992), Smith and Sorensen
(2000)), infinitely-many agents are arrayed in a line and sequentially decide whether to
adopt, based on their own private signal and all decisions made by those before them.
By contrast, in our model, only those who have chosen to adopt expose others to the
innovation and, when deciding whether to adopt, consumers do not know the length of
the chain of exposures that led to their own exposure.6

The rest of the paper is organized as follows. Section 1 presents the model. Section 2
characterizes the equilibrium epidemic trajectory of innovation adoption over time. We
then present two extensions, allowing the producer to choose when to end a viral cam-
paign with an ad that reaches all remaining consumers (Section 3) and whether to make a
costly investment in innovation quality (Section 4). Concluding remarks are in Section 5.
Appendix A analyzes a variation of our model in which only those exposed at time t = 0
get informative private signals about the innovation, referred to in this case as a “rumor.”
Appendix B extends the equilibrium-trajectory analysis of Section 2 to a richer setting in
which consumers’ private signals are drawn from a continuum with differing precision.
Appendix C contains formal proofs omitted in the main text.

1 Model

There is an “innovation” which may be either “good” or “bad.” Each consumer i gets
payoff ug > 0 when adopting a good innovation, −ub < 0 when adopting a bad innova-
tion, or zero when not adopting, and seeks to maximize their own expected payoff. To
simplify equations, suppose that ug = ub so that each consumer strictly prefers to adopt if
and only if they believe that the innovation’s likelihood of being good exceeds 1/2.7 Let
α ∈ [0, 1] be the ex ante probability that the innovation is good.

6Classic social learning reemerges within a variation of our model if one instead assumes (i) all infected
and recovered consumers expose others at the same rate and (ii) each consumer is able to observe the
history of decisions made along the entire chain of consumers leading to their exposure. In that context,
consumers along each exposure chain behave exactly as in the classic model.

7This normalization is without loss of generality. If ug ̸= ub, then consumers will adopt based on belief
threshold ub/(ub + ug) rather than 1/2, but otherwise our analysis carries through directly.
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Figure 1: Illustration of “viral social learning” during an adoption epidemic, whereby
the dynamics of innovation adoption drive the epidemiological dynamics of innovation
awareness, which in turn determine the dynamics of consumer beliefs about innovation
quality.

Epidemiological dynamics. Innovation awareness spreads through the consumer pop-
ulation like a virus, according to a Susceptible-Infected-Recovered (SIR) model (Kermack
and McKendrick (1927)). At each point in time t ≥ 0, each consumer is in one of three
epidemiological states: susceptible, if not yet exposed to the innovation; infected, if previ-
ously exposed and chose to adopt; or recovered, if previously exposed and chose not to
adopt. We assume that mass L > 0 of consumers are exposed to the innovation at time
t = 0 regardless of innovation quality. Those who adopt then become infected and spread
innovation awareness virally, meeting another randomly-selected consumer at rate β > 0
and exposing that other consumer to the innovation. If susceptible, that other consumer
receives a private signal and decides whether or not to adopt, then transitions immedi-
ately either to the infected state (if adopting) or to the recovered state (if not adopting).

Let Sω(t), Iω(t), and Rω(t) denote the mass of susceptible, infected, and recovered
consumers at time t, conditional on the unobserved innovation-quality state ω ∈ {g, b}.
Since the population has unit mass, Rω(t) = 1 − Sω(t)− Iω(t) and the overall epidemi-
ological process is described by (Sω(t), Iω(t) : t ≥ 0, ω = g, b). Let qω(t) denote time-t
consumers’ likelihood of adopting when the state is ω ∈ {g, b}.

Epidemiological dynamics are characterized by the system of differential equations

S′
ω(t) = −βIω(t)Sω(t) (1)

I′ω(t) = qω(t)βIω(t)Sω(t) (2)

Equation (1) follows from the fact that each infected consumer meets another consumer at
rate β > 0 and fraction Sω(t) of others remain suspectible, generating a state-dependent
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flow βIω(t)Sω(t) of newly-exposed consumers who are then no longer susceptible. Equa-
tion (2) follows from the fact that fraction qω(t) of these newly-exposed consumers choose
to adopt. Note that epidemiological dynamics are completely determined by the adoption
process (qω(t) : t ≥ 0, ω = g, b) and the mass L of consumers exposed at time t = 0.

To simplify equations, we will henceforth normalize β = 1. This is without loss of
generality since, with any β̂ ̸= 1, equilibrium epidemiological dynamics are exactly the
same but happen β̂ times faster than when β = 1.

Consumer belief formation. Let p(t) be the probability that the innovation is good
conditional on encountering it socially at time t, what we refer to as the “interim be-
lief” of consumers exposed socially at time t. Let f (t|ω) denote the endogenous8 p.d.f.
of consumers’ time of exposure conditional on the state ω ∈ {g, b}. By Bayes’ Rule,
p(t) = α f (t|ω=g)

α f (t|ω=g)+(1−α) f (t|ω=b) or, equivalently,

p(t)
1 − p(t)

=
α

1 − α
× f (t|ω = g)

f (t|ω = b)
(3)

Once exposed to the innovation, each consumer i observes private signal si ∈ {G, B}.
These signals are conditionally i.i.d. with Pr(si = G|ω = g) = Pr(si = B|ω = b) = ρ ∈
(1/2, 1). A consumer i exposed at launch (ti = 0) with signal si ∈ {G, B} updates to “ex
post belief” p(0; si), where

p(0; G)

1 − p(0; G)
=

α

1 − α
× ρ

1 − ρ
and

p(0; B)
1 − p(0; B)

=
α

1 − α
× 1 − ρ

ρ
. (4)

A consumer i exposed socially at time ti updates her belief based on both her own private
signal si ∈ {G, B} and when she is exposed, forming “ex post belief” p(ti; si). Again by
Bayes Rule,

p(ti; G)

1 − p(ti; G)
=

p(ti)

1 − p(ti)
× ρ

1 − ρ
and

p(ti; B)
1 − p(ti; B)

=
p(ti)

1 − p(ti)
× 1 − ρ

ρ
. (5)

By assumption, all consumers receive equally-informative private signals, regardless of
whether they encountered the innovation direction at launch or indirectly through a social
interaction.

In Appendix A, we analyze a simpler alternative setting (motivated by Banerjee (1993)’s
model of rumors) in which only those exposed at launch receive informative private sig-

8We will characterize the equilibrium distribution of t|ω, showing that f (t|ω) exists and is continuous
in t at all but finitely-many points when the innovation lifecycle transitions from one phase to the next.
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nals. In that context, a consumer exposed socially at time ti receives an uninformative
private signal and hence has ex post belief p(ti).

In Appendix B, we analyze a richer alternative setting in which consumers receive
conditionally i.i.d. private signals si ∈ [−1, 1] drawn from a distribution having p.d.f.
h(·; ω) and satisfying the monotone likelihood ratio property. In that context, a consumer
exposed socially at time ti has ex post belief p(ti; si) satisfying p(ti;si)

1−p(ti;si)
= p(ti)

1−p(ti)
h(si;ω=g)
h(si;ω=b) .

Belief dynamics. Since the consumer population has unit mass, the flow of newly-
exposed consumers can be interpreted as the density of the time-until-exposure t, i.e.,
f (t|ω) = |S′

ω(t)| = Sω(t)Iω(t), where |S′
ω(t)| is the flow of consumers exposed at time t

(“time-t consumers”) when the innovation is good (ω = g) or bad (ω = b). Thus, time-t
consumers’ interim belief is given by

p(t)
1 − p(t)

=
α

1 − α
×

Sg(t)Ig(t)
Sb(t)Ib(t)

. (6)

Adoption dynamics. Let asi(t) denote the likelihood that each time-t consumer chooses
to adopt given private signal si ∈ {G, B}. Time-t consumers are said to “herd on adop-
tion” if aG(t) = aB(t) = 1 and to “herd on non-adoption” if aG(t) = aB(t) = 0. On the
other hand, they are said to be “sensitive to signals” if aG(t) = 1 but aB(t) = 0. Note
that time-t consumers find it optimal to herd on adoption whenever p(t) > ρ, to herd on
non-adoption when p(t) < 1 − ρ, and to be sensitive to signals when 1 − ρ < p(t) < ρ.
Time-t consumers are indifferent whether to adopt after a bad private signal if p(t) = ρ

and indifferent whether to adopt after a good signal if p(t) = 1 − ρ.

Equilibrium. Our solution concept is Bayesian Nash equilibrium (or simply “equilib-
rium”). We will show by construction that an equilibrium exists and that generically
this equilibrium is essentially unique, in the sense that all equilibria generate the same
population-wide epidemiological dynamics (Sω(t), Iω(t) : t ≥ 0; ω ∈ {g, b}).

Discussion: observability of time since launch. We assume that, when consumers encounter
the innovation, they are able to observe how much time has elapsed since launch. How-
ever, our analysis can be easily extended to a setting in which fraction η ∈ [0, 1] of
consumers are unable to observe the time since launch. In particular, because all con-
sumers are eventually exposed to the innovation, a consumer who is unable to observe
the time will not make any inference about innovation quality and so will decide whether
to adopt as if encountering the innovation at launch. The overall likelihood that a con-
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sumer exposed at time t > 0 will adopt in innovation-quality state ω ∈ {g, b} is therefore
q̃ω(t) = ηqω(0) + (1− η)qω(t), where qω(0) and qω(t) are the likelihoods that consumers
who can observe the time will adopt, respectively, at time 0 and time t. The rest of our
analysis then carries over, with more complex formulas but little additional insight.

2 Adoption Epidemic Dynamics

This section characterizes the unique equilibrium trajectory of the adoption epidemic dur-
ing a viral campaign from launch through endogenous obsolescence, what we refer to as
the “innovation lifecycle.” We begin with some preliminary analysis, then complete our
characterization of the equilibrium epidemic trajectory in Section 2.1.

Trivial cases: α > ρ or α < 1− ρ. Suppose first that α > ρ. The innovation is sufficiently
likely to be good that consumers exposed at launch choose to adopt even after a bad
private signal; thus, Ig(0) = Ib(0) = L and Sg(0) = Sb(0) = 1 − L. By equation (6),
consumers exposed socially immediately after launch have interim belief p(0) = α and
so must also herd on adoption. So long as consumers continue to herd on adoption,
Ig(t) = Ib(t) and Sg(t) = Sb(t); hence, p(t) = α and consumers continue to herd on
adoption. We conclude, in the unique equilibrium trajectory, all consumers eventually
adopt regardless of innovation quality.

Suppose next that α < 1 − ρ. The innovation is sufficiently unlikely to be good that
consumers exposed at launch choose not to adopt even after a good signal. And with
no one adopting at launch, no one is “infected” to spread awareness virally and so no
one is ever exposed socially. We conclude that, in the unique equilibrium trajectory, no
consumers adopt regardless of quality.

The rest of this section characterizes the unique equilibrium trajectory in the most
interesting case when 1 − ρ < α < ρ.9

Consumer behavior at and immediately after launch. Since 1 − ρ < α < ρ, we have
p(0; B) < 1/2 < p(0; G) and any consumer exposed at launch finds it optimal to adopt

9The cases when α = ρ and α = 1− ρ are more complex because consumers have multiple best responses
at launch, but this extra complexity does not lead to any additional insight. For example, if α = 1 − ρ,
consumers exposed at launch will adopt with some probability aG ∈ [0, 1] after a good signal but not
adopt after a bad signal, resulting in initial infected mass Ig(0+) = aGρL when the innovation is good
and Ib(0+) = aG(1 − ρ)L when it is bad and initial belief p(0+) = 1/2. For each aG ∈ (0, 1], subsequent
equilibrium dynamics are then uniquely determined by similar arguments as used here for the case when
α ∈ (1 − ρ, 1/2).
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after getting a good signal but not after a bad signal, i.e., they are sensitive to signals.
Since good signals are more likely for good innovations, more consumers adopt at launch
and word of mouth spreads more rapidly for good innovations. Hearing quickly about
an innovation is therefore good news about its quality. More precisely, Ig(t) ≈ ρL, Ib(t) ≈
(1 − ρ)L, and Sg(t) ≈ Sb(t) ≈ 1 − L for all t ≈ 0, where L is the mass of consumers
exposed at launch. By equation (6), we conclude that

p(t)
1 − p(t)

≈ α

1 − α
× ρ

1 − ρ
for all t ≈ 0, (7)

Consumers’ interim belief shortly after launch is the same as if they have gotten a good
private signal of precision ρ. Because α > 1 − ρ, equation (7) implies that (i) p(0+) ≡
limt→0 p(t) > 1/2 and (ii) p(0+) > ρ if and only if α > 1/2. Consumers exposed im-
mediately after launch will therefore herd on adoption if α > 1/2 but remain sensitive to
signals if α < 1/2.

Interim belief dynamics after launch. Equation (6) characterizes consumers’ interim
belief p(t) at time t, depending on the ex ante likelihood α that the innovation is good
and the ratio Sg(t)Ig(t)

Sb(t)Ib(t)
. Rather than focusing on p(t) directly, we find it convenient to

consider the percentage rate of change of the likelihood ratio p(t)
1−p(t) , gotten by taking the

log of both sides of (6) and differentiating:

X(t) ≡
dlog

(
p(t)

1−p(t)

)
dt

=
S′

g(t)
Sg(t)

−
S′

b(t)
Sb(t)

+
I′g(t)
Ig(t)

−
I′b(t)
Ib(t)

= −Ig(t) + Ib(t) + qg(t)Sg(t)− qb(t)Sb(t) (8)

where S′
ω(t)

Sω(t)
= −Iω(t) and I′ω(t)

Iω(t)
= qω(t)Sω(t) by equations (1-2). Since p(t)

1−p(t) grows
exponentially at rate X(t), we have p′(t) ≷ 0 iff X(t) ≷ 0.

Lemma 1 summarizes some implications of equation (8), depending on whether con-
sumers herd on adoption, are sensitive to signals, or herd on non-adoption. (Formal
proofs are provided in Appendix C.)

Lemma 1. (i) Suppose that consumers herd on adoption at time t. p′(t) < 0 if Ig(t) > Ib(t) and
Sg(t) < Sb(t). (ii) Suppose that consumers are sensitive to signals at time t. p′(t) > 0 if and
only if the following inequality holds:

ρSg(t)− (1 − ρ)Sb(t) > Ig(t)− Ib(t). (SS)
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(We refer to this as “Condition SS,” mnemonic for “sensitive to signal.”) (iii) Suppose that con-
sumers herd on non-adoption at time t. p′(t) < 0 if Ig(t) > Ib(t).

2.1 Equilibrium Lifecycle of an Innovation

This section characterizes equilibrium economic-epidemiological dynamics. Our main
finding is that consumer behavior transitions over time through up to10 four distinct
phases, what we refer to collectively as the “innovation lifecycle”; see Figure 2. Behavior
immediately after launch (Phase I) depends on whether the innovation is more likely to
be good (α > 1/2) or bad (α < 1/2). Subsequent behavior then passes through a period
of partial herding (Phase II), a period in which consumers are sensitive to signals (Phase
III), and a final period with zero adoption (Phase IV).

Theorem 1. Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. Equilibrium epidemiological dynamics
(Sω(t), Iω(t) : t ≥ 0; ω ∈ {g, b}) are uniquely determined, with consumers’ post-launch equi-
librium behavior transitioning through four phases.

Phase I: (i) If α ∈ (1/2, ρ), then consumers herd on adoption and interim belief p(t) > ρ

decreases until time t1 > 0 at which p(t1) = ρ. (ii) If α ∈ (1 − ρ, 1/2), then consumers
are sensitive to signals and p(t) ∈ (1/2, ρ) increases until time t1 > 0 at which p(t1) = ρ.
(iii) If α = 1/2, then p(0+) ≡ limϵ→0 p(ϵ) = ρ and Phase I does not occur, i.e., t1 = 0.

Phase II: Consumers partially herd on adoption, adopting always after a good signal and
with probability aB(t) ∈ (0, 1) after a bad signal, where aB(t) is decreasing in t, until time
t2 > t1 at which aB(t2) = 0. Consumers’ interim belief p(t) = ρ for all t ∈ [t1, t2].

Phase III: Consumers are sensitive to signals and interim belief p(t) ∈ (1 − ρ, ρ) is de-
creasing in t until time t3 > t2 is reached at which p(t3) = 1 − ρ.

Phase IV: Consumers herd on non-adoption, what we refer to as “viral obsolescence,” and
consumers’ interim belief p(t) < 1 − ρ continues to decline with limt→∞ p(t) = 0.

The rest of this section establishes Theorem 1 through a series of five propositions.

Phase I: herding on adoption case. Suppose first that α ∈ (1/2, ρ), so that consumers
herd on adoption immediately after launch. We show that consumers’ interim belief p(t)
declines until time t1 > 0 is reached at which p(t1) = ρ.

10Depending on model parameters, some of these phases may have zero length.
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Figure 2: Visual summary of equilibrium adoption behavior and interim beliefs over the
innovation lifecycle, when consumers’ ex ante belief α ∈ (1 − ρ, ρ).

Proposition 1 (Phase I: herding on adoption). Suppose that α ∈ (1/2, ρ). There exists t1 > 0
such that, in any equilibrium trajectory, (i) consumers herd on adoption for all t ∈ (0, t1), (ii)
p(t) is strictly decreasing over t ∈ (0, t1), and (iii) p(t1) = ρ.

Discussion: downward pressure on consumer beliefs. Because more people adopt good in-
novations at launch, the fact that consumers herd on adoption for a period of time after
launch causes more people to be exposed and infected when the innovation is good than
when it is bad. Consequently, there are fewer susceptible people when the innovation
is good, causing each infected person to “meet” susceptible people at a slower rate. The
mass of infected people therefore increases at a slower percentage rate when the innova-
tion is good; i.e., the ratio Ig(t)

Ib(t)
falls over time. Similarly, because there are more infected

people when the innovation is good, each susceptible person is exposed at a faster rate,
causing the mass of susceptible people to decrease at a faster percentage rate, i.e., the
ratio Sg(t)

Sb(t)
falls over time. By equation (6), these observations imply that newly-exposed

consumers’ belief p(t) falls over time so long as consumers continue to herd on adop-
tion. This effect, which arises from the epidemiological dynamics of innovation diffusion
whenever consumers’ adoption decisions do not depend on their private information,
puts a downward pressure on consumer beliefs.

Phase I: sensitive to signals case. Suppose next that α ∈ (1− ρ, 1/2), so that consumers
are sensitive to signals after launch. In this case, we show that consumers’ interim belief
p(t) increases until a finite time t1 > 0 is reached at which p(t1) = ρ.

Proposition 2 (Phase I: sensitive to signals). Suppose that α ∈ (1− ρ, 1/2) and L ≈ 0. There
exists t1 > 0 such that, in any equilibrium trajectory, (i) consumers are sensitive to signals for all
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t ∈ (0, t1), (ii) p(t) is strictly increasing over t ∈ (0, t1), and (iii) p(t1) = ρ.

Discussion: upward pressure on consumer beliefs. When newly-exposed consumers are sen-
sitive to signals, new exposures are more likely to translate into new infections when the
innovation is good. This increases the relative growth rate of the mass of infected people
when the innovation is good, putting an upward pressure on consumer beliefs. This up-
ward pressure on beliefs weighs against the downward pressure discussed earlier, with
the downward pressure growing stronger as the epidemic progresses. Our small-launch
assumption here (L ≈ 0) ensures that, during Phase I of the epidemic, the upward pres-
sure when consumers are sensitive to signals dominates the downward pressure. How-
ever, as we discuss next, the balance between these forces shifts over the course of the
epidemic until, at the end of Phase II, enough consumers have been exposed that the
downward pressure exactly counterbalances the upward pressure associated with con-
sumers being sensitive to signals.

Phase II: Partial herding. For a non-empty interval of time after time t1, we find that
consumers randomize whether to adopt after a bad private signal (and always adopt
after a good signal), what we call “partial herding.” Over this period of time, consumers’
interim belief remains equal to ρ and the likelihood aB(t) that consumers adopt after a
bad signal declines continuously until, at some time t2, aB(t) = 0 and consumers become
sensitive to signals. We refer to the period from t1 until t2 as “Phase II”.

Proposition 3 (Phase II). Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. There exists t2 > t1

such that, in any equilibrium trajectory, (i) consumers partially herd with adoption probability
aB(t) ∈ (0, 1) after a bad signal for all t ∈ (t1, t2), where

aB(t) =
ρSg(t)− (1 − ρ)Sb(t)−

(
Ig(t)− Ib(t)

)
ρSb(t)− (1 − ρ)Sg(t)

(9)

and (ii) p(t) = ρ for all t ∈ (t1, t2). Moreover, aB(t) is continuously decreasing over t ∈ (t1, t2)

with aB(t2) = 0.

To gain intuition why consumers must randomize11 whether to adopt after getting a
bad private signal, consider the following simple contradiction argument. First, suppose

11The equilibrium mixed strategies here can be “purified” by augmenting the model so that consumers’
private signals have differing precision. Suppose that each socially-exposed consumer observes the random
precision ρi of their own signal as well as its realization si, with (ρi, si) conditionally i.i.d. across consumers
and ρi drawn from atomless support (ρ − ϵ, ρ + ϵ) for ϵ ≈ 0. This enriched model has a unique equilibrium
that is approximately outcome equivalent to the equilibrium in our basic model, but with pure strategies.
In particular, during “Phase II,” consumers adopt after any good private signal and after any sufficiently-
imprecise bad signal, and interim beliefs fall continuously from ρ + ϵ at time t1 to ρ − ϵ at time t2.
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that consumers at time t1 always adopt after a bad signal. Consumers’ interim beliefs
would then fall (as discussed after Proposition 1), causing consumers never to adopt after
a bad signal, a contradiction. Similarly, if consumers were to never adopt after a bad
signal, interim beliefs would rise (as discussed after Proposition 2, since condition SS
is satisfied at time t1), causing consumers always to adopt after a bad signal, another
contradiction. So, it must be that consumers sometimes adopt and sometimes do not
adopt when getting a bad private signal. This in turn requires that consumers’ interim
belief remain equal to ρ after time t1. In the Appendix, we show further that the unique
equilibrium mixing probability decreases over time and reaches zero at finite time t2.

Discussion: how Phase II ends. The time t2 at which Phase II ends is the first time at which
ρSg(t)− (1 − ρ)Sb(t) = Ig(t)− Ib(t), i.e., the first time that Condition SS is satisfied with
equality. Intuitively speaking, partial herding is needed during Phase II to temper the
upward pressure associated with consumers being sensitive to signals, to keep beliefs
from rising above ρ. However, this upward pressure declines over time until, eventually,
beliefs begin to fall even if consumers are sensitive to signals. Time t2 is the transition
point after which consumer beliefs do not rise over time even if consumers are sensitive
to signals.

Phases III and IV: End of the innovation lifecycle. We have two main findings about
consumer behavior after time t2. First, consumers remain sensitive to signals for a period
of time but, even though newly-exposed consumers are only adopting after a good pri-
vate signal, consumers’ interim belief falls until a time t3 is reached at which p(t3) = 1− ρ

(Proposition 4). Second, consumers herd on non-adoption after time t3, what we refer to
as “viral obsolescence,” and their interim beliefs continue to decline toward zero (Propo-
sition 5). We refer to the sensitive-to-signal period from t2 to t3 as “Phase III” and the
obsolescent period after t3 as “Phase IV”.

Proposition 4 (Phase III). Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. There exists t3 > t2 such
that, in any equilibrium trajectory, (i) consumers are sensitive to signals for all t ∈ (t2, t3), (ii)
p(t) is strictly decreasing over t ∈ (t2, t3), and (iii) p(t3) = 1 − ρ. Moreover, Sg(t) < Sb(t) and
Ig(t) > Ib(t) for all t ∈ [0, t3].

Proposition 5 (Phase IV). Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. After time t3 in any
equilibrium trajectory, consumers herd on non-adoption and p(t) declines with limt→∞ p(t) = 0.

The proofs of Propositions 4-5 are the most technically challenging in the paper, but
the intuition underlying these results is easy to explain. At the end of Phase II, the epi-
demic is sufficiently mature that the downward pressure on consumer beliefs is so large
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that beliefs must fall over time even if newly-exposed consumers are sensitive to sig-
nals. Consumers’ interim beliefs therefore fall throughout Phase III, from ρ at time t2 to
1 − ρ at time t3, giving newly-exposed consumers an incentive to be sensitive to signals
throughout this phase of the epidemic. Once consumers’ interim belief hits 1 − ρ at time
t3, consumers then lose their incentive to adopt after a good private signal, causing an
endogenous obsolescence as no one adopts after time t3.

3 Stopping the Viral Campaign

Here we extend the analysis to allow the producer to decide how long to continue the viral
campaign. Suppose that, at any time T ≥ 0, the producer can stop the viral campaign
by running a “broadcast advertisement” (or simply “broadcast”) that reaches all still-
unexposed consumers. In this section, we characterize the optimal time at which to stop
the viral campaign.

To keep the analysis as simple as possible, we assume that the producer must choose
the broadcast time T ∈ [0, ∞] before launch and before knowing whether its innovation
will be good or bad; running the broadcast is costless; and the producer’s objective is to
maximize the expected mass of consumers who adopt the innovation.12

As in Section 2, we focus on the case when α ∈ (1 − ρ, ρ),13 so that consumers are
sensitive to signals at launch, and assume a small initial launch (L ≈ 0).

We show that the producer finds it optimal to run a viral campaign of limited duration,
i.e., T = 0 and T = ∞ are both sub-optimal. In Appendix A, we show the opposite is true
in the “rumor model” in which only those exposed at launch are privately informed; in
that case, either T = 0 or T = ∞ is always optimal.

Broadcast-updated beliefs. Consumers who see the broadcast at time T update their
belief about innovation quality based on the fact that they did not encounter the innova-
tion during the preceding viral campaign. Let pBR(T) denote consumers’ updated belief
after seeing the broadcast at time T. Conditional on the innovation being good or bad,
each consumer will encounter the innovation via broadcast with ex ante probability Sg(T)

12For simplicity, we assume that the producer does not care about the timing of adoption. Introducing
discounting complicates the analysis but does not generate any additional insight.

13The other main cases are trivial. In the high-quality case when α > ρ, Ig(T) = Ib(T) > 0 for all T
since consumers herd on adoption; thus, consumers do not update their beliefs and all consumers adopt
no matter when (or whether) the producer decides to run the broadcast. Similarly, in the low-quality case
when α < 1 − ρ, Ig(T) = Ib(T) = 0 for all T and no consumers ever adopt.
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or Sb(T), respectively. By Bayes’ Rule:

pBR(T)
1 − pBR(T)

=
α

1 − α
×

Sg(T)
Sb(T)

. (10)

As shown below in Lemma 2, pBR(T) is strictly decreasing and continuous in T, with
pBR(0) = α and limT→∞ pBR(T) = 0. Let T denote the time at which consumers’ broadcast-
updated belief equals 1 − ρ, i.e., pBR(T) = 1 − ρ. We refer to T as the time of “broadcast
obsolescence” since, at any time after T, all consumers exposed via broadcast will choose
not to adopt.

Optimal-length viral campaigns. Here we characterize the optimal length for a viral
campaign, in terms of the threshold times t1, t2, and t3 characterized in Theorem 1.

Theorem 2. Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0, and let T∗ denote the earliest optimal
stopping time. (i) If pBR(t2) ≥ 1 − ρ, then T∗ = t2. (ii) If pBR(t2) < 1 − ρ, then either
T∗ = T (broadcast obsolescence) or T∗ = t3 (viral obsolescence). Moreover, T∗ = t3 if and only
if pBR(t2) < 1 − ρ and

α

(∫ t2

T
aB(t)(1 − ρ)|S′

g(t)|dt−Sg(t3)

)
+(1 − α)

(∫ t2

T
aB(t)ρ|S′

b(t)|dt−Sb(t3)

)
≥ 0 (11)

where
(
Sg(t), Sb(t), aB(t) : t ≥ 0

)
were derived in Section 2.

An implication of Theorem 2 is that a producer seeking to maximize adoption will
always choose to run a viral campaign for at least some period of time. When is it optimal
to stop the viral campaign? Theorem 2 lays out three possibilities:

(a) if pBR(t2) ≥ 1 − ρ, then it is optimal to stop at time t2;

(b) if pBR(t2) < 1 − ρ and inequality (11) is satisfied, then it is optimal to run the viral
campaign until viral obsolescence (time t3) or, equivalently, to run the viral cam-
paign forever; or

(c) if pBR(t2) < 1 − ρ and inequality (11) is not satisfied, then it is optimal to run the
viral campaign until broadcast obsolescence (time T).

Interestingly, only possibilities (a) and (c) arise in practice. Lemma 2 establishes some
facts about broadcast-updated beliefs that are useful in establishing Theorem 2.

Lemma 2. Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. (i) pBR(T) < p(T) for all T > 0. (ii)
pBR(0+) = α and pBR(T)

1−pBR(T)
falls exponentially at rate Ig(T) − Ib(T) > 0 for all T. Define T

implicitly by pBR(T) = 1 − ρ. (iii) T ∈ (t1, t3). (iv) If α ∈ (1/2, ρ), then T ∈ (t2, t3).
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Because awareness grows faster during the viral campaign when the innovation is
good, encountering the innovation via broadcast is bad news about innovation quality.
Moreover, consumers’ negative inference when seeing a broadcast gets worse as time
goes on (Lemma 2(ii)) and is worse than the inference they would make if encountering
the innovation socially at the same time (Lemma 2(i)).

When α ∈ (1/2, ρ), Lemma 2(iv) implies T ≥ t2, meaning that only possibility (a)
arises in this case. When α ∈ (1 − ρ, 1/2], the theory is unclear but numerical simulation
reveals that stopping time T is always better than never stopping. Over the relevant pa-
rameter space {(α, ρ) : ρ ∈ (1/2, 1), α ∈ (1− ρ, 1/2]}, we solved the system of differential
equations (1,2) to determine the equilibrium epidemiological dynamics and computed the
mass of consumers who adopt good and bad innovations when the producer uses stop-
ping time T (which depends on α and ρ) versus never stopping the viral campaign. As
illustrated in Figure 3, stopping the campaign at time T is strictly better across the entire
parameter space, increasing adoption by as much as 72% for some parameter values.

Figure 3: Percentage increase in the producer’s expected measure of adopting consumers,
denoted π(T), when stopping the viral campaign at broadcast obsolescence (T = T) ver-
sus viral obsolescence (T = t3). For all combinations of (α, ρ), stopping at T = T is more
profitable.

The rest of this section proves Theorem 2.

Go/no-go threshold for broadcast. Should the viral campaign continue until time T,
the producer must decide whether to run the broadcast right at that moment, so that still-
unexposed consumers are willing to adopt after a good signal (“go”), or never run the
broadcast at all, allowing the campaign to continue until viral obsolescence (“no-go”).
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Case #1: when T ≥ t2, always “go”. Suppose first that T ≥ t2 so that the go/no-go threshold
is in Phase III; this occurs if and only if pBR(t2) ≥ 1 − ρ. In this case, the producer
unambiguously prefers to “go”. To see why, consider what would happen if the viral
campaign continued after time T. The consumers who remain unexposed at time T will
encounter the innovation later either (i) during the remainder of Phase III and be sensitive
to signals or (ii) during Phase IV and herd on non-adoption. By comparison, should the
producer run the broadcast at (or infinitesimally before) time T, all of these consumers
will be sensitive to signals—leading to strictly more adoption, whether the innovation is
good or bad.

Case #2: when T < t2, “no go” if and only if inequality (11) holds. Suppose next that T < t2

so that the go/no-go threshold is in Phase II; this occurs if and only if pBR(t2) < 1 − ρ.
As before, running the broadcast at time T ensures that all still-unexposed consumers
will be sensitive to signals, avoiding the downside that consumers exposed in Phase IV
never adopt. However, there is also a benefit associated with continuing to run the viral
campaign, that consumers exposed in the remainder of Phase II (at times t ∈ (T, t2)) will
sometimes adopt after getting a negative private signal as well as after a positive signal.14

Whether the producer prefers to continue the viral campaign past time T depends on the
magnitudes of these countervailing effects.

The downside of continuing the viral campaign is that all consumers who get a pos-
itive signal and would have been exposed during Phase IV choose to adopt under the
time-T broadcast but not under the continued viral campaign. These consumers have
mass ρSg(t3) when the innovation is good and mass (1− ρ)Sb(t3) when it is bad. Overall,
then, the “viral downside” equals αρSg(t3) + (1 − α)(1 − ρ)Sb(t3).

The upside of continuing the viral campaign is that some consumers who get a neg-
ative signal and would have been exposed during the remainder of Phase II choose to
adopt under the continued viral campaign but not under the time-T broadcast. These
consumers have mass

∫ t2
T aB(t)(1 − ρ)|S′

g(t)|dt when the innovation is good and mass∫ t2
T aB(t)ρ|S′

b(t)|dt when it is bad, where aB(t) is consumers’ equilibrium likelihood of
adopting after a bad signal during Phase II. Overall, then, the “viral upside” equals
α
∫ t2

T aB(t)(1− ρ)|S′
g(t)|dt+(1− α)

∫ t2
T aB(t)ρ|S′

b(t)|dt, and the upside exceeds the down-
side if and only if inequality (11) holds.

Summarizing our progress thus far: (i) If pBR(t2) ≥ 1− ρ, then T ≥ t2 and the optimal
stopping time is during Phase III prior to broadcast obsolescence. (ii) If pBR(t2) < 1 − ρ,
then T < t2 and it is optimal either to allow the viral campaign to continue until viral

14We can ignore the consumers exposed in Phase III, since they are sensitive to signals and hence adopt
exactly as they would have under a time-T broadcast.
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obsolescence, if (11) holds, or to stop at time T during Phase II, if (11) does not hold.

Stopping the viral campaign prior to time min{t2, T} is suboptimal. The producer is
strictly better off extending the viral campaign until time min{t2, T}. Suppose that some
time T′ < min{t2, T} has been reached and the producer is considering whether to run
the broadcast at that moment or wait until (just before) time min{t2, T}. Either way, all
consumers who see the broadcast and get a positive private signal will adopt. How-
ever, under the longer viral campaign, consumers who encounter the innovation between
max{T′, t1} and min{t2, T} (the portion of Phase II that is after T′ and before T) also some-
times adopt after a negative private signal, due to partial herding. Thus, lengthening the
viral campaign until time min{t2, T} unambiguously increases overall adoption.

Putting these pieces together, we can now complete the proof.
First, consider the case when pBR(t2) ≥ 1 − ρ so that T ≥ t2. We have shown that it is

suboptimal to stop the viral campaign prior to time t2 and suboptimal to allow it to con-
tinue beyond time T. What about the remaining time interval from t2 to T? Consumers
who encounter the innovation during the interval [t2, T] are sensitive to signals, regard-
less of whether they encounter the innovation virally or through the broadcast. Thus, all
broadcast times within this time interval generate exactly the same pattern of consumer
adoption and hence must all be optimal for the producer. This completes the proof of
Theorem 2(i).

Second, consider the case when pBR(t2) < 1 − ρ so that T < t2. As argued earlier, any
stopping time prior to T is suboptimal and waiting until viral obsolescence (any stopping
time T ≥ t3) is better than T if and only if inequality (11) holds. Finally, because no one
adopts after seeing a broadcast later than T, stopping at any time between T and t3 is
strictly worse than stopping at T. We conclude that stopping at viral obsolescence (time
t3) is optimal if inequality (11) holds and that stopping at broadcast obsolescence (time T)
is optimal if inequality (11) does not hold. This completes the proof of Theorem 2(ii).

4 Investment in Innovation Quality

This section considers an extension in which the producer decides whether to invest in
innovation quality. We find that equilibrium investment is higher (or lower) when the
producer runs an optimal-length viral campaign compared to the non-epidemic bench-
mark in which the producer is constrained to reach consumers through a traditional ad
campaign, so long as innovations would be mostly good (or mostly bad) in that non-
epidemic benchmark.
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Model: investment in innovation quality. During a development phase prior to launch-
ing the innovation, the producer makes an investment decision that impacts the innova-
tion’s likelihood of being good, what we refer to as its average quality. In particular, the
innovation is good with probability αP ∈ [0, 1] if the producer incurs quality-investment
cost C(αP), where we assume that C′′(αP) > 0 and C′(αP) ≥ 0 for all αP ∈ [0, 1]. Con-
sumers do not observe producer investment but form a “market belief” α ∈ [0, 1] about
average quality. (For expositional clarity, we denote the producer’s chosen average qual-
ity by αP and the market belief by α. In equilibrium, it must be that α = αP.)

We consider both a “traditional marketing game” and an “optimal-length viral cam-
paign game.” In the traditional marketing game which serves as our non-epidemic bench-
mark, all consumers are exposed at launch and the producer’s only choice is how much to
invest in innovation quality. In the optimal-length viral campaign game, by contrast, the
producer also chooses the time T ≥ 0 at which the viral campaign will end. As in Section
3, we assume in this case that the producer chooses T prior to launching the innovation
and without knowing whether the innovation will ultimately be good or bad.

The producer’s objective is to maximize its expected profit, with revenue equal to the
mass of consumers who adopt. Let Rg(T) and Rb(T) denote the revenue earned by good
and bad innovations, respectively, for any given viral-campaign stopping time T ≥ 0. For
any given market belief α held by consumers, the producer’s problem is as follows.

1. Traditional marketing game: Given market belief α, the producer chooses αP to max-
imize

αPRg(0; α) + (1 − αP)Rb(0; α)− C(αP).

2. Optimal-length viral campaign: (i) Given α and αP, the producer chooses T to max-
imize

αPRg(T; α) + (1 − αP)Rb(T; α)

and (ii) given α and T, the producer chooses αP to maximize

αPRg(T; α) + (1 − αP)Rb(T; α)− C(αP).

For ease of exposition, it is helpful to transform the producer’s problem here into an
equivalent alternative form. Rather than choosing αP directly at cost C(αP), suppose that
the producer has a random cost c ∈ [0, ∞) of producing a good innovation versus zero
cost of producing a bad innovation. Moreover, suppose that c is drawn from a distribu-
tion with c.d.f. F(·) defined implicitly by the condition F−1(αP) = C′(αP). Under this
interpretation, the producer minimizes the expected cost of achieving expected quality
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αP by choosing to invest whenever c < C′(αP), and this leads to the same expected cost
C(αP) =

∫ C′(αP)
0 cdF(c). Note that the random cost c has interval support [C′(0), C′(1)],

where C′(0) ≥ 0. Define shorthand c ≡ C′(1).
In an equilibrium with expected innovation quality α∗, consumers have market belief

α∗ and the producer finds it optimal to invest so that innovations are good with probabil-
ity α∗. Specifically:

– In a traditional marketing campaign, equilibrium requires that

Rg(0; α∗)− Rb(0; α∗) = C′(α∗) = F−1(α∗).

– In an optimal-length viral campaign, a set of necessary equilibrium conditions is

α∗ ∈ arg max
αP

(
αPRg(T(α∗); α∗) + (1 − αP)Rb(T(α∗); α∗)− C(αP)

)
T(α∗) ∈ arg max

T

(
α∗Rg(T; α∗) + (1 − α∗)Rb(T; α∗)

)
Given the characterization of T(α∗) in Theorem 2, the above conditions can be sim-
plified to

Rg(T(α∗); α∗)− Rb(T(α∗); α∗) = C′(α∗) = F−1(α∗).

In this context, suppose that consumers have ex ante belief α ∈ (1− ρ, ρ), so that those
who encounter the innovation at launch are sensitive to signals. (For the moment, we
view α as a fixed parameter and “α notation” is suppressed to shorten equations; later, we
will endogenize α.) We characterized Rg(T) and Rb(T) in Section 3. If T > T, then those
exposed at the time-T broadcast do not adopt and Rg(T) = Ig(T) and Rb(T) = Ib(T). If
T ≤ T,15 then broadcast-exposed consumers are sensitive to signals and

Rg(T) = Ig(T) + ρSg(T) and Rb(T) = Ib(T) + (1 − ρ)Sb(T). (12)

Let ∆R(T) = Rg(T)− Rb(T) denote the extra revenue earned by good innovations; we
refer to ∆R(T) as “the incentive to invest.”

15When T = T, broadcast-exposed consumers are indifferent whether to adopt and may mix after a
good private signal. We ignore such mixing here for ease of exposition and because it can never arise in
any equilibrium of the viral-marketing game (analyzed later); if an equilibrium existed in which T = T
and some fraction of broadcast-exposed consumers did not adopt after a good private signal, the producer
would prefer to deviate and stop the campaign at time T − ϵ for ϵ ≈ 0.
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Incentive to invest prior to a traditional ad campaign. Suppose that the producer runs
a traditional ad campaign. Given any α ∈ (1 − ρ, ρ), consumers are sensitive to signals;
so, Rg(0) = ρ and Rb(0) = 1 − ρ. The producer finds it optimal to invest in quality
whenever c < ∆R(0) = 2ρ − 1.

Incentive to invest prior to a viral campaign. Suppose next that the producer runs a
viral campaign that stops at time T > 0. Anticipating how the viral social learning process
will unfold, the producer finds it optimal to invest whenever c < ∆R(T). For all T ≤ T,
equations (1-2,12) imply

R′
g(T) = I′g(T) + ρS′

g(T) = Sg(T)Ig(T) (ρaG(T) + (1 − ρ)aB(T)− ρ)

R′
b(T) = I′b(T) + (1 − ρ)S′

b(T) = Sb(T)Ib(T) ((1 − ρ)aG(T) + ρaB(T)− (1 − ρ))

where aG(T) and aB(T) are the likelihoods that virally-exposed consumers would adopt
at time T after a good or bad signal, respectively. Since virally-exposed consumers with
good signals adopt until viral obsolescence at time t3 and since T < t3 (Lemma 2), it must
be that aG(T) = 1 for all T ≤ T. We conclude that

∆R′(T) = aB(T)
(
(1 − ρ)Sg(T)Ig(T)− ρSb(T)Ib(T)

)
(13)

for all T ≤ T. In particular, over this range, (i) ∆R′(T) > 0 if and only if aB(T) > 0 and
Sg(T)Ig(T)
Sb(T)Ib(T)

> ρ
1−ρ and (ii) ∆R′(T) < 0 if and only if aB(T) > 0 and Sg(T)Ig(T)

Sb(T)Ib(T)
< ρ

1−ρ .
By Bayes’ Rule, consumers’ interim belief p(t) at any time t > 0 during the viral

campaign satisfies p(t)
1−p(t) =

α
1−α × Sg(t)Ig(t)

Sb(t)Ib(t)
; in particular, p(0+)

1−p(0+)
= α

1−α × ρ
1−ρ . Thus, the

condition Sg(T)Ig(T)
Sb(T)Ib(T)

≷ ρ
1−ρ is equivalent to p(T) ≷ p(0+) or, in words, “whether virally-

exposed consumers’ interim belief at stopping time T is higher or lower than it would be
after observing a good private signal and nothing else.” Proposition 6 summarizes our
findings on the producer’s incentive to invest, in light of our previous results on adoption
dynamics during the viral campaign (Theorem 1) and optimal stopping time T∗ (Theorem
2).

Proposition 6. Suppose that consumers believe that fraction α ∈ (1 − ρ, ρ) of innovations are
good and behave as characterized in Theorem 1. (i) If α ∈ (1/2, ρ), then ∆R(T∗) < ∆R(0). (ii)
If α ∈ (1 − ρ, 1/2), then ∆R(T∗) > ∆R(0). (iii) If α = 1/2, then ∆R(T∗) = ∆R(0).

Proof. The proof is in the Appendix.

Intuition for Proposition 6: Consumers’ ex ante belief, α, plays a key role in determining
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qualitative features of the producer’s incentive to invest, ∆R(T∗), prior to an optimal-
length viral campaign. When consumers believe that most innovations are good (α ∈
(1

2 , ρ)), their behavior when exposed during a viral campaign transitions from an ini-
tial phase with herding on adoption to a phase with partial herding, and then a phase
in which consumers are sensitive to signals (Theorem 1). By contrast, in a traditional
ad campaign, all consumers are sensitive to signals. Relative to that sensitive-to-signals
benchmark, herding and partial herding benefit a bad innovation more than a good one,
since more consumers with bad signals who would otherwise not adopt now do adopt.
Moreover, the ratio between the measures of adopters of a good innovation and a bad one
shrinks during the herding phase, making the partial-herding phase even more favorable
to a bad innovation. The producer thus has less incentive to invest than in a traditional ad
campaign.

When consumers believe that most innovations are bad (α ∈ (1 − ρ, 1
2)), they remain

sensitive to signals throughout the viral campaign except during Phase II, when they par-
tially herd on adoption. From the producer’s perspective, whether any given consumer is
sensitive to signals in a viral campaign or in an ad campaign makes no difference. How-
ever, the fact that consumers are sensitive to signals during the first phase of the viral
campaign causes the measure of adopters to grow faster when the innovation is good.
And with more consumers “infected” by good innovations at the end of the first phase,
more are then exposed to a good innovation during the second phase when consumers
partially herd on adoption. This is favorable for good innovations, so much so that the
producer has more incentive to invest than in a traditional ad campaign.

Figure 4 illustrates how the producer’s incentive to invest varies with the length of the
viral campaign, depending on whether α ∈ (1/2, ρ) or α ∈ (1 − ρ, 1/2).
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(a) α ∈ ( 1
2 , ρ) (b) α ∈ (1 − ρ, 1

2 )

Figure 4: Incentive to invest ∆R(T), depending on the viral campaign’s stopping time T,
up until broadcast obsolescence at time T. (At time T, there is a discontinuity in ∆R(T),
not shown to keep the figure as simple as possible.) Panel (a) illustrates the case with
parameters α = 0.55 and ρ = 0.65, and panel (b) the case when α = 0.45 and ρ = 0.65.

Equilibrium investment in the traditional marketing game. We now begin investigat-
ing the producer’s equilibrium investment in innovation quality, first in the traditional
marketing game. Recall that the producer observes its private cost c and decides whether
to produce a good innovation (“invest”). Then, the innovation is advertised to all con-
sumers at time t = 0, who simultaneously decide whether to adopt.

An equilibrium always exists in which all innovations are bad,16 but equilibria with
positive investment may also exist. Proposition 7 characterizes the maximal amount of
investment in any equilibrium, for any given c.d.f. F(·) of producer investment cost.

Proposition 7. Let α̂ denote the maximal equilibrium likelihood of a good innovation in the tra-
ditional marketing game. (i) If F(2ρ − 1) < 1 − ρ, then α̂ = 0. (ii) If F(2ρ − 1) ∈ [1 − ρ, ρ],
then α̂ = F(2ρ − 1). (iii) If F(2ρ − 1) > ρ, then α̂ = ρ.

Proof. The proof is in the Appendix.

To gain intuition, consider the case when F(2ρ − 1) ∈ [1 − ρ, ρ]. In the equilibrium
with ex ante belief α̂ = F(2ρ − 1), all consumers adopt after a good signal but not after a
bad one, causing mass ρ of consumers to adopt good innovations while mass 1 − ρ adopt
bad ones. Anticipating this, the producer invests whenever its cost c < 2ρ − 1, which
occurs with probability α̂.

16Consumers never adopt if they believe that all innovations are bad, and producers never invest (and
hence all innovations are bad) if they believe that consumers will never adopt.
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∆R(T∗(α))
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(a) F(2ρ − 1) > ρ
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0.5

ρ F(∆R)
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α

(b) F(2ρ − 1) < 1 − ρ

Figure 5: The maximal equilibrium likelihood that innovations are good when the pro-
ducer uses an optimal-length viral campaign, α∗, compared to a traditional ad campaign,
α̂. The blue curve shows how the fraction α of good innovations varies with the pro-
ducer’s incentive to invest ∆R, which is equal to the probability of the producer having a
investment cost c ≤ ∆R, i.e. F(∆R). The red curve shows how the producer’s incentive to
invest varies with α, assuming that the producer uses an optimal-length viral campaign.
Panel (a) shows a scenario in which F(2ρ − 1) > ρ, so that α̂ = ρ, and α∗ ∈ (1/2, ρ). Panel
(b) shows a scenario in which F(2ρ − 1) < 1 − ρ, so that α̂ = 0, and α∗ ∈ (1 − ρ, 1/2).

Equilibrium investment in the viral marketing game. Consider next the viral market-
ing game. Recall that the producer first commits to its marketing strategy, choosing the
stopping time T for the viral campaign. The producer then observes its cost c and pri-
vately decides whether to produce a good innovation. Finally, the viral campaign unfolds
as in Section 3, with consumers adopting optimally and innovation awareness spreading
virally until time T, when all still-susceptible consumers are exposed non-socially.

Any equilibrium of this game must satisfy three conditions. First, the producer must
invest optimally, whenever the cost c is less than the extra revenue earned by good inno-
vations. Second, consumers’ ex ante belief α must be correct, equal to the true likelihood
of good innovations. Finally, the stopping time T must be optimal for the producer given
α, as characterized in Theorem 2.

Optimal-length viral marketing may increase or decrease equilibrium investment, de-
pending on how much equilibrium investment can be supported in the traditional mar-
keting game. In particular, viral marketing leads to less investment if α̂ > 1/2, more
investment if α̂ < 1/2, and equal investment if α̂ = 1/2.

Proposition 8. Let α∗ denote the maximal equilibrium likelihood of a good innovation in the viral
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marketing game. (i) If α̂ > 1/2, then α∗ ∈ (1/2, α̂] with α∗ < α̂ if α̂ ∈ (1/2, ρ). (ii) If α̂ < 1/2,
then α∗ ∈ [α̂, 1/2) with α∗ > α̂ if α̂ ∈ (1 − ρ, 1/2). (iii) If α̂ = 1/2, then α∗ = 1/2.

Proof. The proof is in the Appendix.

Proposition 8, illustrated in Figure 5, is the equilibrium analogue of Proposition 6.
In that result, we showed that optimal consumer behavior gives a producer who is run-
ning an optimal-length campaign more incentive to invest than under a traditional ad
campaign if most innovations are bad, i.e., α < 1/2, but less incentive to invest if most
innovations are good, i.e., α > 1/2. Similarly, Proposition 8 establishes that the equilib-
rium likelihood of good innovations is always closer to 1/2 when the producer uses an
optimal-length viral campaign than under a traditional ad campaign. Thus, the practice
of optimal-length viral marketing has a moderating impact on equilibrium innovation
quality.

5 Concluding remarks

This paper introduces and analyzes an economic-epidemiological model of innovation
diffusion and adoption, in which awareness of an innovation (e.g., new product or prac-
tice, scientific finding, etc.) spreads by word of mouth from those who have already
adopted it. In this context, consumers learn about the quality of an innovation based on
when they first encounter it. We characterize the equilibrium trajectory of the resulting
“adoption epidemic” and determine the lifecycle of virally-spread innovations. More-
over, we show that using a viral campaign to launch an innovation increases total adop-
tion relative to a traditional advertisement campaign, but that using an optimal-length
viral campaign may increase or decrease producers’ incentive to invest in innovation
quality.

The model captures a rich interplay between the epidemiological dynamics of diffu-
sion and the economic dynamics of consumer beliefs. As such, the paper serves to bridge
the economic literature on social learning and the epidemiological literature on social
transmission, combining ideas and methods from both fields.

The paper’s economic contribution builds on the pioneering work of Banerjee (1993),
the first to bring infectious-disease insights to social learning. The main difference is
that agents in our model all receive a private signal about innovation quality whereas,
in Banerjee (1993)’s rumor model, only those who encounter the innovation at launch
are privately informed. This distinction generates several novel features that only arise
when socially-exposed consumers receive informative private signals. Most notably, we
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show that it is optimal to run a viral campaign of limited length (ending before viral ob-
solescence) and that enabling producers to conduct an optimal viral campaign can reduce
equilibrium investment in innovation quality.

From an epidemiological point of view, the paper expands the scope of the classic
Susceptible-Infected-Recovered (SIR) model to an economic setting in which the param-
eters of the diffusion model depend on equilibrium economic incentives. In particular,
we endogenize infectivity, the likelihood that a newly-exposed host will become infected,
and show how infectivity changes throughout an economic epidemic. In future work,
our methodology could be extended in several interesting directions to endogenize other
key parameters, most notably, the transmission rate and the informativeness of agents’
private signals. Such work could also explore the consumer-welfare implications of viral
social learning.17

Several other natural directions for future research could build on our analysis, a few
of which we highlight here.

Pricing. Suppose that a new product generates value vg or vb when of good or bad quality,
respectively, that the product is launched virally, and that “adoption” corresponds to buy-
ing the product at price p ∈ (vb, vg). This fits our model with gain ug = vg − p when buy-
ing a good product and loss ub = p − vb from a bad product. For any given price p,18 our
analysis characterizes the proportion of consumers who will buy good products, Dg(p) ≡
limt→∞ Ig(t; p), and bad products, Db(p) ≡ limt→∞ Ib(t; p). Computing the fixed price p∗

that maximizes ex ante expected revenue, R(p) = p
(
αDg(p) + (1 − α)Db(p)

)
, is then

a straightforward numerical exercise. But other important pricing issues remain for fu-
ture research, including (i) how prices change over time throughout a product’s adoption
lifecycle, if the producer is able to set prices dynamically, and (ii) how much consumers
are able to learn from prices, if the producer has information about quality when setting
prices.

Temporary infectiousness. Suppose that consumers who adopt only remain infectious for
a limited period of time. For example, people who choose to play a new game may
eventually get bored and stop introducing it to others. In this context, how widely an
innovation spreads through the consumer population depends on innovation quality.

The option to wait. An important simplifying feature of this paper’s model is that con-

17Being exposed virally to an innovation provides a valuable “social signal” about its quality. Holding
innovation quality fixed, consumers are therefore clearly better off (ex ante) when an innovation is marketed
virally. As we have shown, however, viral marketing can in some cases lead to less investment in quality.

18In the trivial cases when price p ≥ ug (or p ≤ ub), the unique equilibrium has no one (or everyone)
buying the product.
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sumers decide whether or not to adopt the innovation when they first encounter it. This
assumption could be appropriate in some contexts but, in many situations, consumers
have the option to wait and learn more. For instance, in our political-campaign example,
a person might wait until she has seen multiple lawn signs for a candidate before posting
a sign herself. Similarly, a consumer with a bad personal impression of a new product
might still wind up buying it at a later date if, over time, she encounters enough others
who have also done so.

Adding the option to wait complicates the analysis, but our methodology can be gen-
eralized to this more complex setting. A consumer i who has not yet adopted by time t is
in a susceptible state with history hit, where hit is a vector encoding the previous times at
which consumer i encountered someone else who was infected. For each susceptible his-
tory hit, the likelihood ratio of that history occurring when the innovation is good versus
bad determines consumer i’s updated belief about innovation quality, and the dynamics
of belief evolution determine the option value of waiting. At each point of time, then,
there will be a subset of susceptible histories from which consumers will choose to adopt.
Overall, as in this paper, the dynamics of adoption determine the dynamics of consumer
beliefs, which in turn determine the dynamics of adoption. However, there are impor-
tant differences and complications. For instance, once consumers have the option to wait,
there might in some cases be multiple equilibria with different time-paths of adoption.

Reversible adoption decisions. Another important simplifying assumption is that consumers’
adoption decisions are irreversible. This assumption also can be relaxed within our ba-
sic analytical framework. Suppose that, rather than “buying” the innovation irreversibly,
each consumer decides at each instant whether or not to “rent” it.19 Each consumer will
choose to rent whenever their epidemiological state is such that their belief about inno-
vation quality exceeds the threshold for adoption. Because consumers’ decisions at each
point in time depend only on their current beliefs, equilibria in this context can be de-
rived relatively simply, much as in this paper, with current incentives only depending on
patterns of past behavior. An interesting open question in this context is whether con-
sumers will over time successfully aggregate their initially-dispersed information. That
is, as time t → ∞, will the fraction of consumers renting a good innovation converge to
100% while the fraction renting a bad innovation converges to 0%?

19This alternative model corresponds to the Susceptible-Infected-Susceptible (SIS) model, used in
infectious-disease epidemiology to model infection dynamics when recovery from infection does not pro-
vide immunity from re-infection. Here, the decision to stop renting corresponds to “recovery” while the
decision to (re-)start renting corresponds to (re-)infection.
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A The Rumor Model

A key difference between our model of virally-spread innovations and Banerjee (1993)’s
model of rumors is that, in our model, all consumers receive informative private signals.
To highlight the significance of this difference, we analyze in this Appendix a variation of
our model in which only those exposed at launch are privately informed. In particular,
those exposed at time t = 0 get conditionally i.i.d. signals exactly as in the main text,
while those exposed after time t = 0 do not receive a private signal.

We identify three main qualitative differences between equilibrium outcomes in this
“rumor model” versus the “innovation model” analyzed in the main text:

- Appendix A.1: In the rumor model, more delay in hearing about a rumor is al-
ways bad news about its quality (Theorem 3). By contrast, in the innovation model,
consumer beliefs can be non-monotone in the time that it takes to hear about the
innovation (Phase I(ii) of Theorem 1 and Lemma 1(ii)).

- Appendix A.2: In the rumor model, either a traditional ad campaign or a purely-
viral campaign is always optimal (Proposition 10). By contrast, in the innovation
model, neither a traditional ad campaign nor a purely-viral campaign is ever optimal
(Theorem 2).

- Appendix A.3: In the rumor model, optimal viral marketing never reduces equilib-
rium rumor quality (Proposition 11). By contrast, in the innovation model, allowing
the producer to run an optimal-length viral campaign reduces equilibrium innova-
tion quality whenever producer costs are sufficiently low (Proposition 8).

To avoid confusion, we use the term “rumor” to refer to innovations in the rumor model.
As in the main text, we focus on the most interesting case when α, the rumor’s ex ante
likelihood of being good, lies between 1 − ρ and ρ.20

A.1 Equilibrium Lifecycle

We begin by characterizing equilibrium economic-epidemiological dynamics in the ru-
mor model. Our main finding is that consumer behavior transitions over time through
two distinct phases, (i) a “Herding Phase” in which all socially-exposed consumers choose

20Consumer behavior is trivial when α < 1 − ρ (no one adopts) or when α > ρ (everyone adopts). When
α = 1 − ρ and α = ρ, launch-exposed consumers may randomize whether to adopt after a good or bad
private signal, respectively, but no additional insight emerges from this extra complication.
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to adopt followed by (ii) an “Obsolescence Phase” in which no one adopts.Moreover, un-
like in the innovation model, consumers’ interim beliefs are always strictly decreasing in
the time it takes to encounter the rumor.

Theorem 3. Suppose that α ∈ (1 − ρ, ρ) in the rumor model. Equilibrium epidemiological dy-
namics (Sω(t), Iω(t) : t ≥ 0; ω ∈ {g, b}) are uniquely determined. In equilibrium, consumers’
post-launch behavior transitions through two phases.

Herding Phase: Consumers herd on adoption and interim belief p(t) > ρ decreases until
time t0 > 0 is reached at which p(t0) = 1/2.

Obsolescence Phase: Consumers herd on non-adoption and interim belief p(t) < 1/2
continues to decline with limt→∞ p(t) = 0.

Proof. Because α ∈ (1 − ρ, ρ), consumers exposed at launch are sensitive to signals; so,
Ig(0) = ρL, Ib(0) = (1 − ρ)L, and Sg(0) = Sb(0) = 1 − L, where L is the mass of
launch-exposed consumers. By equation (6), p(0+)

1−p(0+)
= α

1−α
ρ

1−ρ ; so, p(0+) > 1/2 and all
consumers exposed immediately after launch herd on adoption. The following Lemma,
which is also useful in subsequent proofs, establishes that good rumors must be more
widely seen and more widely adopted so long as socially-exposed consumers continue to
herd on adoption.

Lemma 3. Suppose that consumers are sensitive to signals at launch and herd on adoption after
launch until time t. Then Sg(t) < Sb(t) and Ig(t) > Ib(t) + L(2ρ − 1).

Proof. Because consumers are sensitive to signals at launch, Sg(0) = Sb(0) = 1 − L,
Ig(0) = ρL, and Ib(0) = (1 − ρ)L. Let ∆I(0) ≡ Ig(0) − Ib(0) = L(2ρ − 1). We show
next that Ig(t)− Ib(t) > ∆I(0) for all t ∈ (0, t0). Observe first that I′g(0) = Sg(0)Ig(0) >
Sb(0)Ib(0) = I′b(0); thus, Ig(t)− Ib(t) > ∆I(0) for all t ≈ 0. Now suppose for the sake of
contradiction that there exists t̂ ∈ (0, t) such that Ig(t̂)− Ib(t̂) = ∆I(0), and without loss
let t̂ be the smallest such time. This requires I′g(t̂) ≤ I′b(t̂). Since I′ω(t̂) = Sω(t̂)Iω(t̂) for
ω ∈ {g, b} and Ig(t̂)− Ib(t̂) = ∆I(0) > 0, this in turn requires Sg(t̂) < Sb(t̂). But because
all socially-exposed consumers adopt up until time t, Iω(t)− Iω(0) = Sω(0)− Sω(t) for
all t ∈ (0, t0). Since Ig(t̂)− Ib(t̂) = Ig(0)− Ib(0) = ∆I(0), this implies that Sg(t̂)− Sb(t̂) =
Sg(0)− Sb(0) = 0, contradicting the requirement that Sg(t̂) < Sb(t̂).

Returning to the proof of Theorem 3, we have shown that consumers are sensitive to
signals at launch and that p(0+) > 1/2. Let t0 be the first time at which p(t0) = 1/2, or
t0 = ∞ if p(t) > 1/2 for all t. Because socially-exposed consumers herd on adoption in
the rumor model whenever consumers’ interim belief p(t) > 1/2, Lemma 1 implies that
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p(t) is strictly decreasing from time 0 to time t0. By equation (8), p(t)
1−p(t) decreases at rate

−X(t) = Ig(t)− Ib(t) + Sb(t)− Sg(t) so long as consumers herd on adoption. By Lemma
3, −X(t) > ∆I(0) > 0. Thus, p(t) falls monotonically throughout the Herding Phase and
eventually reaches 1/2 at a finite time t0 > 0, as desired.

Consumers exposed at time t0 are indifferent whether to adopt. Let q(t0) ∈ [0, 1]
be the likelihood that such consumers adopt. (Because these consumers do not receive
informative private signals, their likelihood of adopting conditional on exposure at time
t0 must be the same for good and bad rumors.) By equation (8) and Lemma 3, −X(t0) =

(Ig(t0) − Ib(t0)) + q(t0)(Sb(t0) − Sg(t0)) > L(2ρ − 1) > 0. Thus, consumers’ interim
belief continues to decline and consumers exposed immediately after time t0 must herd
on non-adoption.

Because consumers stop adopting after time t0, Ig(t) = Ig(t0) and Ib(t) = Ib(t0) at
times t > t0. Again by equation (8) and Lemma 3, −X(t) > L(2ρ − 1) > 0, implying
that p(t) to continue to fall. Consumers therefore find it optimal to continue to herd on
non-adoption, causing p(t)

1−p(t) to continue to fall at a constant rate; so, limt→∞ p(t) = 0, as
desired.

Let Iω(∞) ≡ limt→∞ Iω(t) = Iω(t0) be the overall measure of consumers who adopt
in state ω ∈ {g, b}, and let ∆I(∞) = Ig(∞)− Ib(∞) be the extra overall adoption of good
rumors. Proposition 9 establishes several basic facts about how Ig(∞), Ib(∞), and ∆I(∞)

vary with the likelihood that rumors are good, α, and the mass of privately-informed
consumers exposed at launch, L. These facts will be useful later in Appendix A.2-A.3.

Proposition 9. (i) Ig(∞) and Ib(∞) are strictly increasing in α for all α ∈ (1− ρ, ρ). (ii) ∆I(∞)

is strictly increasing in α for all α ∈ (1− ρ, 1/2) and strictly decreasing in α for all α ∈ (1/2, ρ).

Proof of (i). Let Iω(t; α) and Sω(t; α) be the mass of infected and susceptible consumers in
state ω ∈ {g, b} in the unique equilibrium characterized in Theorem 3, viewed as a func-
tion of α ∈ (1 − ρ, ρ). Launch-exposed consumers are sensitive to signals and socially-
exposed consumers herd on adoption until time t0(α) at which consumers’ interim belief
equals 1/2. Increasing Pr(ω = g) from α to αP ∈ (α, ρ) therefore has no effect on the
equilibrium trajectory prior to time t0(α) but extends the window of time during which
socially-exposed consumers adopt to t0(αP) > t0(α). It follows immediately that overall
adoption Iω(∞; α) = Iω(t0(α); α) is strictly increasing in α for both good rumors (ω = g)
and bad rumors (ω = b).

Proof of (ii). For any α ∈ (1 − ρ, ρ), the time t0(α) at which adoption ends is characterized
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Figure 6: Measure of adopting consumers given quality, as a function of prior α. The
figure shows the case when ρ = 0.65 and L = 0.0001.

by the condition
1 − α

α
=

Sg(t0(α); α)Ig(t0(α); α)

Sb(t0(α); α)Ib(t0(α); α)
=

I′g(t0(α); α)

I′b(t0(α); α)
.

If α ∈ (1− ρ, 1/2), then 1−α
α > 1 and hence I′g(t0(α); α) > I′b(t0(α); α); so, increasing α over

this range increases good-rumor adoption more than bad-rumor adoption. By contrast, if
α ∈ (1/2, ρ), then 1−α

α < 1 and hence I′g(t0(α); α) < I′b(t0(α); α); so, increasing α over this
range increases bad-rumor adoption more than good-rumor adoption, as desired.

Figure 6 illustrates how overall adoption of good and bad rumors varies with α. When
α ∈ [0, 1 − ρ), no one adopts and hence Ig(∞) = Ib(∞) = 0. As α increases from 1 − ρ to
1/2, adoption of good and bad rumors both increase, but at a faster rate for good rumors.
As α increases from 1/2 to ρ, good and bad rumor adoption continues to increase, but
now at a faster rate for bad rumors. Note that the extra overall adoption of good rumors,
∆I(∞), equals zero at α = 1 − ρ, is maximized at α = 1/2, remains positive to the left of
α = ρ, and equals zero to the right of α = ρ.

A.2 Optimal Length of Viral Campaign

Here we show that, for a rumor, it is always optimal either to stop the viral campaign
immediately (T = 0) or to allow it to continue forever (T = ∞).

Proposition 10. Suppose that α ∈ (1 − ρ, ρ) in the rumor model. The producer finds it optimal
to conduct either a traditional ad campaign (T = 0) or a purely-viral campaign (T = ∞).
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Proof. Let T0 denote the time at which pBR(T0) = 1/2, or T0 ≡ −∞ if pBR(T) < 1/2 for all
T ≥ 0. Uninformed consumers who see the broadcast all adopt if the broadcast occurs at
time T < T0, but none adopt if T > T0. Similarly, define t0 by the condition p(t0) = 1/2.
Uninformed consumers who encounter the rumor socially at time t adopt if t < t0 but not
if t > t0. Because p(t) > pBR(t) for all t ≥ 0 (Lemma 2(ii)), we have t0 > T0.

Suppose first that α ∈ (1/2, ρ). Since α > 1/2, we have T0 > 0. In any viral campaign
that stops at time T < T0, all uninformed consumers adopt, whether exposed socially
prior to T or non-socially at the time-T broadcast. By contrast, in a viral campaign that
stops at time T > T0, all those exposed at the time-T broadcast (and, if T > t0, any ex-
posed socially from t0 until T) will choose not to adopt. We conclude that any viral cam-
paign of length T < T0 is optimal, while any campaign of length T > T0 is suboptimal. In
particular, a traditional ad campaign (T = 0) is optimal.

Suppose next that α ∈ (1 − ρ, 1/2). Because pBR(T) ≤ α < 1/2 for all T ≥ 0, unin-
formed consumers exposed via the broadcast never adopt. On the other hand, because
α > 1 − ρ, we have p(0+) > 1/2 and hence t0 > 0. Consumers exposed prior to time t0

will therefore adopt in a viral campaign. We conclude that any viral campaign of length
T > t0 is optimal, while any campaign of length T < t0 is suboptimal. In particular, a
purely-viral campaign (T = ∞) is optimal.

Suppose finally that α = 1/2. In a purely-viral campaign, adoption is Ig(t0) and
Ib(t0) for good and bad rumors, respectively. In a traditional ad campaign, uninformed
consumers are indifferent and adopt with some probability ψ ∈ [0, 1], leading to adoption
Lρ + (1 − L)ψ when the rumor is good and L(1 − ρ) + (1 − L)ψ when it is bad. T = 0 is
optimal if ψ ≥ ψ∗ ≡ Ig(t0)+Ib(t0)−(2ρ−1)L

1−L and T = ∞ is optimal if ψ ≤ ψ∗. We conclude as
desired that either a traditional ad campaign or a purely-viral campaign is optimal.

Consider the special case when α ∈ (1 − ρ, 1/2). In a traditional ad campaign, those
with a favorable private signal choose to adopt, while all those who are uninformed or
receive an unfavorable signal choose not to adopt. The overall mass of consumers who
adopt is ρL, where L is the mass of informed consumers. In a purely-viral campaign,
on the other hand, informed consumers who get favorable signals and uninformed con-
sumers who are exposed during the Herding Phase choose to adopt. We conclude that,
for rumors, a purely-viral campaign dominates a traditional ad campaign regardless of
the mass L > 0 of informed consumers. By Proposition 10, this in turn implies that a
purely-viral campaign is optimal.

Corollary to Proposition 10. Consider the rumor model. If α ∈ (1 − ρ, 1/2), then a purely-
viral campaign is optimal for the rumor producer.
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A.3 Investment in Quality

Here we show that, for a rumor, optimal viral marketing never leads to less equilibrium
investment than in the non-epidemic benchmark in which the producer is constrained to
use a traditional ad campaign.

Proposition 11. Consider the rumor model. Let α̂ and α∗ denote the maximal equilibrium likeli-
hood of a good innovation in the traditional marketing game and the viral marketing game, respec-
tively. α∗ ≥ α̂, with α∗ > α̂ whenever α̂ ∈ (1 − ρ, 1/2).

Proof. α̂, the maximal equilibrium likelihood of good rumors in the traditional marketing
game, can be characterized as in the proof of Proposition 9, the only difference being that
now only mass L of consumers are privately informed. In particular: α̂ = ρ if F(L(2ρ −
1)) > ρ; α̂ = F(L(2ρ − 1)) if F(L(2ρ − 1)) ∈ [1 − ρ, ρ]; and α̂ = 0 if F(L(2ρ − 1)) < 1 − ρ.

Let α∗ be the maximal equilibrium likelihood of good rumors in the viral marketing
game. We need to show that α∗ ≥ α̂, with α∗ > α̂ if α̂ ∈ (1 − ρ, 1/2). When α̂ = 0, there is
nothing to prove. We can therefore focus on the remaining cases when α̂ ∈ [1 − ρ, ρ].

Suppose α̂ = 1 − ρ. If consumers believe that α = 1 − ρ, then no socially-exposed
consumers ever adopt (t0 = 0) and the producer finds it optimal to use a traditional ad
campaign. Thus, an equilibrium exists with α = α̂, and α∗ ≥ α̂ as desired.

Suppose α̂ ∈ (1 − ρ, 1/2). If consumers believe that α = α̂, the producer finds it opti-
mal to use a purely-viral campaign, resulting in extra adoption ∆I(∞) of good rumors. By
Lemma 3, ∆I(∞) > L(2ρ − 1) and hence the producer optimally invests with likelihood
F(∆I(∞)) > F(L(2ρ − 1)) = α̂; so, there is too much investment to support an equilibrium
with α = α̂. On the other hand, the producer has zero incentive to invest when α > ρ;
thus, there is too little investment to support any α > ρ.

To complete the proof for this case, we need to show that an equilibrium exists with
α ∈ (α̂, ρ]. Let ∆I(∞; α) be the extra overall adoption of good rumors, viewed now as a
function of α. Note by inspection of the system of differential equations (1,2) that ∆I(∞; α)

is uniquely determined and continuous in α for all α ∈ (1 − ρ, ρ). If F(∆I(∞; ρ−)) < ρ,
continuity implies that an equilibrium exists with α ∈ (α̂, ρ). But what if F(∆I(∞; ρ−)) ≥
ρ? At the threshold ρ, launch-exposed consumers are indifferent whether to adopt after
a bad signal, generating an epidemic trajectory that varies continuously with their prob-
ability aB ∈ [0, 1] of adopting after a bad signal. Thus, ∆I(∞; ρ) is an interval containing
[0, ∆I(∞; ρ−)]. In particular, there exists aB such that good rumors have extra adoption
F−1(ρ), inducing the producer to invest just enough that fraction ρ of rumors are good; so,
an equilibrium exists with α = ρ. No matter what, we conclude that α∗ > α̂, as desired.
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Suppose α̂ = 1/2. Uninformed consumers are indifferent whether to adopt in a tradi-
tional ad campaign. If all uninformed consumers would adopt, then the producer finds it
optimal to use a traditional ad campaign, leading to the same equilibrium outcome as in
the traditional marketing game, with α = α̂; thus, α∗ ≥ α̂, as desired.

Finally, suppose α̂ > 1/2. If consumers believe that α = α̂, then the producer finds it
optimal to use a traditional ad campaign, and the equilibrium with α = α̂ in the traditional
marketing game remains an equilibrium in the viral marketing game.

To gain intuition, consider how uninformed consumers’ adoption choices impact the
producer’s incentive to invest in the rumor model. In the traditional marketing game,
uninformed consumers are necessarily equally likely to adopt any rumor, giving the pro-
ducer no additional incentive to invest. By contrast, in the viral marketing game, good
rumors are more adopted by uninformed consumers because they diffuse more widely
during the Herding Phase while these consumers are still willing to adopt, increasing the
producer’s incentive to invest.
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B Extension: Continuous Private Signals

In the main text, we assumed that each consumer i receives a conditionally i.i.d. binary
private signal si ∈ {G, B} with likelihood ratios Pr(si=G|ω=g)

Pr(si=G|ω=b) = ρ
1−ρ and Pr(si=B|ω=g)

Pr(si=B|ω=b) =
1−ρ

ρ . Here we extend the analysis to a setting in which consumers’ signals are drawn from
a continuous distribution. In particular, suppose that each consumer receives a condition-
ally i.i.d. signal si ∈ [−1, 1] satisfying the monotone likelihood ratio property (MLRP). Let
H(·|ω) and p.d.f. h(·|ω) be the conditional c.d.f. and conditional p.d.f. of si, with likeli-
hood ratio l(si) ≡ h(si|ω=g)

h(si|ω=b) that is strictly increasing and continuous in si.

Consumer behavior at and immediately after launch. Consumer i who is exposed at
launch with private signal si has ex post belief p(0; si) determined by

p(0; si)

1 − p(0; si)
=

α

1 − α
× l(si).

For each p ∈ (0, 1), define s(p) implicitly by the condition that l(s(p)) = 1−p
p . (If l(−1) >

1−p
p , then set s(p) = −1. If l(1) < 1−p

p , then set s(p) = 1.) s(α) serves as a private-signal
threshold for adoption at time t = 0. If si > s(α), then p(0; si) > 1/2 and consumer i
strictly prefers to adopt. On the other hand, if si < s(α), then p(0; si) < 1/2 and consumer
i strictly prefers not to adopt.

Sg(0) = Sb(0) = 1− L where L > 0 is the mass of consumers exposed at launch. Mass
Ig(0) = L(1 − H(s(α)|ω = g)) of consumers adopt when the innovation is good while
mass Ib(0) = L(1 − H(s(α)|ω = b)) adopt when the innovation is bad. By equation (3)
(which applies generally regardless of the private-signal structure), consumers’ interim
belief immediately after launch, p(0+), is given by

p(0+)

1 − p(0+)
=

α

1 − α
×

Sg(0)Ig(0)
Sb(0)Ib(0)

=
α

1 − α
× 1 − H(s(α)|ω = g)

1 − H(s(α)|ω = b)
.

Because si satisfies MLRP, H(s|g) < H(s|b) for all signal-levels s. Thus, much as in the
benchmark analysis with binary signals, good innovations are more widely adopted at
launch and being exposed socially shortly after launch is “good news” about innovation
quality in the sense that p(0+) > α.

Equilibrium economic-epidemiological dynamics. At each point in time t > 0, the
epidemiological dynamics (1-2) are determined by the current stock of susceptible and
infected agents, as well as the likelihoods qg(t) and qb(t) that time-t-exposed consumers
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will adopt conditional on the innovation being good or bad, respectively. qg(t) and qb(t)
in turn depend only on consumers’ time-t interim belief p(t) and the private-signal distri-
bution. Consumers exposed at time t adopt if and only if si exceeds the threshold s(p(t))
defined above. Thus,

qg(t) = 1 − H(s(p(t))|ω = g) and qb(t) = 1 − H(s(p(t))|ω = b), (14)

where by equation (3) we have

p(t) =
αSg(t)Ig(t)

αSg(t)Ig(t) + (1 − α)Sb(t)Ib(t)
. (15)

Together, equations (1,2,14,15) determine the equilibrium epidemic trajectory, which is
unique and easily computable for any given signal distribution.

Numerical examples. For expositional convenience, define the random variable

xi ≡ ln l(si)

and let x(si) be the function mapping realizations of si into corresponding realizations
of xi. Let F(xi|ω) and f (xi|ω) denote the c.d.f. and p.d.f. of xi conditional on the state
ω ∈ {g, b}. By construction, F(x(si)|ω) = H(si|ω) and f (x(si)|ω) = h(si|ω)

x′(si)
for ω = g, b,

where x′(si) > 0 because si satisfies MLRP. This implies that

f (x(si)|g)
f (x(si)|b)

=
h(si|g)
h(si|b)

= l(si) = ex(si). (16)

In the binary-signal case analyzed in the main text, xi is a binary variable with sup-
port xi ∈ {− ln ρ

1−ρ , ln ρ
1−ρ}. Let K ≡ ln ρ

1−ρ . In our numerical explorations, we have
considered a family of distributions indexed by J ∈ (−1, ∞), defined as follows:

f J(x|g) = ex

1 + ex
J + 1
K J+1 x J for all x ∈ [0, K] (17)

f J(x|g) = 1
1 + e−x

J + 1
K J+1 (−x)J for all x ∈ [−K, 0] (18)

and
f J(x|b) = f J(−x|g) for all x ∈ [−K, K]. (19)

In the section below titled “Details about f J(x|ω),” we verify that (17-19) specify a valid
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conditional p.d.f. for xi and discuss the limiting cases J → ∞ and J → −1.
Figures 7-8 illustrate the equilibrium epidemic trajectory in two numerical examples

with shared parameters J = 4 and ρ = 0.65 (so that K = ln( ρ
1−ρ ) ≈ 0.62), but different

levels of innovation quality: α = 0.45 in Example #1 illustrated in Figures 7a and 8a, while
α = 0.6 in Example #2 illustrated in Figures 7b and 8b.

(a) Example #1: α = 0.45 (b) Example #2: α = 0.6

Figure 7: Interim belief over time

(a) Example #1: α = 0.45 (b) Example #2: α = 0.6

Figure 8: Adoption probability by state over time

In each example, a consumer exposed at launch with private signal si has ex post belief
p(0; si) given by p(0;si)

1−p(0;si)
= α

1−α l(si); p(0; si) exceeds 1/2 iff xi = ln l(si) > − ln
(

α
1−α

)
.
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Thus,

qg(0) = 1 − Fg

(
− ln

(
α

1 − α

))
and qb(0) = 1 − Fb

(
− ln

(
α

1 − α

))
.

In Example #1 with α = 0.45, we have qg(0) ≈ 0.624 and qb(0) ≈ 0.372. In Example
#2 with α = 0.6, we have qg(0) ≈ 0.676 and qb(0) ≈ 0.444. Consumers exposed imme-
diately after launch take into account the fact that more people are “infected” when the
innovation is good, forming interim belief p(0+) according to p(0+)

1−p(0+)
= α

1−α
qg(0)
qb(0)

.
In Example #1, we have p(0+) ≈ 0.578. This is low enough (below ρ = 0.65) that

some consumers exposed immediately after launch choose not to adopt, i.e., consumers
are “sensitive to signals” as in the binary-signal model when α ∈ (1 − ρ, 1/2). As in that
case of the binary-signal model, consumers’ interim belief initially rises over time (due to
the “upward pressure” from consumers being sensitive to signals), but eventually interim
belief begins falling and continues falling until no one adopts the innovation any more
(“obsolescence”).

In Example #2, we have p(0+) ≈ 0.695. This is high enough (above ρ = 0.65) that
consumers “herd on adoption” immediately after launch, as in the binary-signal model
when α ∈ (1/2, ρ). As in that case of the binary-signal model, this puts immediate down-
ward pressure on consumers’ interim belief, which continues to decline monotonically
until eventual obsolescence.

Details about f J(x|ω). To check that (17-19) specify a valid conditional p.d.f. for xi =

ln l(si), we need to verify that (a)
∫ K
−K f J(x|g)dx = 1, (b)

∫ K
−K f J(x|b)dx = 1, and (c)

f (x|g)
f (x|b) = ex for all x ∈ [−K, K].

Verifying (a): For expositional convenience, define z(x) = J+1
2K J+1 x J for all x ∈ [0, K] and

z(x) = J+1
2K J+1 (−x)J for all x ∈ [−K, 0]. As can be easily checked,

∫ K
0 z(x)dx = 1/2 and

z(x) = z(−x) for all x ∈ [−K, K]. Thus,
∫ K
−K z(x)dx = 1. For any x ∈ [0, K], we have

f J(x|g) + f J(−x|g) = 2ex

1 + ex z(x) +
2

1 + ex z(x) = 2z(x).

Thus,
∫ K
−K f J(x|g)dx = 2

∫ K
0 z(x)dx = 1, as desired.

Verifying (b-c): Because f J(x|b) = f J(−x|g), we have both
∫ K
−K f J(x|b)dx =

∫ K
−K f J(x|g)dx =

1 and f J(x|g)
f J(x|b) =

f J(x|g)
f J(−x|g) = ex, as desired.

We chose this parametric family because the limiting case as J → ∞ corresponds to our
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binary-signal model, while the other limiting case as J → −1 corresponds to a degenerate
special case in which consumers’ private signals are uninformative.

Limit as J → ∞: For all x ∈ (−K, K), limJ→∞ f J(x|g) = 0 because limJ→∞(x/K)J = 0. At
the same time,

f J(K|g)
f J(−K|g) =

hJ(si = 1|g)
hJ(si = −1|g) = eK =

ρ

1 − ρ
for all J ∈ (−1, ∞).

So, in the limit as J → ∞, the distribution of each consumer’s private signal conditional
on ω = g converges to a binary distribution with mass ρ on si = 1 and mass 1 − ρ on
si = −1, exactly as in the binary-signal model analyzed in the main text. (Similarly, the
distribution of si|b converges to a binary distribution with mass 1 − ρ on si = 1 and mass
ρ on si = −1.)

Limit as J → −1: For all x ̸= 0, limJ→−1 f J(x|g) = 0 because limJ→−1(J + 1) = 0. The
distributions of x|g and x|b therefore both converge to a Dirac delta function on x = 0,
meaning that consumers receive uninformative private signals.
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C Omitted Proofs

The following lemma is useful in several of the proofs that follow.

Lemma 4. Suppose that p(t) > α for all t ∈
(
0, t̂

)
for some t̂. Then Ig(t) > Ib(t), I′g(t) > I′b(t),

Sg(t) < Sb(t), and S′
g(t) < S′

b(t) for all t ∈
(
0, t̂

)
.

Proof. Suppose that p(t) > α for all t ∈
(
0, t̂

)
. Because p(0+) > α, consumers exposed

at launch must be strictly more likely to adopt when the innovation is good, i.e., qg(0) >
qb(0) and hence Ig(0) = qg(0)L > qb(0)L = Ib(0). By equation (6), p(t)

1−p(t) = α
1−α ×

Ig(t)Sg(t)
Ib(t)Sb(t)

= α
1−α × |S′

g(t)|
|S′

b(t)|
; so, S′

g(t) < S′
b(t) < 0 for all t ∈

(
0, t̂

)
. Because S′

ω(t) < 0, I′ω(t) =
−qω(t)S′

ω(t) (by equations 1-2), and qg(t) ≥ qb(t), this in turn implies that I′g(t) > I′b(t)
for all t ∈

(
0, t̂

)
. Finally, since Sg(0) = Sb(0) = 1 − L and Ig(0) > Ib(0), we conclude that

Sg(t) < Sb(t) and Ig(t) > I′b(t) for all t ∈ (0, t̂), as desired.

Proof of Lemma 1. The desired results follow immediately from equation (8) since: (i)
qg(t) = qb(t) = 1 when consumers herd on adoption; (ii) qg(t) = ρ and qb(t) = 1 − ρ

when consumers are sensitive to signals; and (iii) qg(t) = qb(t) = 0 when consumers
herd on non-adoption.

Proof of Proposition 1. Because α ∈ (1/2, ρ), consumers are sensitive to signals at
launch and so Ig(0) = ρL, Ib(0) = (1 − ρ)L, and Sg(0) = Sb(0) = 1 − L. Consumers’
exposed immediately after launch have interim belief p(0+) > ρ and herd on adoption,
i.e., qg(0+) = qb(0+) = 1. By Lemma 3 and equation (8), the likelihood ratio p(t)

1−p(t)
falls at rate −X(t) > (2ρ − 1)L > 0 as long as consumers continue to herd on adoption.
Thus, consumers’ interim belief p(t) decreases over time and reaches ρ in finite time, as
desired.

Proof of Proposition 2. Suppose α ∈ (1 − ρ, α̂). Since α ∈ (1 − ρ, ρ) and p(0+) < ρ,
consumers are sensitive to signals at launch and immediately after launch. So long as
consumers remain sensitive to signals, interim belief is increasing during Phase I if and
only if Condition SS is satisfied. Recall that, at times t ≈ 0, Sg(t) ≈ Sb(t) ≈ 1 − L,
Ig(t) ≈ ρL, and Ib(t) ≈ (1 − ρ)L. Thus, X(t) ≈ 2ρ − 1 − L(2ρ − 1)) ≈ 2ρ − 1 > 0; so,
interim beliefs are initially increasing.

However, the rate at which p(t)
1−p(t) increases itself decreases over time. Why? By equa-

tions (1-2), S′
g(t) = −Ig(t)Sg(t), S′

b(t) = −Ib(t)Sb(t), I′g(t) = ρIg(t)Sg(t), and I′b(t) =

(1 − ρ)Ib(t)Sb(t); thus,
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X′(t) = −2
(
ρIg(t)Sg(t)− (1 − ρ)Ib(t)Sb(t)

)
. (20)

Note that X′(t) ≥ 0 iff Ig(t)Sg(t)
Ib(t)Sb(t)

≤ 1−ρ
ρ . By equation (6), that is only possible at times when

p(t)
1−p(t) ≤

α(1−ρ)
(1−α)ρ

which, since α < 1/2, implies that p(t) < 1− ρ. We conclude that, so long
as p(t) > 1 − ρ and consumers are sensitive to signal, X′(t) < 0.

Because X′(t) < 0, consumers’ interim beliefs may begin to decline if consumers are
sensitive to signal for long enough. Given our assumption that L is small,21 however,
this does not happen for a long time. To see why, note that the total mass of consumers
exposed by any given time t̃ can be made arbitrarily small by beginning with a sufficiently
small initial mass L of consumers exposed at launch. In particular, for any time t̃ and any
small ϵ > 0, we can find L sufficiently small so that (i) Sg(t), Sb(t) ∈ (1 − ϵ, 1) for all
t < t̃ and (ii) Ig(t), Ib(t) ∈ (0, ϵ) for all t < t̃, implying that X(t) > (ρ(1 − ϵ)− ϵ)− (1 −
ρ − 0) = 2ρ − 1 − ϵ(1 + ρ) > 0 for all t ∈ (0, t̃). Recall by Lemma 1 that the likelihood
ratio p(t)

1−p(t) rises exponentially at rate X(t); so, for small L, p(t)
1−p(t) rises exponentially at

approximate rate 2ρ − 1 until a time t1 is reached at which consumers’ interim belief
equals ρ.

We conclude that, in any equilibrium when L ≈ 0, consumers are sensitive to signal
and interim belief p(t) is strictly increasing until a finite time t1 at which p(t1) = ρ.

Proof of Proposition 3. We begin by showing that consumers’ interim belief must re-
main constant immediately after time t1. First, suppose that p(t) were to rise after time
t1, causing consumers to herd on adoption. Since p(t) > α for all t ∈ (0, t1) (shown pre-
viously22), Lemma 4 implies that, at time t1, good innovations must be more widely seen
(Sg(t1) < Sb(t1)) and more widely adopted (Ig(t1) > Ib(t1)). Thus, at all times shortly
after t1, Sg(t)− Ig(t) < Sb(t)− Ib(t) and consumers’ interim belief must decline over time
by Lemma 1(i), a contradiction.

Next, suppose that p(t) were to fall after time t1, causing consumers to be sensitive to
signals. As discussed in the proof of Proposition 2, the assumption here of a small launch
(L ≈ 0) implies that only a small mass of consumers are exposed to the innovation prior to
Phase II; in particular, Sg(t1), Sb(t1) ∈ (1 − ϵ, 1) and Ig(t1), Ib(t1) ∈ (0, ϵ) for some small
ϵ. Consequently, for all times t shortly after t1, Condition SS holds. Were consumers to be
sensitive to signals immediately after time t1, consumers’ interim belief would therefore
increase over time by Lemma 1(ii), a contradiction. We conclude that, in any equilibrium,

21When L is sufficiently large, p(t) never reaches ρ and Phase I proceeds directly to Phase III.
22When α = 1/2, t1 = 0. When α ∈ (1/2, ρ), p(t) > ρ > α for all t ∈ (0, t1) by Proposition 1. Finally,

when α ∈ (1 − ρ, 1/2), p(t) > 1/2 > α for all t ∈ (0, t1) by Proposition 2.
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consumers’ interim belief must remain p(t) = ρ for some period of time after t1.
By equation (6), interim belief p(t) = ρ requires that ρ

1−ρ =
αIg(t)Sg(t)

(1−α)Ib(t)Sb(t)
or, equiv-

alently, Ig(t)Sg(t)
Ib(t)Sb(t)

= (1−α)ρ
α(1−ρ)

. In order for this ratio not to change over time, the ratio of

derivatives (Ig(t)Sg(t))′

(Ib(t)Sb(t))′
must also equal (1−α)ρ

α(1−ρ)
. Taking derivatives, using equations (1-2),

and re-arranging yields

(1 − α)ρ

α(1 − ρ)
=

I′g(t)Sg(t) + Ig(t)S′
g(t)

I′b(t)Sb(t) + Ib(t)S′
b(t)

=
Ig(t)S2

g(t)qg(t)− I2
g(t)Sg(t)

Ib(t)S2
b(t)qb(t)− I2

b (t)Sb(t)

=
Ig(t)Sg(t)(Sg(t)qg(t)− Ig(t))
Ib(t)Sb(t)(Sb(t)qb(t)− Ib(t))

and so it must be that

Sg(t)qg(t)− Ig(t) = Sb(t)qb(t)− Ib(t). (21)

Let aB(t) denote the likelihood that consumers exposed at time t adopt the innovation
after getting a bad signal. The overall likelihood that a good innovation is adopted equals
qg(t) = ρ + (1 − ρ)aB(t); similarly, a bad innovation is adopted with likelihood qb(t) =

1 − ρ + ρaB(t). Equation (21) can now be re-written as

(
ρSg(t)− (1 − ρ)Sb(t)

)
−

(
Ig(t)− Ib(t)

)
+ aB(t)

(
(1 − ρ)Sg(t)− ρSb(t)

)
= 0 (22)

or, equivalently,

aB(t) =
ρSg(t)− (1 − ρ)Sb(t)−

(
Ig(t)− Ib(t)

)
ρSb(t)− (1 − ρ)Sg(t)

(23)

The proofs of Propositions 1-2 characterized the time t1 at which Phase II begins and
the initial conditions

(
Ig(t1), Ib(t1), Sg(t1), Sb(t1)

)
. Equation (23) then uniquely deter-

mines aB(t1+), consumers’ equilibrium likelihood of adopting after a bad signal imme-
diately after time t1. Note that, since Ig(t1) > Ib(t1) and Sb(t1) > Sg(t1) (by Lemma 4),
aB(t1+) < 1. Moreover, because Condition SS holds at time t1 (discussed earlier), the
numerator in (23) is positive; so, aB(t1+) > 0.

Equations (1,2,23) now uniquely determine the path of
(
aB(t), Sg(t), Sb(t), Ig(t), Ib(t)

)
,

starting at time t1 and so long as aB(t) ∈ [0, 1].
Let t2 be the first time after t1 at which aB(t) ∈ {0, 1}, or t2 = ∞ if aB(t) remains

forever between zero and one. To complete the proof, we need to show that aB(t) is
strictly decreasing after t1 and reaches zero in finite time.

By Lemma 4, Sb(t) > Sg(t) so long as consumers’ interim belief continues to exceed
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the initial belief α.
Let t2 denote the first time after t1 at which consumers no longer partially herd, i.e.,

aB(t2) = 0 and aB(t) > 0 for all t ∈ (t1, t2), or t2 = ∞ if consumers partially herd forever.
Since p(t) > α throughout Phase I and ρ > α, Lemma 4 implies that Sb(t) > Sg(t),
ensuring that the denominator of (23) remains positive. Moreover, t2 is the first time as
which the numerator of (23) equals zero, i.e., when Condition SS holds with equality.

Next, note that

a′B(t) =

(ρS′
g(t)− (1 − ρ)S′

b(t)− (I′g(t)− I′b(t))(ρSb(t)− (1 − ρ)Sg(t))
−(ρSg(t)− (1 − ρ)Sb(t)− (Ig(t)− Ib(t)))(ρS′

b(t)− (1 − ρ)S′
g(t))

(ρSb(t)− (1 − ρ)Sg(t))2 .

Rearranging and simplifying the numerator, we have

numerator =(ρ2 − (1 − ρ)2)(S′
g(t)Sb(t)− S′

b(t)Sg(t))

− (I′g(t)− I′b(t))(ρSb(t)− (1 − ρ)Sg(t))

+ (Ig(t)− Ib(t))(ρS′
b(t)− (1 − ρ)S′

g(t)).

By (1-2), the second term above can be re-written as

− (I′g(t)− I′b(t))(ρSb(t)− (1 − ρ)Sg(t))

=− (Ig(t)Sg(t)(ρ + (1 − ρ)aB(t))− Ib(t)Sb(t)(1 − ρ + ρaB(t)))(ρSb(t)− (1 − ρ)Sg(t))

=− Ib(t)(Ig(t)− Ib(t))(ρSb(t)− (1 − ρ)Sg(t))

− (Ig(t)− Ib(t))Sg(t)(ρ + (1 − ρ)aB(t))(ρSb(t)− (1 − ρ)Sg(t)) (24)

Similarly, the third term above can be re-written as

(Ig(t)− Ib(t))(ρS′
b(t)− (1 − ρ)S′

g(t))

=− (Ig(t)− Ib(t))(ρIb(t)Sb(t)− (1 − ρ)Ig(t)Sg(t))

=− Ib(t)(Ig(t)− Ib(t))(ρSb(t)− (1 − ρ)Sg(t))

+ (Ig(t)− Ib(t))Sg(t)(1 − ρ)(Ig(t)− Ib(t)) (25)

To establish that the entire numerator is negative, we will show that the first term is
negative and that the sum of the second term (24) and third term (25) is negative. To
that end, recall that Ig(t) > Ib(t), I′g(t) > I′b(t), Sg(t) < Sb(t), and S′

g(t) < S′
b(t) at all

times t < t2 (Lem 4). The fact that the first term is negative now follows immediately
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from (1-2), since S′
g(t)Sb(t) − S′

b(t)Sg(t) = −Sg(t)Sb(t)(Ig(t) − Ib(t)) < 0. Moreover,
ρSb(t) > (1 − ρ)Sg(t) because Sb(t) > Sg(t) and ρ > 1/2; so, the first part of (24) and the
first part of (25) are negative. To show that the sum of (24) and (25) is negative, it therefore
suffices to show that (ρ + (1 − ρ)aB(t))(ρSb(t) − (1 − ρ)Sg(t)) > (1 − ρ)(Ig(t) − Ib(t)).
But this follows immediately from the fact that ρSb(t)− (1− ρ)Sg(t) > Ig(t)− Ib(t) (since
Condition SS remains satisfied) and ρ + (1 − ρ)aB(t) > 1 − ρ (since ρ > 1/2 and aB(t) ≥
0).

Overall, we conclude that aB(t) > 0 but that a′B(t) < 0 so long as the numerator
of equation (23) continues to be positive, i.e., so long as Condition SS continues to be
satisfied. Moreover, there is a finite time t2 at which partial herding ceases. To see
why, suppose for the sake of contradiction that consumers were to partially herd for-
ever. Because all consumers are eventually exposed to the innovation, limt→∞ Sg(t) =

limt→∞ Sb(t) = 0. On the other hand, because I′g(t) > I′b(t) so long as aB(t) > 0,
limt→∞(Ig(t) − Ib(t)) > Ig(t1) − Ig(t1) > 0. All together, then, the numerator of (23)
must eventually become negative, a contradiction.

Proofs of Propositions 4-5. We prove Propositions 4-5 together, dividing the proof into
four main steps.

Step 1: After time t2, p(t)
1−p(t) declines exponentially at an increasing rate until some time t̃ at which

p(t̃) = max{1 − ρ, α}, where α ≡ (1−ρ)α
(1−ρ)α+ρ(1−α)

∈
(

(1−ρ)2

(1−ρ)2+ρ2 , 1
2

)
.

By Lemma 1, p(t)
1−p(t) declines exponentially at rate X(t). So, it suffices to show that

X(t) < 0 and X′(t) < 0 at all times after t2 until a time t̃ is reached at which p(t̃) =

max{1 − ρ, α}. By the proof of Proposition 3: p(t2) = ρ; consumers are sensitive to signal
at time t2 (because aB(t2) = 0); and X(t2) =

(
ρSg(t2)− Ig(t2)

)
− ((1 − ρ)Sb(t2)− Ib(t2)) =

0. It suffices to show that X′(t) < 0 at all times t ∈ [t2, t̃), since then it must also be that
X(t) < 0 at all times t ∈ (t2, t̃).

By equation (20), X′(t) = −2
(
ρSg(t)Ig(t)− (1 − ρ)Sb(t)Ib(t)

)
while consumers are

sensitive to signals. Thus, X′(t) < 0 so long as Sg(t2)Ig(t2)

Sb(t2)Ib(t2)
> 1−ρ

ρ . By equation (6), p(t)
1−p(t) =

αSg(t2)Ig(t2)

(1−α)Sb(t2)Ib(t2)
; so, Sg(t2)Ig(t2)

Sb(t2)Ib(t2)
> 1−ρ

ρ if and only if p(t) > α or, equivalently, p(t)
1−p(t) >

α(1−ρ)
(1−α)ρ

= α
1−α . In other words:

when consumers are sensitive to signal, X′(t) ≷ 0 iff p(t) ≷ α (26)

At time t2, consumers are sensitive to signal and p(t2) = ρ > α; so, X′(t2) < 0. More-
over, X′(t) < 0 at times t ∈ (t2, t̃) since (i) consumers remain sensitive to signal (because
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p(t) ∈ (1 − ρ, ρ)) and (ii) p(t) > α. We conclude that p(t)
1−p(t) decreases exponentially at an

increasing rate from time t2 until time t̃.
What about after time t̃? There are two relevant cases. First, suppose that α ∈ (1 −

ρ, 1/2], so that α ≤ 1 − ρ. In this case, p(t̃) = 1 − ρ and Phase III ends at time t̃, i.e.,
t3 = t̃. Second, suppose that α ∈ (1/2, ρ). In this more challenging case, α ∈ (1 − ρ, 1/2)
and the argument so far shows that p(t)

1−p(t) declines at an increasing rate until time t̃, when
consumers’ interim belief hits α. However, we still need to show that consumers’ interim
belief continues falling long enough after time t̃ to reach 1 − ρ.

Step 2: In the case when α ∈ (1/2, ρ), p(t)
1−p(t) declines exponentially at a decreasing rate from time

t̃ until time t3 at which p(t3) = 1 − ρ.
The argument in Step 1 established that p(t̃) = α ∈ (1 − ρ, 1/2) and X(t̃) < 0; thus,

consumers’ interim belief continues to fall below α right after time t̃. By condition (26), we
conclude that X′(t) > 0 right after t̃ and at all times t > t̃ so long as consumers’ interim
belief remains between 1 − ρ and α.

This leaves three possibilities for what happens after time t̃: (i) p(t) decreases until a
time t3 at which point p(t3) = 1 − ρ and Phase III ends; (ii) p(t) decreases forever but
never reaches 1 − ρ; or (iii) p(t) stops decreasing (and starts increasing) at some time t̂
before reaching 1 − ρ.

We will prove that possibility (i) always occurs, by ruling out (ii) and (iii).
As shorthand, define X(∞) = limt→∞ X(t), Ig(∞) = limt→∞ Ig(t), and so on.

“Possibility (ii)” cannot occur.
Suppose for the sake of contradiction that consumers’ interim belief continues falling

forever after time t2 but never reaches 1 − ρ. This is only possible if X(∞) = 0, which in
turn requires that Ig(∞)− ρSg(∞) = Ib(∞)− (1 − ρ)Sb(∞). Since all consumers eventu-
ally encounter the innovation, Sg(∞) = Sb(∞) = 0. Thus, it must be that Ig(∞) = Ib(∞).
We will reach a contradiction by showing that Ig(∞) > Ib(∞).

Recall that we are focusing here on the case in which α ∈ (1/2, ρ). We have shown:
consumers are sensitive to signals at launch (t = 0), adopting good innovations with
probability ρ and bad ones with probability 1 − ρ; consumers herd on adoption in Phase
I (t ∈ (0, t1)), adopting all innovations with probability one; and consumers partially
herd on adoption in Phase II (t ∈ (t1, t2)), adopting good innovations with probability
ρ + aB(t)(1 − ρ) and bad ones with probability 1 − ρ + aB(t)ρ. Moreover, given the pre-
sumption that possibility (ii) is occurring, consumers are again sensitive to signals at all
times t > t2. Overall, the mass of consumers who adopt a good innovation therefore
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takes the form:

Ig(∞) = ρL +
∫ t1

0
|S′

g(t)|dt +
∫ t2

t1

(ρ + (1 − ρ)aB(t))|S′
g(t)|dt +

∫ ∞

t2

ρ|S′
g(t)|dt

= ρ +
∫ t1

0
(1 − ρ)|S′

g(t)|dt +
∫ t2

t1

(1 − ρ)aB(t)|S′
g(t)|dt (27)

where |S′
g(t)| is the flow of consumers being exposed at time t and L +

∫ ∞
0 |S′

g(t)|dt = 1
because the consumer population has unit mass. Similarly, the overall share of consumers
who adopt a bad innovation takes the form:

Ib(∞) = (1 − ρ)L +
∫ t1

0
|S′

b(t)|dt +
∫ t2

t1

(1 − ρ + ρaB(t))|S′
b(t)|dt +

∫ ∞

t2

(1 − ρ)|S′
b(t)|dt

= (1 − ρ) +
∫ t1

0
ρ|S′

b(t)|dt +
∫ t2

t1

ρaB(t)|S′
b(t)|dt (28)

Since consumers’ interim belief exceeds ρ throughout Phase I and equals ρ throughout
Phase II, |S′

g(t)| > |S′
b(t)| for all t ∈ (0, t2) by Lemma 4. Thus,

Ib(∞) < (1 − ρ) +
∫ t1

0
ρ|S′

g(t)|dt +
∫ t2

t1

ρaB(t)|S′
g(t)|dt (29)

(27, 29) together imply

Ig(∞)− Ib(∞) > (2ρ − 1)
(

1 −
∫ t1

0
|S′

g(t)|dt −
∫ t2

t1

aB(t)|S′
g(t)|dt

)
. (30)

Finally, note that
∫ t1

0 |S′
g(t)|dt = (1 − L)− S(t1) and, since aB(t) < 1 for all t ∈ (t1, t2),∫ t2

t1
aB(t)|S′

g(t)|dt < S(t1) − S(t2). We conclude that Ig(∞) − Ib(∞) > (2ρ − 1)(L +

S(t2)) > 0; so, Ig(∞) > Ib(∞), completing the desired contradiction.

“Possibility (iii)” cannot occur.
Suppose for the sake of contradiction that there exists t′ > t2 such that X(t) < 0 for

all t ∈ (t2, t′), X(t′) = 0, and p(t′) > 1 − ρ. For future reference, note that X(t′) = 0
requires that ρSg(t′)− Ig(t′) = (1 − ρ)Sb(t′)− Ib(t′). Also recall that, since X(t1) = 0 and
p(t1) = ρ > α, condition (26) implies that X′(t1) < 0 and that X(t) grows more negative
until time t̃ at which p(t̃) = α. Thus, it must be that t′ > t̃ and that p(t′) ∈ (1 − ρ, α) or
equivalently, given equation (6), (1−ρ)(1−α)

ρα <
Ig(t′)Sg(t′)
Ib(t′)Sb(t′)

< 1−ρ
ρ .

Several equations that follow are quite complex, so we introduce the following short-
hand: a = Sg(t2); b = Sb(t2); c = ρSg(t2) − Ig(t2) = (1 − ρ)Sb(t2) − Ib(t2); and d =

−(ρSg(t′)− Ig(t′)) = −((1 − ρ)Sb(t′)− Ib(t′)).
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We know that

c + d = (ρSg(t2)− Ig(t2))− (ρSg(t′)− Ig(t′))

=
∫ t′

t2

2ρIg(t)Sg(t)dt = 2(Ig(t′)− Ig(t2)) = −2ρ(Sg(t′)− Sg(t2)) (31)

=
∫ t′

t2

2(1 − ρ)Ib(t)Sb(t)dt = 2(Ib(t′)− Ib(t2)) = −2(1 − ρ)(Sb(t′)− Sb(t2)),

which implies that

Ig(t′)− Ig(t2) = Ib(t′)− Ib(t2) =
c + d

2

Sg(t′)− Sg(t2) = − c + d
2ρ

Sb(t′)− Sb(t2) = − c + d
2(1 − ρ)

.

Therefore,

Ig(t′)Sg(t′)
Ib(t′)Sb(t′)

=
(Ig(t2) + Ig(t′)− Ig(t2))(Sg(t2) + Sg(t′)− Sg(t2))

(Ib(t2) + Ib(t′)− Ib(t2))(Sb(t2) + Sb(t′)− Sb(t2))

=
(a − c+d

2ρ )((aρ − c) + c+d
2 )

(b − c+d
2(1−ρ

))((b(1 − ρ)− c) + c+d
2 )

=
a(aρ − c) + c2−d2

4ρ

b(b(1 − ρ)− c) + c2−d2

4(1−ρ)

We already know that a(aρ−c)
b(b(1−ρ)−c) =

(1−α)ρ
α(1−ρ)

> 1. Hence, no matter whether c2 − d2 ≥ 0 or

c2 − d2 < 0, Ig(t′)Sg(t′)
Ib(t′)Sb(t′)

> 1−ρ
ρ , a contradiction.

Step 3: At all times t ≤ t3, Sg(t) < Sb(t) and Ig(t) > Ib(t).
Let LS(t) ≡ Sb(t) − Sg(t) denote the “exposure gap,” the extra share of consumers

who have been exposed to good innovations by time t, and let LI(t) ≡ Ig(t)− Ib(t) denote
the “adoption gap,” the extra share who have adopted. At launch, Sg(0) = Sb(0) = L,
Ig(t) = ρL, and Ib(t) = (1 − ρ)L; so, LS(0) = 0 and LI(0) = (2ρ − 1)L > 0. Here we will
show that LS(t) > 0 and LI(t) > 0 at all times t ∈ (0, t3).

LS(t) > 0 and LI(t) > 0 for all t ≤ t2.
By Steps 1-2, consumers’ interim belief p(t) declines throughout Phase III, from ρ at

time t2 to 1 − ρ at time t3; so, there is a unique time t̂ ∈ (t2, t3) at which p(t̂) = α. Note
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that p(t) exceeds consumers’ ex ante belief α at all times t ∈ (0, t2] by Propositions 1-3
and that p(t) > α for all t ∈ (t2, t̂) by definition of t̂. Lemma 4 therefore implies that
LS′(t) = S′

b(t)− S′
g(t) > 0 and LI′(t) = I′g(t)− I′b(t) > 0 for all t ∈ (0, t̂). Since LS(0) = 0

and LI(0) > 0, we conclude that LS(t) > 0 and LI(t) > 0 for all t ∈ (0, t̂), and thus for all
t ≤ t2.

LS(t) > 0 and LI(t) > 0 for all t ∈ [t2, t3].
We begin by showing that the “adoption gap” LI(t) exceeds LI(t2) during all of Phase

III. Fix any t′ ∈ (t2, t3). Recall that X(t2) = 0 (shown in the proof of Proposition 3),
X(t′) < 0 (proven in Step Two), and X(t) = (ρSg(t)− Ig(t))− ((1 − ρ)Sb(t)− Ib(t)) for
all t ∈ [t2, t3) (by Lemma 1, because consumers are sensitive to signals). Thus,

(ρSg(t′)− Ig(t′))− ((1 − ρ)Sb(t′)− Ib(t′)) < (ρSg(t2)− Ig(t2))− ((1 − ρ)Sb(t2)− Ib(t2)).

Rearranging and reformulating terms as in equation (31) yields

∫ t′

t2

−2ρIg(t)Sg(t)dt <
∫ t′

t2

−2(1 − ρ)Ib(t)Sb(t)dt. (32)

Since I′g(t) = ρIg(t)Sg(t) and I′b(t) = (1− ρ)Ib(t)Sb(t), inequality (32) implies that Ig(t′)−
Ig(t2) > Ib(t′)− Ib(t2), which in turn implies that LI(t′) > LI(t2). Since LI(t2) > 0, we
conclude that LI(t′) > 0 for all t′ ∈ (t2, t3], as desired.

The “exposure gap” LS(t) = Sb(t)− Sg(t) is non-monotone during Phase III, but we
can show that LS(t) > 0 for all t ∈ (t2, t3]. Recall that p(t) > α for all t ∈ [t2, t̂) and
p(t) < α for all t ∈ (t̂, t3], where t̂ ∈ (t2, t3) is the unique time during Phase III at which
consumers’ interim belief p(t) equals their ex ante belief α. Also recall that, by equation
(6),

p(t) ≷ α iff Sg(t)Ig(t) ≷ Sb(t)Ib(t) iff − S′
g(t) ≷ −S′

b(t). (33)

Prior to time t̂, p(t) > α and condition (33) implies that LS′(t) > 0, i.e., the exposure gap
is increasing and hence obviously still positive. After time t̂, p(t) < α and condition (33)
implies that Sg(t)Ig(t) < Sb(t)Ib(t); since Ig(t) > Ib(t), this is only possible if Sb(t) >

Sg(t). Thus, even though the exposure gap tightens after time t̂, it must remain positive
throughout Phase III.

Step 4: After time t3, p(t)
1−p(t) declines exponentially at a constant rate, LI(t) is constant, and LS(t)

is decreasing but positive.
Consumers’ interim belief at time t3 equals 1 − ρ, making them indifferent whether

to adopt after a good private signal. Let aG(t3) ∈ [0, 1] be the probability with which
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consumers exposed to the innovation at time t3 adopt after a good signal. Note that

X(t3) = aG(t3)
(
ρSg(t3)− (1 − ρ)Sb(t3)

)
−

(
Ig(t3)− Ib(t3)

)
.

To establish that consumers’ interim belief continues declining below 1 − ρ, it suffices to
show that X(t3) < 0. However, this follows immediately from the facts that X(t3−) < 0
(proven in Step 2), Ig(t3) > Ib(t3) (proven in Step 3), and aB(t3) ∈ [0, 1].

Once consumers’ interim belief falls below 1− ρ, immediately after time t3, consumers
herd on non-adoption; so, X(t3+) = −

(
Ig(t3)− Ib(t3)

)
< 0 by Step 3 and beliefs con-

tinue to fall. Consumers therefore still herd on non-adoption, meaning that Ig(t) = Ig(t3),
Ib(t) = Ib(t3), and hence X(t) = X(t3) and LI(t) = LI(t3) for all t > t3. We conclude that
all adoption ceases after time t3 and that p(t)

1−p(t) forevermore declines exponentially at the
constant rate |X(t3)|. In particular, limt→∞ p(t) = 0.

Finally, as discussed in Step 3, the fact that p(t) < α implies that Sb(t)Ib(t) > Sg(t)Ig(t);
hence, the exposure gap must shrink during obsolescence, i.e., LS′(t) < 0 for all t > t3. At
the same time, because Ig(t) > Ib(t), the condition Sb(t)Ib(t) > Sg(t)Ig(t) is only possible
if Sb(t) > Sg(t); thus, LS(t) > 0 for all t > t3.

Proof of Lemma 2. (i) In the proof of Theorem 1, we showed when α ∈ (1 − ρ, ρ) that
Ig(t) > Ib(t) at all times t ≥ 0 during a purely-viral campaign. Comparing equations
(6,10), this implies pBR(T) < p(T) for all T ≥ 0.

(ii) pBR(0+) = α by equation (10) and Sg(0+) = Sb(0+) = 1 − L.
d log(Sg(T)/Sb(T))

dT =
S′

g(T)
Sg(T)

− S′
b(T)

Sb(T)
= −(Ig(T)− Ib(T)) by equation (1); thus pBR(T)

1−pBR(T)
falls exponentially at rate

Ig(T)− Ib(T).
(iii) By part (i) and Proposition 5, limT→∞ pBR(T) ≤ limT→∞ p(T) = 0. By part (ii),

pBR(0+) = α > 1 − ρ and pBR(T) is strictly decreasing and continuous. T is therefore
well-defined as the unique time at which pBR(T) = 1 − ρ. Moreover, T > t1 because
pBR(t1) ≈ α > 1 − ρ and T < t3 because pBR(t3) < p(t3) = 1 − ρ.

(iv) So far, we have shown that T must occur during Phase II or Phase III. To complete
the proof, we need to show that T occurs during Phase III when α ∈ (1

2 , ρ). In Section 2.1,
we showed that condition SS holds throughout Phase II (corresponding to the intuition
that there is “upward pressure” on beliefs when consumers are sensitive to signals) but

fails to hold throughout Phase III. When α ∈ (1
2 , ρ), the fact that αSg(T)

(1−α)Sb(T)
= 1−ρ

ρ (by

definition of T) implies Sg(T)
Sb(T)

< 1−ρ
ρ (because α > 1/2) and hence ρSg(T)− (1− ρ)Sb(T) <

0. Because Ig(T)− Ib(T) > 0, we conclude that condition SS must fail at time T and hence
T ∈ (t2, t3).
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Proof of Proposition 6. (i) When α ∈ (1/2, ρ), the earliest optimal stopping time T∗ =

t2 < T (Lemma 2, Theorem 2) and, as shown earlier, ∆R(T) < ∆R(0) for all T ≤ T; so,
∆R(T∗) < ∆R(0). (ii) When α ∈ (1 − ρ, 1/2), T∗ = T (Fig 3), T ∈ (t1, t3) and, as shown
earlier, ∆R(T) > ∆R(0) for all T ∈ (t1, t3); so, ∆R(T∗) > ∆R(0). (iii) When α = 1/2, we
have t1 = 0 (Theorem 1), p(0+) = ρ, and T∗ ∈ (0, t3). In this case: Phase I does not occur;
Sg(t)Ig(t)
Sb(t)Ib(t)

= ρ
1−ρ for all t ∈ (0, t2] (Phase II); and aB(t) = 0 for all t ∈ [t2, t3] (Phase III). By

equation (13), we conclude that ∆R′(T) = 0 for all T ∈ (0, t3); so, ∆R(T∗) = ∆R(0).

Proof of Proposition 7. Let a = (aG, aB) denote consumers’ “adoption rule” in the tra-
ditional marketing game, with aG and aB being, respectively, their likelihood of adopting
after a good or bad private signal. Let A(α) denote the set of optimal adoption rules, de-
pending on the likelihood α of innovation goodness: if α > ρ, then A(α) = (1, 1); if α = ρ,
then A(α) = {(1, aB) : aB ∈ [0, 1]}; if α ∈ (1 − ρ, ρ), then A(α) = (1, 0); if α = 1 − ρ,
then A(α) = {(aG, 0) : aG ∈ [0, 1]}; and if α < 1 − ρ, then A(α) = (0, 0). Good inno-
vations earn revenue Rg(a) = ρaG + (1 − ρ)aB, bad innovations earn revenue Rb(a) =

(1 − ρ)aG + ρaB, and good innovations earn extra revenue ∆R(a) = (2ρ − 1)(aG − aB).
Let α(a) = F(∆R(a)) denote the likelihood that the producer finds it optimal to in-

vest when consumers use adoption rule a. An equilibrium exists with likelihood α of
innovation goodness if and only if α(a) = α for some a ∈ A(α).

The producer’s incentive to invest is maximized when consumers use the adoption
rule a = (1, 0); so, α cannot possibly exceed F(2ρ − 1) in any equilibrium. There are three
relevant cases, depending on how F(2ρ− 1) compares to the belief-thresholds ρ and 1− ρ.

(i) Suppose that F(2ρ − 1) < 1 − ρ. Since α ≤ F(2ρ − 1) < 1 − ρ, consumers must find
it optimal never to adopt in any equilibrium and, anticipating this, the producer has zero
incentive to invest. Thus, all innovations are bad in the unique equilibrium, i.e., α̂ = 0.

(ii) Suppose that F(2ρ − 1) ∈ [1 − ρ, ρ]. In this case, an equilibrium exists with α =

F(2ρ − 1) and consumer adoption rule (1, 0). Since the equilibrium likelihood of innova-
tion goodness cannot exceed F(2ρ − 1), we conclude that α̂ = F(2ρ − 1).

(iii) Suppose that F(2ρ − 1) > ρ. In this case, an equilibrium exists with α = ρ and
adoption rule a∗ =

(
1, 1 − F−1(ρ)

2ρ−1

)
. (Given this adoption rule, the producer finds it opti-

mal to invest with probability F (∆R(a∗)) = ρ. Moreover, no equilibrium can exist with
α > ρ. Why not? In such an equilibrium, consumers would find it optimal to use adop-
tion rule (1, 1), causing good and bad innovations to be equally adopted and hence giving
the producer zero incentive to invest, a contradiction. We conclude that α̂ = ρ.
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Proof of Proposition 8. Let ∆R(T; α) denote the extra revenue earned by good innova-
tions when consumers have ex ante belief α and the viral campaign stops at time T. Let
T∗(α) be the optimal stopping time when consumers have ex ante belief α ∈ (1 − ρ, ρ).
Finally, let S(α) ≡ F(∆R(T∗(α); α)) be the supply of good innovations when consumers
have ex ante belief α and the viral campaign stops optimally at time T∗(α). An equilib-
rium exists with ex ante belief α if and only if S(α) = α.

Suppose that α̂ ≡ F(2ρ − 1) ∈ (1/2, ρ). For all α ∈ (1/2, ρ), ∆R(T∗(α); α) < 2ρ − 1
(Proposition 6(i)); thus, S(α) < α̂ for all α ∈ (1/2, ρ) and, in particular, S(α) < α for all α ∈
[α̂, ρ). On the other hand, because ∆R(0; 1/2) = ∆R(T∗(1/2); 1/2) = 2ρ − 1 (Proposition
6(iii)), S(1/2) = α̂ > 1/2. By a continuity argument (straightforward details omitted),
there exists α ∈ (1/2, α̂) such that S(α) = α. Overall, we conclude that α∗ ∈ (1/2, α̂).

Suppose next that α̂ ∈ (1 − ρ, 1/2). First, we show that no equilibrium exists with
α ≥ 1/2. Suppose otherwise. With α ≥ 1/2, ∆R(T∗(α); α) ≤ 2ρ − 1 (Proposition 6(i,iii));
thus, S(α) ≤ α̂ < 1/2, contradicting the presumption that S(α) = α ≥ 1/2. Next, for all
α ∈ (1 − ρ, 1/2), ∆R(T∗(α); α) > 2ρ − 1 by Proposition 6(ii); thus, S(α) > α̂ for all α ∈
(1− ρ, 1/2). On the other hand, when α = 1/2, ∆R(0; 1/2) = ∆R(T∗(1/2); 1/2) = 2ρ − 1
by Proposition 6(iii); thus, S(1/2) = α̂ < 1/2. By continuity, there exists α ∈ (1 − ρ, 1/2)
such that S(α) = α and any such fixed point is strictly greater than α̂. All together, we
conclude that α∗ ∈ (α̂, 1/2).

The last case when α̂ = 1/2 is similar. ∆R(T∗(1/2); 1/2) = ∆R(0, 1/2) = 2ρ −
1 (Proposition 6(iii)); thus, S(1/2) = 1/2. On the other hand, for all α ∈ (1/2, ρ),
∆R(T∗(α); α) < 2ρ − 1 and hence S(α) < 1/2 < α. Thus, α∗ = 1/2.
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