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agent cannot distinguish uncertainty about the state from uncertainty about the noise
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common prior and access to an arbitrary number of primary sources can end up with

different beliefs if their network positions place them at different distances relative to

primary sources.
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1 Introduction

People disagree on issues even after extensive communication and despite the presence of

many primary sources of information in their social network. Yet standard models of social

learning predict consensus and move on to study the correctness of limiting beliefs and the

speed of convergence. This basic discrepancy between the foundational models and reality

is a challenge to the social-learning literature. Can rational agents who repeatedly relay

information in a network disagree in the long-run? In a simple model of social learning

resembling the children’s game of ‘telephone,’ we show that non-convergence and limited

learning is generically the only outcome. The key difference from many standard models of

social learning is the introduction of noisy communication.

A set of agents are connected in a network. Some of these agents, who we call primary

sources, receive exogenous and independent binary signals about a binary state of the world

(e.g., is eating avocados good or bad for one’s cholesterol). They noisily relay this information

to their neighbors, who relay it to their neighbors, and so on. We model noise as independent

errors at each step of communication, whereby one type of message is sent or misheard as

another. We consider the perspective of an agent (the ‘learner’) who has a slight uncertainty

about the communication process; e.g., about the propensity of agents to overstate the health

benefits of avocados or about the chance that someone misinterprets something they hear.

The learner is at some distance from the primary sources in the network. We ask whether

this agent can learn the true state.

We show that even under ideal conditions—when the learner is path connected to arbi-

trarily (even infinitely) many independent primary sources, knows the exact distance between

themself and those sources, and carries out perfect Bayesian updating—they cannot learn

the state. We also show that this implies that learners who have a common prior but are

simply located at different distances from the source continue to have different beliefs regard-

less of the number of primary sources. These failures of learning and agreement must persist

a fortiori in less ideal settings with more complex networks and noisy communication.

Noise and distance to primary sources diminish how much an agent can learn from any

given number of primary sources. Still, if the learner knew the exact probabilities with which

such “mutations” occur, they could learn the true state from sufficiently many sources, no

matter how far away those sources may be.

However, we show that if the learner has even the slightest uncertainty about the relative

probability that messages mutate in either direction, then they cannot perfectly learn the true

state once the primary sources are sufficiently far away, no matter how many independent

primary sources they hear from. If the learner hears, for example, a larger fraction of

messages supporting the view that avocados are good for cholesterol, this may be because

that is true or instead because it is false but people have more of a propensity to exaggerate

the health benefits of avocados when they have no health impact, than to claim they have

no effect when they do have a benefit. Indeed, nothing can be learned about the state

in the limit as the distance to sources grows, even with infinitely-many sources and small
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uncertainty about mutation rates.

As we show, this limitation on learning stems from a basic identification failure: the

learner cannot disentangle uncertainty about the state from uncertainty about the noise in

the communication process. Either could account for the patterns of communication that

an agent observes.

Related Literature

Our paper belongs to a broad literature on social learning.

Golub and Sadler (2017) conclude a review of social-learning models by noting that:

“Long-run consensus is a central finding throughout this literature. . . The consistency of

this finding may cause some discomfort because we often observe disagreement empirically,

even about matters of fact. . . A theory explaining long-run disagreement, especially one

with rational foundations and appropriate sensitivity to network structure, would constitute

a valuable contribution.” Rationalizing long-run disagreement in networks is indeed the

objective of our model. Our theory suggests that agents with varying proximity to primary

sources can entertain different beliefs, with disagreement persisting even as the number of

such primary sources grows large.

There are models of learning that can rationalize people holding different beliefs in re-

sponse to similar information. These include differences on the basis of biased updating (e.g.,

Fryer et al. (2019)), having optimal models that diverge based on slight sample differences

(e.g., Haghtalab et al. (2021)), believing that others are using a misspecified model (Ace-

moglu, Chernozhukov and Yildiz (2016)), or having misperceptions of others’ news access

(Bowen et al. (2021)). Our results complement these other explanations, showing that even

agents who are fully Bayesian and have a common prior can end up with different posterior

beliefs if they face uncertainty about the nature of the noise in the communication process

and have different network positions relative to primary sources. Understanding each of

these forces is necessary to help design policies that correct learning failures. In a compan-

ion paper (Jackson, Malladi and McAdams (2022)), we examine optimal policies to alleviate

the learning failures due to noisy communication and the identification problem that we

document here.

Agents in our model communicate with noise. We do not microfound the source of this

noise because our analysis only depends on the probabilities with which mutations occur at

each step of the communication process. Thus, our results hold regardless of how this noise

is generated; e.g., whether mutations arise from unintentional mistakes in interpretation,

intentional miscommunication, or some technological imperfection. For other perspectives on

the behavior of biased agents in the spread of incorrect information, see Acemoglu, Ozdaglar

and ParandehGheibi (2010) and Bloch, Demange and Kranton (2018).
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2 The Base Model of Noisy Information Transmission

We begin by studying how noise builds up along a chain that can travel a path of length T

from an original source to a Bayesian “learner.”

Information passes by “word of mouth.” This can be oral, written, via social media, etc.

There are two possible states of the world, ω ∈ {0, 1}. Let θ ∈ (0, 1) be the prior

probability that the state is 1.

A sequence of agents {1, 2, . . . , T}, referred to as a “chain,” successively relays a signal

of the state via word of mouth, terminating with the learner at T ≥ 1.

We do not model what the learner does with this information, but one can think of

the learner preferring to match their action with the state. For instance, the learner may

hear from friends about whether a certain diet is good for cardiovascular health and decide

whether to adopt it.1

A first agent in a chain, interpreted as “a primary source,” observes a noisy signal of the

state, s1 ∈ {0, 1, ∅}.2 That signal is transmitted with noise becoming s2 ∈ {0, 1, ∅}, and so

on until signal sT reaches the learner.

The “null signal,” st = ∅, indicates that no signal was received, in which case no signal

is transmitted. Another possibility is that something was received, but that the information

was sent along in some incoherent manner: one person hears from another but cannot

understand what was said and so has no information to pass along. In particular, if agent

t ≥ 1 receives the null signal st = ∅, then all subsequent agents (including the learner) also

receive the null signal.

If agent t ≥ 1 receives a signal st ∈ {0, 1}, then that agent passes a signal along (st+1 6= ∅)
with probability p1 if st = 1, and with probability p0 if st = 0. Thus, for instance, if p1 > p0
then agents are more likely to transmit a signal if they heard a 1, and vice versa if p1 < p0.

With the remaining probabilities of 1−p1 and 1−p0, respectively, the signal is dropped and

st+1 = ∅.
Each time a non-null signal is transmitted, that signal mutates from 0 to 1 with proba-

bility µ01 ∈ [0, 1/2), or from 1 to 0 with probability µ10 ∈ [0, 1/2); we let M ≡ 1−µ01−µ10.

We focus on the case where mutation rates are less than 1/2: signals are more likely to be

transmitted faithfully than flip at each step. Again, these mutations could be from a person

deliberately changing a message to suit their personal preference, or could be due to some

misunderstanding or other noise in communication.

Our reduced-form model of communication suffices for our study of the capacity for re-

ceivers to learn. We emphasize that for any microfoundation of senders’ (potentially hetero-

1The learner may have information from sources outside of its network. If these sources are not direct,

then they can be modeled as part of the network. Otherwise, we can think of this external information as

being reflected in the prior. We are interested in studying what the learner is able to learn from messages

conveyed within their network.
2We focus on a binary world to crystallize the main ideas. Extensions to richer state spaces and signal

structures are left for future research.
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geneous) incentives, only the resulting average probability of mutation and message dropping

at each step matter for our analysis.

In summary, if st−1 = 1, the next agent (including t = 1) hears: st = 1 with probability

p1(1 − µ10), st = 0 with probability p1µ10, and st = ∅ with probability 1 − p1. Similarly,

conditional on st−1 = 0: st = 1 with probability p0µ01, st = 0 with probability p0(1 − µ01),

and st = ∅ with probability 1− p0. If st = ∅ for some t, then st+1 = ∅. This defines a 3× 3

Markov chain in which ∅ is an absorbing state.3

Our analysis presumes that the learner has access to some number n ≥ 1 of length T

chains of messages, relayed through an information network. This network is a depth T

directed tree, with nodes representing agents, n leaves representing the primary sources, the

root representing the learner, and edges representing the direction of relay. Each path from

the leaves to the root is a chain along which messages are forwarded. We let R(n, T ) be the

set of such trees, with three examples pictured in Figure 1.

Figure 1: Three trees in R(4, 2), the set of depth-2 directed trees with 4 leaves.

Conditionally independent signals of the state are independently relayed along each of

these chains of length T via the same noisy process to the same learner. An example of the

communication process over a 2-regular, depth 4 tree is pictured in Figure 2. The learner’s

ability to learn depends only on the number of primary sources, n, they are connected to

and their distance, T . We therefore leave the precise structure of the information network

within R(n, T ) unspecified in the statement of our results, and refer to the number of sources

at distance T , n(T ).

3 Learning from Message Content

We first explore whether (and how much) the learner can learn about the true state in a

special case of our model in which all messages are equally likely to be transmitted; i.e.,

p1 = p0 = p. In Section 4, we allow for the possibility that message content impacts the

likelihood of transmission.

3Note that the setting is stationary in that the initial signal s1 is derived from the original state in the

same way as any other st depends on st−1, as if nature were “agent 0” in the chain with signal s0 equal to

the state. This assumption simplifies the expressions, but our analysis easily extends to allow first-signal

accuracy and transmission failure rates to differ from subsequent ones.
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Figure 2: The root node (“learner”) receives messages passed through eight paths, each

starting from a different source. The absence of an arrow from one node to the one below

it indicates that no message was sent, a dashed arrow indicates the message was delivered

but mutated, and a solid arrow indicates that the message was delivered un-mutated. In

this example, the true state is 1 and paths 1-3 and 6-8 begin with a correct initial signal,

while path 4 begins with an incorrect initial signal and path 5 begins with no signal received.

Initial messages are delivered on paths 1,2,4, and 6-8, mutating from 1 to 0 on path 1 and

from 0 to 1 on path 4, and undelivered on paths 3 and 5. Messages are then relayed on path

2,4, and 6-8, mutating from 1 to 0 on path 6, but dropped on path 1. Finally, messages

are re-relayed on paths 2 and 6-8, mutating from 0 to 1 on path 6, but dropped on path

4. Overall, the learner hears four messages, of which two never mutated, one mutated once,

and one mutated twice.

Considering these cases in turn is essentially without loss of generality in our model. In

Appendix 5 we show that limit learning is equivalent to the better of either using a threshold

of signal content (e.g., whether more than a given fraction of signals are 1s vs 0s) or using a

survival threshold (e.g., whether more than a given number of signals are observed). Thus,

for understanding whether an observer can learn the state, it is enough to focus on each of

these cases in turn.

3.1 Learning From Content Along a Single Chain

Lemma 1 characterizes learning along a single chain of messages when the message originates

from a node at distance t from the observer.

Lemma 1 Suppose that p = p0 = p1 > 0 and consider any mutation rates µ01, µ10 ∈ (0, 1/2).

If the state is 0 and agent t ≥ 1 receives a non-null message, then the message is 0 (matching
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the true state) with probability

X0(t) =
µ10 + µ01M

t

µ10 + µ01

.

where M = 1− µ10 − µ01. If the state is 1 and agent t ≥ 1 receives a non-null message, the

message is 1 (matching the true state) with probability

X1(t) =
µ01 + µ10M

t

µ01 + µ10

.

It follows that the difference between the probability of getting a given signal in its corre-

sponding state compared to the other state is

X0(t)− (1−X1(t)) = X1(t)− (1−X0(t)) = M t.

As t grows, regardless of the starting state, the limit probabilities that a surviving message

is a 0 or a 1, respectively, are

π0 =
µ10

µ10 + µ01

and π1 =
µ01

µ10 + µ01

.

Finally, if µ01 = µ10 = µ, then the message matches the true state with probability

X(t) =
1 +M t

2
. (1)

Note that X(t) > 1/2 for all t, limt→∞X(t) = 1/2, and X(t)−1/2 decreases exponentially

at rate 1− 2µ. Intuitively, the rate of decay, 1− 2µ = (1− µ)− µ, is how much more likely

one is to get an unmutated signal than a mutated one from one period to the next.

3.2 Learning from Content Along Many Chains

We now characterize the threshold number of independent word-of-mouth chains that a

Bayesian learner needs to access in order to have an accurate view of the true state.

Suppose that the learner has access to n(T ) independent chains of length T . We index

n by T , because we seek to characterize how many chains are needed as a function of their

length. Longer chains are more likely to be null or to have an incorrect message and so

more are needed to deliver an equivalent amount of information. Let In(T ) be the vector

of (potentially null) random messages that the learner receives from the chains, and let

the random variable b(n(T ), T ) = PrT (ω = 1|In(T )) be the posterior probability that the

state equals 1 conditional on the information from n(T ) originating signals that have each

independently traveled T steps.

Definition 1 (Threshold for learning) We say that τ(T ) is a threshold for learning if

(i) Plim b(n(T ), T ) = 1 or 0 whenever n(T )/τ(T ) → ∞ and (ii) Plim b(n(T ), T ) = θ

whenever n(T )/τ(T )→ 0.
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Note that if Plim b(n(T ), T ) = 1 or 0, then Bayesian-updated beliefs are correct with a

probability going to 1. Thus, a threshold for learning is sharp in that if the number of chains

of messages is of higher order, then the receiver learns the true state with a probability going

to one, while if it is of lower order, the receiver learns nothing.

Lemma 2 Consider a learner who is connected to n(T ) primary sources at distance T and

who knows p, µ01, µ10. Then 1
pTM2T is a threshold for learning.

The threshold in Lemma 2 is sharp, and translates directly into a threshold for the

average degree in the tree. For instance, suppose that the learner receives word-of-mouth

messages through a random tree generated by a Galton-Watson branching process in which

average degree distribution F places weight 0 on degree 0 and has finite variance.4 Then,

one can easily show that Plim b(t) = 1 or 0 whenever Ed∼F [d] > 1
pM2 and (ii) Plim b(t) = θ

whenever Ed∼F [d] < 1
pM2 .

3.3 The Impossibility of Learning with Uncertain Mutation Rates

Lemma 2 shows that learning is possible with sufficiently many primary sources, no matter

how far away these sources may be, so long as the learner knows the mutation rates µ10

and µ01. In practice, however, agents are at least somewhat uncertain about these mutation

rates. As we show next, slight uncertainty about the ratio of these rates can dramatically

limit what can be learned even from infinitely-many sources. Moreover, how much an agent

with infinitely-many sources can learn itself converges to nothing as the distance to those

sources goes to infinity, meaning that learning is completely precluded in the limit as the

distance to sources grows.

Proposition 1 Suppose the learner does not know µ10/µ01 but has an atomless prior over

this ratio with convex support. Consider a learner who is connected to n(T ) primary sources

at distance T .

1. There exists ε, δ > 0 and T such that for any T > T and any n(T ),

Pr(|b(n(T ), T )− θ| > ε) > δ.

2. Moreover, for any n : N → N, b(n(T ), T ) converges in probability to θ as T goes to

infinity.

The first part of Proposition 1 says that once sources are sufficiently distant, the prob-

ability that the learner learns is bounded away from 1 no matter how many independent

sources she indirectly can access. The second part of Proposition 1 says that as the dis-

tance to sources grows, the learner learns nothing about the state no matter how quickly the

4This condition ensures that the tree does not die out and so has at least some paths of depth t with

probability one. The analysis can be adapted to allow for extinction, but no new insight emerges.
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number of sources grows. Note that Proposition 1 makes very weak assumptions about the

nature of uncertainty over µ10/µ01. In particular, even if the learner is nearly certain about

µ10/µ01; e.g., has a prior with a very narrow support, she cannot learn if T is sufficiently

large.

When networks are sufficiently shallow, small enough uncertainties over mutation rates do

not preclude learning. The receiver can still learn by hearing from sufficiently many sources.

But the broad intuition for the first part of Proposition 1 is that depth compounds the effects

of even small uncertainties and induces an identification problem for the receiver: once chains

are sufficiently long, full learning is no longer possible. Observing more 1 messages than

some threshold can either indicate that the state is 1 or that people are slightly more biased

towards mutating 0’s to 1’s than the receiver anticipated. The next subsection discusses this

more explicitly.

The intuition for the second part of Proposition 1 is that, as T grows, the fraction of 1

versus 0 messages converges to µ01
µ10

. Learning comes from the fact that there is a bias away

from µ01
µ10

in favor of the starting state, but that bias vanishes as T grows. Lemma 2 says

that, if there are enough signals as a function of T (so n(T ) grows fast enough), then that

slight bias can be discerned. However, any uncertainty about µ01
µ10

completely swamps the

vanishing difference in the relative frequency of signals that reflects the starting state.

3.4 The Lack of Identification and the Failure of Learning

To hone intuition for Proposition 1 and understand the identification failure, consider a

hypothetical extreme case in which there are infinitely-many independent chains. In this case,

the learner at distance T gets an infinite number of signals that come in ratios proportional

to their expected values. We heuristically reason at the limit to show that the results are

due to identification, and not an order of limits argument.

Recall from Lemma 1 that, when the state is 1 or 0, each surviving (non-null) message’s

likelihood of being 1 equals X1(T ) or 1 − X0(T ), respectively. As the number of primary

sources goes to infinity, fraction X1(T ) of surviving messages are 1 if the state is 1, while

fraction 1−X0(T ) are 1 if the state is 0. Recall also that

X1(T )− (1−X0(T )) = MT = (1− µ01 − µ10)
T ,

which implies 1−X0(T ) = X1(T )−MT . Note that the fraction of 1’s heard by the learner

is slightly smaller when the state is 0 than when the state is 1, but only by the vanishing

amount MT .

Suppose that a learner at distance T from primary sources sees a fraction f of messages

that are 1. What are the possibilities about the state and mutation rates that can rationalize

what the learner has observed? Either the state is 1 and µ01, µ10 are such that they solve

f = X1(T ) or the state is 0 and µ01, µ10 are such that they solve f = X1(T )−MT .

Note that as T becomes large, both X1(T ) and X1(T )−MT converge to µ01
µ01+µ10

. There-

fore, the fraction of 1’s heard, f , is almost entirely driven by the mutation rates and nearly
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the same µ01, µ10 can solve both equations. Since the learner can easily rationalize either

equation with similar mutation rates, there is no way for the learner to distinguish which

state it must be—unless the learner knows µ01, µ10 sufficiently precisely to rule out very

similar combinations of these mutation rates. As T grows, the required precision converges

to requiring the learner know the ratio of mutation rates exactly.

In contrast, for small T , so that the learner is close to the original sources, MT is nontrivial

and the mutation rates that could solve the two equations are substantially different and

some might be ruled out by the learner’s prior. Thus, at least partial learning can be

possible in the face of uncertain mutation rates if the learner is sufficiently close to the

sources. However, given that MT decays exponentially and that information is often relayed

nontrivial distances, this can be demanding.

We note that being connected to primary sources at different distances, and being able

to track those distances, can improve learning. If the learner could observe many messages

at distance t and then again at distance t + 1, and can distinguish how far a message has

traveled, then she could see how messages change with additional distance. This would help

her further identify µ01, µ10. Thus, at least partial learning in the face of uncertainty is

possible if the learner is either close to all sources or can precisely identify the distance that

messages have traveled, both of which are demanding conditions.

3.5 Rational Disagreement

We have so far taken the perspective of a single learner who is some distance away from the

primary sources. However, we may very well consider the updating problem of other nodes

in the learner’s information network. Suppose all nodes start with a common prior about

the state. As the distance between these nodes and primary sources varies, so too does their

ability to learn.

Consider a situation where network is so dense that, absent any uncertainty over mu-

tations rates, all nodes would be able to learn the state with high certainty. Introducing a

small uncertainty over the mutation rates makes it so that nodes close to the source continue

to learn perfectly while sufficiently distant nodes update very little. Nodes at intermediate

distances learn a bounded amount with some probability.

Therefore, even though all agents are Bayesian and started with a common prior, they

entertain different beliefs based on their network position. Uncertainty over noise can there-

fore rationalize long-run disagreement between path-connected agents even after extensive

communication.

4 Learning from Message Survival

Proposition 1 shows how even slight uncertainty about relative mutation rates can preclude

learning, in the special case of our model in which all messages are equally likely to trans-
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mitted at each step. But what if the content of a message affects its likelihood of being

retransmitted; i.e., what if p1 6= p0? In that context, receivers can learn not only from the

content of received messages but also from how often they have heard about a given issue.

For example, it is often observed that statistically significant results are more likely to be

shared and published than insignificant ones. If researchers in an academic field know that

many people are working on a topic, but do not hear of many results, then they may infer

that most results were insignificant, even without paying attention to the content of the

studies that were published and shared.

We show in this section that, although agents can learn from message survival in this

context (Sections 4.1-4.2), learning from messages received over sufficiently long chains re-

mains impossible so long as agents have any uncertainty about the relative mutation rates

(Section 4.3). Finally, we consider how well boundedly rational learners who pay attention

to either the number of messages they have heard (ignoring the content) or instead simply

to the relative fraction of 1s to 0s compare in efficiency to a Bayesian learner who pays

attention to both dimensions (Section 4.4). Without loss of generality, we focus on the case

in which p1 > p0, meaning that people are more likely to pass along signal 1 than 0.

4.1 Learning from Survival Along a Single Chain

We first characterize learning along a single chain of messages when learning purely from

survival – where µ01 = µ10 = µ – to build intuition as to how this compares to learning

purely from content (the p = p0 = p1 case of Lemma 1).

In the case where only message content is informative (p0 = p1), the content of a single

message becomes nearly meaningless as chains grow long (due to mutation). In contrast,

when p0 6= p1, message survival continues to be informative about the true state of the world

even as the chain of messages grows long – although survival becomes decreasingly likely.

Let

z ≡ p1
p0

(
1 + (1− 2µ)

(p1 − p0)
p0 + µ(p1 − p0)

)
.

Note that if p1 > p0 and 0 ≥ µ ≤ 1/2, then z ≥ p1
p0
> 1.

Lemma 3 Suppose that 1 ≥ p1 > p0 > 0 and µ01 = µ10 = µ ∈ (0, 1/2].5

1. The relative probability of message survival over a chain of length t conditional on state

1 versus state 0 is uniformly bounded away from p1
p0

:

Pr(st 6= ∅|ω = 1)

Pr(st 6= ∅|ω = 0)
≥ z ≥ p1

p0
for all t ≥ 1, (2)

with strict inequalities when µ < 1/2.

5If µ = 0 then Pr(st 6=∅|ω=1)
Pr(st 6=∅|ω=0) = (p1/p0)t, which diverges, and the problem becomes trivial. Similarly, if

p0 = 0 then Pr(st 6= ∅|ω = 0) = 0 and the problem becomes trivial. Note that here we do not require that

µ < 1/2 since survival at the first step contains information, even if subsequent steps are completely random.

This contrasts with the case in which p1 = p0, in which learning is precluded when µ = 1/2.
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2. The ratio in (2) converges as chain-length grows: y ≡ limt→∞
Pr(st 6=∅|ω=1)
Pr(st 6=∅|ω=0)

exists.

3. Upon seeing a surviving message, the learner’s updated belief Pr(ω = 1|st 6= ∅) is

uniformly bounded below by θ
θ+(1−θ)/z > θ and bounded above in the limit by θ

θ+(1−θ)/y <

1.

4. In the limit, updating is entirely due to signal survival and not content: limt→∞ Pr(ω =

1|st = 1) = limt→∞ Pr(ω = 1|st = 0) = limt→∞ Pr(ω = 1|st 6= ∅).

Unlike the content of a single message, which becomes nearly meaningless as chains grow

long (due to mutation), the information conveyed by a single message’s survival does not

vanish in the long-chain limit. For intuition, suppose for a moment that only the first agent

in each chain was biased in favor of message 1, and other agents transmit with probability p̂

regardless of signal content. The likelihood of survival to t is p1 (p̂)t−1 if the first agent saw

signal 1 or p0 (p̂)t−1 if the first agent saw signal 0. Thus, the relative likelihood of survival

equals p1/p0 > 1 (favoring signal 1) no matter how long the chain. Moreover, biasing all

agents in favor of transmitting message 1 further increases the relative likelihood of survival

from state 1, since signal 1 is more likely to be received at each step along the chain when

the true state is 1 rather than 0.

4.2 Learning from Survival Along Many Chains

We next consider the challenge of learning for a receiver who only counts messages without

checking what they say. In parallel to the case of learning from signal content only (p0 = p1),

the learner can discern the state from just signal frequency as long as transmission is more

likely after one signal than the other (p0 6= p1), there are sufficiently many starting sources

of information, and the learner knows the transmission differences perfectly.

Lemma 4 Consider a learner who is connected to n(T ) primary sources at distance T . Sup-

pose that µ01 = µ10 = µ ∈ (0, 1/2] and 1 > p1 > p0 > 0.6 There exists λ(T ) = c + o(1)

for some c ∈ (0, 1), such that a threshold for learning when conditioning only upon signal

survival is
1

(p1λ(T ) + (1− λ(T ))p0)T
.

Given that messages mutate, the probability that any agent transmits a message lies

somewhere between p1 and p0. Conditional on the initial message being 1, the overall proba-

bility that a message is transmitted all the way to the end of a length-T chain must therefore

take the form (p1λ+ (1− λ)p0)
T for some λ ∈ (0, 1). Only if the number of sequences n(T )

grows faster than this would a growing number of signals survive, conditional on the state

being 1. The learner can then discern the state (perfectly in the limit) based on the actual

6If µ = 0, then it is easy to check that the threshold is an expected degree of 1/p, which is then the

threshold for messages to survive conditional upon state ω = 1, which are the more likely to survive.
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number of signals that survive. As with the case of learning only from content, the threshold

n(T ) grows exponentially in chain length.

4.3 Impossibility of Learning from Message Survival with Uncer-

tain and Asymmetric Transmission Rates

The identification failure and learning-impossibility finding of Proposition 1 persists when

agents are able to learn from message survival. As before, even slight uncertainty about

relative mutation rates completely precludes learning from distant sources. To see why, note

that as T grows, only a vanishing fraction of chains survive. When p1 6= p0, slightly changing

µ01/µ10 changes that fraction by orders of magnitude even though it will still be vanishing.

This crowds out the information about the original state that can be gleaned from survival,

which dies out over the sequence.7

We remark that other forms of uncertainty can also hamper learning. For example, agents

may have uncertainty about the average degree in the network. Even if p0 6= p1, as distance to

sources grows, survival rates of messages converge across states as messages are increasingly

likely to have mutated. Thus learning becomes increasingly dependent on knowing how

many chains of messages originated from original sources. In that case, uncertainty over the

network can preclude learning from survival. Our broader message is that when message

transmission is noisy, uncertainty about the communication environment can lead to an

identification problem and make learning impossible.

4.4 Alternatives to Full Bayesian Learning

Our analysis dispels the mystery of non-consensus by considering the impact of noisy com-

munication alone in an otherwise idealized model (i.e., with Bayesian learners, simple and

known networks, and a preponderance of communication). Our results suggest all the more

that one should expect failure of consensus in settings with bounded learners and imperfectly

known and complex networks. On the other hand, this leaves open the question of what the

most important bottleneck to learning might be in such settings.

One obvious possibility is that people may simply not communicate much on certain is-

sues, so beliefs never have a chance to converge. But what is the true bottleneck to learning

in the many important situations where communication is abundant? An explanation sug-

gested by our model is that the messages agents receive over social communication channels

7In particular, to see this (wlog) consider a case in which 1 > p1 > p0 > 0. Let Zµ01/µ10
(T, s) be the

probability that a signal survives T periods conditional on starting out as a signal s, given µ01/µ10. The key

observation is that Zπ(t, 0)/Zµ01/µ10−ε(T, 1) grows without bound as T grows, for any ε. Both probabilities

are tending to 0, but eventually they mix. The probabilities are strings of products of combinations of p1s

and p0s, and tilting that combination one way or the other eventually accumulates arbitrarily in terms of

relative probabilities as things are exponentiated. Even a small shift in the fraction of mutations completely

overturns the advantage of the starting state. Then tiny uncertainty about µ01/µ10 introduces much larger

swings in the survival rates than the starting states.
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are sufficiently uninformative that agents correctly update their beliefs relatively little and

by different amounts, depending on where they sit in the communication network. An alter-

native possibility is that agents fail to properly update beliefs despite the informativeness of

social communication.

Comparing these possibilities theoretically requires positing a model of bounded learning.

In Appendix B, we consider two forms of siimple bounded learning that are natural in the

context of our model. First, for any parameters of the communication and noise process,

consider a Bayesian learner who faces no uncertainty about those parameters. We show that,

for this Bayesian learner, the number of primary sources needed for learning as distances

grows large is the same as for the better of two types of bounded learners who only pay

attention to either (i) the average content of the messages received or (ii) the number of

messages received. This suggests that imperfect updating need not be a bottleneck for

learning in settings like ours with abundant messages.

5 Concluding Remarks

We introduced a benchmark model of social learning via relayed signals in the presence of

mutations and transmission failures. We showed that, even with a perfect understanding of

the transmission process, learning is challenging in that it requires an exponentially growing

number of original sources as the length of the chains over which information is relayed grows.

Moreover, the slightest uncertainty over relative mutation rates renders learning from distant

sources impossible regardless of the number of chains observed.

This finding rationalizes disagreement in networks and further suggests that forces which

lengthen chains of communication (e.g., certain forms of online communication) can severely

disrupt social learning, even if they increase the frequency of communication.

The difficulty of learning from distant sources naturally motivates learners to seek out

information from closer, trusted contacts, and to down-weight or ignore more distantly-

sourced information. We explore policies that can help agents learn from closer sources in

another paper, Jackson et al. (2022).
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Appendix A: Proofs

Proof of Lemma 1: We derive the expressions of X0, X1, which can also be deduced from

standard Markov chain results, but it may be useful for the reader to see the derivation. The

proof is by induction. We give the proof for X0, when the state is 0. The proof for X1 is

symmetric and the expression for X is a special case.

First, note that if t = 1 then this expression simplifies to 1 − µ01, which is exactly the

probability that the message has not mutated, and so this holds for t = 1.

Then for the induction step, supposing that the claimed expression is correct for t − 1,

we show it is correct for t.

The probability of matching the true state at t is the probability of not matching at t−1

times µ10 plus the probability of matching at t − 1 times 1 − µ01, which by the induction

assumption can be written as[
1− µ10 + µ01M

t−1

µ10 + µ01

]
µ10 +

[
µ10 + µ01M

t−1

µ10 + µ01

]
(1− µ01)

= µ10 +

[
−µ2

10 − µ01µ10M
t−1 + µ10 − µ10µ01 + µ01M

t−1 − µ2
01M

t−1

µ10 + µ01

]
= µ10 +

[
−µ2

10 + µ10 − µ10µ01 + µ01M
t−1(1− µ10 − µ01)

µ10 + µ01

]
=
µ10 + µ01M

t

µ10 + µ01

.
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as claimed.

Proof of Lemma 2:

Consider the case in which the true state is 0, as the other case is analogous.

The expected number of 0 messages is n(t)ptX0(t) while the expected number of 0 mes-

sages when the state is 1 is n(t)pt(1 − X1(t)). The difference in the expected number of 0

messages across states is

D(t) ≡ n(t)ptX0(t)− n(t)pt(1−X1(t)) = n(t)ptM t.

If the standard deviation of the number of 0 messages in both states divided by D(t) goes to

0, then by Chebychev’s inequality, the probability of seeing more than n(t)pt(1−X1(t))+D(t)
2

0 messages when the state is 1 goes to zero. On the other hand, the probability of seeing

fewer than this many 0 messages when the state is 0 goes to zero.

When the ratio of standard deviation to D(t) goes to infinity, the likelihood ratio between

both states is within 1−ε(t) on a 1−δ(t) measure of messages (say, according to the measure

when the state is 0), where ε, δ → 0. Therefore, there is no learning in the limit.

It is therefore enough to show that the ratio of standard deviation to D(t) goes to either

infinity or zero when n(t) is above or below the threshold, respectively. Now, the standard

deviation of the number of 0 messages in the 0 state divided by the amount above is

(X0(1−X0)n(t)pt)1/2

n(t)ptM t
=

(X0(1−X0))
1/2

(n(t)pt)1/2M t
.

Note that the numerator converges to a constant, and so this expression either goes to

0 or infinity depending on whether (n(t)pt)1/2M t goes to 0 or infinity, which depends on

whether (n(t)pM2)t goes to 0 or infinity.

The expressions for all the other standard deviations and differences are analogous.

Proof of Proposition 1:

We give the proof for the case in which ptn(t) → ∞. (With fewer paths there are even

fewer signals from which to learn.) The following lemma is straightforward (and so its proof

is omitted) but it useful.

Lemma 5 Consider a sequence of k ≤ m such that m→∞ and k
m
→ a. The maximizer of

zk(1− z)m−k is z(m, k) = k
m

, and

z(m, k)k(1− z(m, k))m−k

zk(1− z)m−k
→∞

for any z 6= a, the size of this ratio increases with the distance of z from a (as za(1− z)1−a

is strictly concave). Moreover, for any atomless and continuous probability measure G on z

that has connected support and includes a in its interior∫ a+ε
a−ε z

k(1− z)m−kdG(z)∫ 1

0
zk(1− z)m−kdG(z)

→ 1,

for any ε > 0.
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Via a standard calculation for the limiting distribution for a two-state Markov chain, the

steady state limit probability that the message is 1 is

µ01

µ01 + µ10

≡ ρ.

The probability that some sequence ends in a 1 conditional on survival, ρ and starting

in state ω = 1 is

ρ+ (1− ρ)M t.

The probability that some sequence ends in a 1 conditional on survival, ρ and starting

in state ω = 0 is

ρ(1−M t).

Similar calculations provide probabilities of ending in a 0.

The chance of observing k 1s, conditional on m sequences reaching the receiver, on µ01

and on the starting state being ω = 1 is then

Pk,m,t,ρ(1) =

(
m

k

)[
ρ+ (1− ρ)M t

]k [
(1− ρ)(1−M t)

]m−k
.

Then the chance of observing k 1s out of m sequences that reach the receiver conditional on

the starting state being ω = 0 is then

Pk,m,t,ρ(0) =

(
m

k

)[
ρ(1−M t)

]k [
(1− ρ) + ρM t

]m−k
.

First consider the case where ρ is known, and suppose the state is 1 (the argument for the

case where the state is 0 is analogous). As the number of signals grows large (keeping t fixed),
k

m−k →
µ01+µ10Mt

µ10−µ10Mt ≡ at,1 in probability. Suppose without loss of generality that µ01 ≥ µ10

so at,1 > 1 for all t. Now, the Bayesian’s posterior that the state is ω = 1 conditional upon

seeing k 1’s out of m sequences that reached the receiver

θPk,m,t,ρ(1)

θPk,m,t,ρ(1) + (1− θ)Pk,m,t,ρ(0)
,

Let kn and mn be the random number of 1’s and messages received respectively with n length

t chains. By Lemma 5,
Pkn,mn,t,ρ(0)

Pkn,mn,t,ρ(1)
→ 0 in probability as the number of signals n grow large,

so it follows that
θPkn,mn,t,ρ(1)

θPkn,mn,t,ρ(1) + (1− θ)Pkn,mn,t,ρ(0)
→ 1.

Therefore, since the agent can learn the true state with sufficiently many paths for any

given t, it follows that the agent can learn the true state as t → ∞ if n(t) grows quickly

enough.

16



Now we consider the case when ρ is unknown but follows an atomless distribution F with

connected support. A Bayesian’s posterior that the state is ω = 1 conditional upon seeing k

1’s out of m sequences that reached the receiver is

θ
∫
ρ
Pk,m,t,ρ(1)dF (ρ)

θ
∫
ρ
Pk,m,t,ρ(1)dF (ρ) + (1− θ)

∫
ρ
Pk,m,t,ρ(0)dF (ρ)

,

and so if we can show that
∫
ρ
Pk,m,t,ρ(1)dF (ρ)/

∫
ρ
Pk,m,t,ρ(0)dF (ρ) converges to one in prob-

ability, then we conclude the proof.

Given a true µ01
∗, µ∗10 such that

µ∗10
µ∗01

in the interior of the support of F , the realized k,m

will be such that k
m−k −

µ∗01+µ
∗
10M

t

µ∗10−µ∗10Mt = k
m−k −

ρ∗+(1−ρ∗)Mt

(1−ρ∗)−(1−ρ∗)Mt converges to 0 in probability, and
ρ∗+(1−ρ∗)Mt

(1−ρ∗)−(1−ρ∗)Mt → ρ∗

1−ρ∗ = a.

By the first part of Lemma 5, for any k,m, Pk,m,t,ρ(1) is maximized when ρ equals

ρ(t, k,m, 1) such that

ρ(t, k,m, 1) + (1− ρ(t, k,m, 1))M t =
k

m
,

and Pk,m,t,ρ(0) is maximized when ρ equals ρ(t, k,m, 0) such that

ρ(t, k,m, 0)(1−M t) =
k

m
.

ρ(t, k,m, 1) and ρ(t, k,m, 0) converge to each other, and to ρ∗, as well in probability. It

therefore follows from Lemma 5 that

plim

∫
ρ
Pk,m,t,ρ(1)dF (ρ)∫

ρ
Pk,m,t,ρ(0)dF (ρ)

= plim

∫ ρ(t,k,m,1)+ε
ρ(t,k,m,1)−ε Pk,m,t,ρ(1)dF (ρ)∫ ρ(t,k,m,0)+ε
ρ(t,k,m,0)−ε Pk,m,t,ρ(0)dF (ρ)

for any ε > 0.

Letting [l, h] be the support of ρ, note that (a) Pk,m,t,ρ(t,k,m,1)(1) = Pk,m,t,ρ(t,k,m,0)(0), and

(b) that d
dρ
Pk,m,t,ρ(1) evaluated at ρ′ and d

dρ
Pk,m,t,ρ(0) evaluated at ρ′′ are the same when

Pk,m,t,ρ′(1) = Pk,m,t,ρ′′(0). It follows that

Pk,m,t,ρ(t,k,m,1)+δ(1) = Pk,m,t,ρ(t,k,m,0)+δ(0)

for any δ ∈ R such that both ρ(t, k,m, 1)+δ and ρ(t, k,m, 0)+δ fall in (l, h). In particular, if

we let εt = 1
2

min{ρ(t, k,m, 1)− l, h− ρ(t, k,m, 0)} and if εt > 0, the intervals [ρ(t, k,m, 1)−
εt, ρ(t, k,m, 1) + εt] and [ρ(t, k,m, 0) − εt, ρ(t, k,m, 0) + εt] strictly lie in (l, h). So by the

earlier observation,∫ ρ(t,k,m,1)+εt

ρ(t,k,m,1)−εt
Pk,m,t,ρ(1)dF (ρ) =

∫ ρ(t,k,m,1)+εt

ρ(t,k,m,1)−εt
Pk,m,t,ρ(0)dF (ρ)
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Moreover plim εt = 1
2

min{ρ∗−l, h−ρ∗} > 0. Therefore, by the continuous mapping theorem,

plim

∫
ρ
Pk,m,t,ρ(1)dF (ρ)∫

ρ
Pk,m,t,ρ(0)dF (ρ)

= plim

∫ ρ(t,k,m,1)+εt
ρ(t,k,m,1)−εt Pk,m,t,ρ(1)dF (ρ)∫ ρ(t,k,m,0)+εt
µ01(t,k,m,0)−εt Pk,m,t,ρ(0)dF (ρ)

= 1,

which concludes the proof.

Proof of Lemma 3, Part 1:

For ease of notation, let P t
1S ≡ Pr(st 6= ∅|ω = 1) and P t

0S ≡ Pr(st 6= ∅|ω = 0). These are

the probabilities of signal survival to time t conditional on the first signal.

First we prove that
P t1S
P t0S
≥ p1

p0
, with strict inequality when µ < 1/2 and t > 1.

This is proven by induction. First, P 1
1S = p1 > p0 = P 1

0S. Next, let us show that
P t1S
P t0S
≥ p1

p0

given that P t−1
1S > P t−1

0S . Note that given the stationarity of the process, P t−1
1S = Pr(st 6=

∅|s1 = 1) and P t−1
0S = Pr(st 6= ∅|s1 = 0), and then we can write8 The first part

P t
1S = p1 [(1− µ)Pr(st 6= ∅|s1 = 1) + µPr(st 6= ∅|s1 = 0)] ,

and so then it follows that

P t
1S = p1(1− µ)P t−1

1S + p1µP
t−1
0S .

Then by the inductive step (P t−1
1S > P t−1

0S ) and so it follows that

P t
1S ≥ p1(1− µ)P t−1

0S + p1µP
t−1
1S ,

with strict inequality when µ < 1/2 and t > 1. Similarly,

P t
0S = p0(1− µ)P t−1

0S + p0µP
t−1
1S .

Therefore
P t
1S

P t
0S

≥
(
p1
p0

)
(1− µ)P t−1

0S + µP t−1
1S

(1− µ)P t−1
0S + µP t−1

1S

=
p1
p0
,

with strict inequality when µ < 1/2 and t > 1, as claimed.

Now we complete the proof of the first part of the lemma. Note that (from above)

P t
1S

P t
0S

=

(
p1
p0

)
(1− µ)P t−1

1S + µP t−1
0S

(1− µ)P t−1
0S + µP t−1

1S

.

Therefore,

P t
1S

P t
0S

=

(
p1
p0

)(
(1− µ)P t−1

0S + µP t−1
1S + (1− 2µ)(P t−1

1S − P
t−1
0S )

(1− µ)P t−1
0S + µP t−1

1S

)
,

8The starting state s0 is 1 in this calculation and so then there is a probability p that the signal survives

to the first period, and then the calculation inside the [·] handles the two possible values of the first period

signal and then the probability the signal survives to t if it has made it to the first period in the two possible

values it could have in the first period.
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and then since p1 > p0 and
P t−1
1S

P t−1
0S

≥ p1
p0

, with strict inequality when µ < 1/2 and t > 1, it

follows that

P t
1S

P t
0S

=

(
p1
p0

)(
1 + (1− 2µ)

P t−1
1S − P

t−1
0S

P t−1
0S + µ(P t−1

1S − P
t−1
0S

)

)
≥ p1
p0

(
1 + (1− 2µ)

(p1 − p0)
p0 + µ(p− p0)

)
,

with strict inequality when µ < 1/2 and t > 1 (and it directly follows that this expression

(z) is strictly larger than p1/p0 when µ < 1/2), as claimed.

The following result is useful in the proofs of the remaining parts of Lemma 3.

Lemma 6 Fix θ ∈ (0, 1), µ01 = µ10 = µ ∈ (0, 1/2], 0 < p0 ≤ p1 ≤ 1. For all t > 0,

Pr(st = 1|ω = 1) ≥ Pr(st = 0|ω = 1).

Moreover, either there exists T large enough such that

Pr(st = 1|ω = 0) ≥ Pr(st = 0|ω = 0) for all for all t ≥ T,

or

Pr(st = 1|ω = 0) < Pr(st = 0|ω = 0) for all t.

Finally, the sequence

Pr(st = 1|ω = 1)

min{Pr(st = 1|ω = 0), P r(st = 0|ω = 0)}

is bounded above.

Proof of Lemma 6:

The first claim is proven by induction:

Since µ ≤ 1/2, Pr(s1 = 1|ω = 1) ≥ Pr(s1 = 0|ω = 1). Suppose Pr(st = 1|ω = 1) ≥
Pr(st = 0|ω = 1). Note that,

Pr(st+1 = 1|ω = 1) = p1(1− µ)Pr(st = 1|ω = 1) + p0µPr(st = 0|ω = 1)

Pr(st+1 = 0|ω = 1) = p1µPr(st = 1|ω = 1) + p0(1− µ)Pr(st = 0|ω = 1).

The result then follows from the inductive hypothesis and the facts that p1 ≥ p0 and µ ≤ 1/2.

Next, to show the second claim in the lemma, note that

Pr(st+1 = 1|ω = 0) = p1(1− µ)Pr(st = 1|ω = 0) + p0µPr(st = 0|ω = 0)

Pr(st+1 = 0|ω = 0) = p1µPr(st = 1|ω = 0) + p0(1− µ)Pr(st = 0|ω = 0).

Then if Pr(st = 1|ω = 0) ≥ Pr(st = 0|ω = 0) for some t = T , the same will hold for all

t > T by a similar inductive proof. Otherwise Pr(st = 1|ω = 0) < Pr(st = 0|ω = 0) for all

t, and then the result holds directly.
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Finally, we show the third part of the claim. By the second part of this lemma, there are

two cases to consider. If Pr(st = 1|ω = 0) < Pr(st = 0|ω = 0) for all t. Then

Pr(st = 1|ω = 1)

min{Pr(st = 1|ω = 0), P r(st = 0|ω = 0)}
=
Pr(st = 1|ω = 1)

Pr(st = 1|ω = 0)

If instead there is a T such that for all t ≥ T , Pr(st = 1|ω = 0) ≥ Pr(st = 0|ω = 0), then

Pr(st = 1|ω = 1)

min{Pr(st = 1|ω = 0), P r(st = 0|ω = 0)}
=
Pr(st = 1|ω = 1)

Pr(st = 0|ω = 0)

=
p1(1− µ)Pr(st−1 = 1|ω = 1) + p0µPr(st−1 = 0|ω = 1)

p1µPr(st−1 = 1|ω = 0) + p0(1− µ)Pr(st−1 = 0|ω = 0)

≤ (p1(1− µ) + p0µ)Pr(st−1 = 1|ω = 1)

p1µPr(st−1 = 1|ω = 0) + p0(1− µ)Pr(st−1 = 0|ω = 0)

<
p1(1− µ) + p0µ

p1µ

Pr(st−1 = 1|ω = 1)

Pr(st−1 = 1|ω = 0)
,

where the second to last inequality uses the first part of this lemma. We can therefore handle

both cases simultaneously by showing that the sequence Pr(st=1|ω=1)
Pr(st=1|ω=0)

is bounded above.

To that end, note that

Pr(st = 1|ω = 0) ≥ Pr(st = 1|ω = 0, s1 = 1)Pr(s1 = 1|ω = 0)

= Pr(st−1 = 1|ω = 1)p0µ.

So,
Pr(st = 1|ω = 1)

Pr(st = 1|ω = 0)
≤ Pr(st = 1|ω = 1)

Pr(st−1 = 1|ω = 1)

1

p0µ
.

It then suffices to show that Pr(st = 1|ω = 1) ≤ Pr(st−1 = 1|ω = 1), since then from above

Pr(st = 1|ω = 1)

Pr(st = 1|ω = 0)
≤ 1

p0µ
,

which is finite given that p0 > 0 and µ > 0. To see that Pr(st = 1|ω = 1) ≤ Pr(st−1 = 1|ω = 1),

Pr(st = 1|ω = 1) = p1(1− µ)Pr(st = 1|s1 = 1) + p1µPr(st = 1|s1 = 0)

= p1(1− µ)Pr(st−1 = 1|ω = 1) + p1µPr(st−1 = 1|ω = 0)

≤ p1(1− µ)Pr(st−1 = 1|ω = 1) + p1µPr(st−1 = 1|ω = 1)

= p1Pr(st−1 = 1|ω = 1),

where the inequality follows from the first part of the lemma, establishing the claim.

Proof of Lemma 3, Part 2:

We show that limt→∞
P t1S
P t0S

= limt→∞
p1Pr(st−1=1|ω=1)+p0Pr(st−1=0|ω=1)
p1Pr(st−1=1|ω=0)+p0Pr(st−1=0|ω=0)

exists.

The sequence is bounded above by the first and last part of Lemma 6: it is bounded

above by either Pr(st=1|ω=1)
Pr(st=1|ω=0)

or Pr(st=1|ω=1)
Pr(st=0|ω=0)

, both of which are bounded above. Furthermore,

the sequence is bounded below by the first part of Lemma 3.
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To complete the proof that the limit exists, we show that the sequence is monotone. For

this, we will start by writing, rt, the tth term in the sequence, as Pr(st−1=1|ω=1)+`1Pr(st−1=0|ω=1)
Pr(st−1=1|ω=0)+`1Pr(st−1=0|ω=0)

,

where `1 = p0/p1. Now the t+ 1st is

rt+1 =
Pr(st = 1|ω = 1) + `1Pr(st = 0|ω = 1)

Pr(st = 1|ω = 0) + `1Pr(st = 0|ω = 0)

=
(p1(1− µ) + `1p1µ)Pr(st = 1|s1 = 1) + (p0µ+ `1p0(1− µ))Pr(st = 0|s1 = 1)

(p1(1− µ) + `1p1µ)Pr(st = 1|s1 = 0) + (p0µ+ `1p0(1− µ))Pr(st = 0|s1 = 0)

=
Pr(st−1 = 1|ω = 1) + `2Pr(st−1 = 0|ω = 1)

Pr(st−1 = 1|ω = 0) + `2Pr(st−1 = 0|ω = 0)
,

where `2 = p0
p1

µ+l(1−µ)
(1−µ)+lµ . Consider the sequence `t, where `t+1 = p0

p1

µ+`t(1−µ)
(1−µ)+`tµ and `1 = p0

p1
. Note

that `t is non-decreasing in t given that µ ≤ 1/2 and it is strictly increasing when µ < 1/2.

Iterating on the above logic

rt =
Pr(s1 = 1|ω = 1) + `t−1Pr(s1 = 0|ω = 1)

Pr(s1 = 1|ω = 0) + `t−1Pr(s1 = 0|ω = 0)
.

To see that rt is monotone in t, note that the sign of the derivative of rt with respect to `t
only depends on the sign of Pr(s1 = 0|ω = 1)Pr(s1 = 1|ω = 0)− Pr(s1 = 1|ω = 1)Pr(s1 =

0|ω = 0)), and so it is monotone given the monotonicity of `t in t.

Proof of Lemma 3, Part 3:

That Pr(ω = 1|st 6= ∅) ≥ θz
1+θ(z−1) for any t > 1, with strict inequality when µ < 1/2,

follows from Part 1 and Bayes rule (and it is evident from the proof that this lower bound is

not tight). Therefore, it remains to show that limt→∞ Pr(ω = 1|st 6= ∅) exists, a step which

is deferred to the proof of Part 4.

The fact that limt→∞ Pr(ω = 1|st 6= ∅) = θ
θ+(1−θ)/y < 1 follows from Part 2 and Bayes’

Rule.

Proof of Lemma 3, Part 4:

It suffices to show that limt→∞ Pr(ω = 1|st = 1) = limt→∞ Pr(ω = 1|st = 0), as this

implies that limt→∞ Pr(ω = 1|st 6= ∅) exists and has the same value. This limiting equality

between posterior distributions can equivalently be expressed in terms of likelihood ratios:

lim
t→∞

Pr(st = 1|ω = 0)

Pr(st = 1|ω = 1)
= lim

t→∞

Pr(st = 0|ω = 0)

Pr(st = 0|ω = 1)

⇐⇒ lim
t→∞

Pr(st = 1|st 6= ∅, ω = 0)

Pr(st = 1|st 6= ∅, ω = 1)
= lim

t→∞

Pr(st = 0|st 6= ∅, ω = 0)

Pr(st = 0|st 6= ∅, ω = 1)
. (3)

We show that

lim
t→∞

Pr(st = 1|st 6= ∅, ω = 0) = lim
t→∞

Pr(st = 1|st 6= ∅, ω = 1), (4)

since this implies that both sides of equation 3 are equal to 1.9

9Subtract each side of equation 4 from 1 before taking ratios to see that the right side of equation 3 is

also 1.
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Denote by S a sequence of signals that evolve according to our process, starting with

S0 = 1 and S ′ another (independent) sequence of signals with S ′0 = 0. Let τ = min{t|S ′t = 1},
where τ =∞ if S ′ is dropped at some step before mutating to signal 1, or if S ′t = 0 for all t.

In this notation, equation 4 can equivalently be expressed as: limt→∞ Pr(St = 1|St 6=
∅) = limt→∞ Pr(S

′
t = 1|S ′t 6= ∅). Note the following relationship between the two independent

paths:10

Pr(S ′t = 1|S ′t 6= ∅) =
t∑
i=1

Pr(S ′t = 1|S ′t 6= ∅, τ = i)Pr(τ = i|S ′t 6= ∅)

=
t∑
i=1

Pr(St−i = 1|St−i 6= ∅)Pr(τ = i|S ′t 6= ∅)

≡

(
t∑
i=1

Pr(St−i = 1|St−i 6= ∅)wti

)
, (5)

where wti = Pr(τ = i|S ′t 6= ∅).
The result then follows from the following three claims, to be proved:

1. For any ε > 0 and positive integer k, for all sufficiently large t,
∑t

i=t−k w
t
i < ε.

2. limt→∞ Pr(St = 1|St 6= ∅) exists.

3.
∑t

i=1w
t
i + wt∞ = 1. Moreover, wt∞ → 0 as t→∞, i.e., the probability that the signal

never mutated conditional on survival to t goes to 0 as t grows.

To see that these claims imply the result, note that by claim 1, most of the weight falls on

the first t−k terms of the sum in equation 5 for large enough t. By claim 2, for a large enough

k (growing slower than t), these first t− k terms will be close to limt→∞ Pr(St = 1|St 6= ∅),
and therefore by claim 3 the limiting weighted sum of these terms converges to this value as

well.

Claim 3 is clear, so we prove the other two.

First we prove claim 1. Note that pi0(1 − µ)i−1µ is the probability of survival with

no mutation through i − 1 and then survival with mutation at t = i, i.e., Pr(τ = i) =

pi0(1− µ)i−1µ. Second, let mi be number of mutations through time i. Obviously, Pr(S ′i 6=
∅) > Pr(S ′i 6= ∅ and mi = 1). Third, if survival were always at rate p0, then Pr(S ′i 6= ∅
and mi = 1) = ipi0(1 − µ)i−1µ. However, since survival likelihood immediately after the

first mutation, p, is strictly higher than p0 and mutations sometimes occur (note, we assume

µ > 0), Pr(S ′i 6= ∅ and mi = 1) > ipi0(1 − µ)i−1µ. Putting these observations together, we

have

lim
i→∞

Pr(τ = i)

Pr(S ′i 6= ∅)
< lim

i→∞

pi0(1− µ)i−1µ

ipi0(1− µ)i−1µ
= lim

i→∞

1

i
= 0, (6)

10Note that if τ > t, then the probability that S′t = 1 is 0.
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where, as noted earlier, the inequality arises from replacing Pr(S ′i 6= ∅) with a lower bound

on the probability of exactly one mutation occurring over the course of the first i periods,

and all the ways this could happen, and then noting that p0 < p1. Now

Pr(τ = i|S ′t 6= ∅) =
Pr(S ′t 6= ∅|τ = i)Pr(τ = i)

Pr(S ′t 6= ∅)

=
Pr(St−i 6= ∅)Pr(τ = i)

Pr(S ′t 6= ∅)

=
Pr(St−i 6= ∅)Pr(τ = i)

Pr(S ′t−i = 1)Pr(Si 6= ∅) + Pr(S ′t−i = 0)Pr(S ′i 6= ∅)

<
Pr(St−i 6= ∅)
Pr(S ′t−i 6= ∅)

Pr(τ = i)

Pr(S ′i 6= ∅)
,

where the inequality follows from the fact that Pr(Si 6= ∅) > Pr(S ′i 6= ∅), by Lemma 3, Part

1. Pr(St−i 6=∅)
Pr(S′t−i 6=∅)

is bounded by Lemma 3 Part 2 (as it has a limit), and Pr(τ=i)
Pr(S′i 6=∅)

can be made

arbitrarily small for large enough i by equation 6. Thus, for any δ and k we can find large

enough t for which wti < δ for i > t− k. Choosing δ = ε/k establishes claim 1.

Finally, we prove claim 2. The probability distribution of St is given by e′1A
t, where

A =

p1(1− µ) p1µ 0

p0µ p0(1− µ) 0

0 0 1


is the Markov transition matrix for S. Let B be the principal 2× 2 submatrix of A. By the

partitioned matrix multiplication formula, Pr(St = 1|St 6= ∅) =
e′1B

te1
e′1B

t1
. Since B is strictly

positive, the Perron-Frobenius theorem implies that this expression converges to the first

entry of eigenvector corresponding to the largest eigenvalue of B.

Proof of Lemma 4:

limt→∞
P t0S
P t1S

= r for some r < 1, by Lemma 3. Let rt be the tth term in the sequence.

Let m(t) be the number of surviving signals. By Chernoff bounds, it follows that

Pr(m(t) > n(t)P t
1s(1 + rt)/2|ω = 1)→ 1

and

Pr(m(t) < n(t)P t
1s(1 + rt)/2|ω = 0)→ 1

provided that n(t)P t
1s →∞. Given this separation, it is easy to the check that if n(t)P t

1s →
∞, the beliefs will converge to 0 or 1 in probability.

Next, note that if n(t)P t
1s → 0, then the expected number of surviving signals in either

state is 0, and that happens with the probability going to 1 by Chebychev, and so there is

no learning. So, the threshold is 1/P t
1s.

Note that survival lies between 1/pt1 and 1/pt0 and so

1/P t
1s =

1

(p− 1λ(t) + (1− λ(t))p0)t
.
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The fact that λ(t) converges to some λ then follows since this is a Markov chain and the

probability that it survives in any given period (the third state with st = ∅ is absorbing)

converges to a steady state distribution, which in this case lies between p1 and p0.

Appendix B: Full Bayesian Learning vs Learning Only

from Survival or Only from Content

In this section, we provide a bound on how much more likely a Bayesian agent using both

signal survival and message content is to guess the true state compared to agents who use

rules of thumb that account only for signal survival or only for average signal content.

Without loss of generality, we focus on the case in which p1 ≥ p0.

First, let us consider the case in which the learner has access to a single chain and needs

to predict the state based on the signal st ∈ {0, 1, ∅}. We consider four different ways in

which the learner might guess.

• A “Bayesian agent,” B, guesses the most likely state conditional on both signal survival

and signal content.

• A “survival rule-of-thumb agent,” S, guesses 1 if a signal is received and guesses 0 if

no signal is received.

• A “content rule-of-thumb agent,” C, guesses 1 if signal 1 is received, 0 if signal 0 is

received, and guesses in favor of the prior if no message is received (flipping a coin if

θ = 1/2).

• A “naive agent,” N , always guesses in favor of the prior.

S,C,N are collectively referred to as “limited learners” since they make their guess based

on less information than is available.

Proposition 2 Suppose that 1 ≥ p1 ≥ p0 ≥ 0 and µ01 = µ10 = µ ∈ [0, 1/2]. The probability

that a Bayesian agent is correct in guessing the state is at most 4
3

higher than the best

limited learner when t = 1, and at most 3
2

higher than the best limited learner for all t > 1.11

Moreover, as t grows, this upper bound converges to 1.

Proposition 2 implies that, when word-of-mouth chains are long, a belief-updating strat-

egy that uses only message survival or only message content is approximately equivalent to

one that uses all available information, no matter what the parameters and no matter what

the realized state.12

11We conjecture that the bound is 4
3 for any t > 1.

12This is obvious when µ = 1/2, in which case message content contains no information, or when p0 = p1,

in which case message survival contains no information.

24



Next, suppose that the learner observes multiple chains. In this context, define “C” to

be an agent who guesses 1 whenever the fraction of 1 messages compared to 0 messages is

above a threshold, and define “S” to be the an agent who guesses 1 whenever the number

of messages that survive is above or below a threshold. These thresholds are the conditional

Bayesian ones, but these agents only consider one aspect of the information available.

It is difficult to give tight bounds on the relative performance of the Bayesian agent

and the best of the limited learners when there are many sequences. However, we establish

limiting results. In particular, everywhere in the parameter space, the threshold for learning

for agent B is the same as for one of the limited learners. Thus, there is no number of starting

messages for which a Bayesian agent can learn but none of the naive agents can. Indeed,

for large t full learning can be obtained from just one dimension, and we get the following

result.

Proposition 3 For any θ, p0, p1 ∈ [0, 1] and µ01 = µ10 = µ ∈ [0, 1
2
], the threshold for

learning is the same for B as it is for the better of C or S.

The next lemma is useful in the proof of Proposition 2.

Let P t
1 (P t

0) denote the Bayesian posterior probability that the state is 1 conditional

upon a signal being received at time t and being 1 (0). Similarly, let P t
∅ (P t

S) denote the

Bayesian posterior probability that the state is 1 conditional upon no signal (some signal)

being received at time t.

Lemma 7 If p1 > p0, then P t
1 ≥ P t

0 and P t
1 ≥ P t

∅.

Proof of Lemma 7

Let st denote the state of the signal at period t. That P t
1 ≥ P t

0 holds when t = 1 is easy

to check from Bayes rule, given that p1 > p0 and µ ≤ 1/2. Now suppose P t
1 ≥ P t

0 for some

t. Then by the law of total probability, it follows that

P t+1
1 = Pr(st = 0|st+1 = 1)P t

0 + Pr(st = 1|st+1 = 1)P t
1

=
p0µPr(s

t = 0)

p0µPr(st = 0) + p1(1− µ)Pr(st = 1)
P t
0 +

p1(1− µ)Pr(st = 1)

p0µPr(st = 0) + p1(1− µ)Pr(st = 1)
P t
1

Similarly,

P t+1
0 =

p0(1− µ)Pr(st = 0)

p0(1− µ)Pr(st = 0) + p1µPr(st = 1)
P t
0 +

p1µPr(s
t = 1)

p0(1− µ)Pr(st = 0) + p1µPr(st = 1)
P t
1

Since P t
1 ≥ P t

0 by the inductive hypothesis, it suffices to show that

p1(1− µ)Pr(st = 1)

p0µPr(st = 0) + p1(1− µ)Pr(st = 1)
≥ p1µPr(s

t = 1)

p0(1− µ)Pr(st = 0) + p1µPr(st = 1)
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i.e., that
1

1 + p0
p1

Pr(st=0)
Pr(st=1)

µ
1−µ

≥ 1

1 + p0
p1

Pr(st=0)
Pr(st=1)

1−µ
µ

which follows, since µ ≤ 1− µ.

To see that P t
1 ≥ P t

∅, note that it suffices to prove that P t
S ≥ P t

∅, since P t
S is a convex

combination of P t
1 and P t

0, and we just proved P t
1 ≥ P t

0. Now the statement follows directly

from part 1 of Proposition 3.

Proof of Proposition 2:

First, note that we can focus on the case in which p1 6= p0 as otherwise there is nothing

to be learned from signal survival, and agent C does as well as B. Without loss of generality

we take p1 > p0. Similarly, if µ = 1/2, then all learning is from survival and S does as well

as B, and so we can take µ < 1/2.

Note that by Lemma 7, P t
1 ≥ P t

0 and P t
1 ≥ P t

∅. In order for B to do strictly better in

expectation than the other agents, it must be that P t
1 > 1/2 and at least one of P t

0 and P t
∅

are less than 1/2. To see this note that if all three are on the same side of 1/2, then they

must lie on the same side as the prior.13 If θ 6= 1/2 then N gets the same payoff as B. If

θ = 1/2, then for all three to lie on the same side of the prior it must be that p1 = p0, in

which case there is nothing learned from survival and C does as well as B in expectation.

Thus, P t
1 > 1/2 and at least one of P t

0 and P t
∅ are less than 1/2. If it is just P t

∅ that is less

than 1/2, then S guesses the same as B (or equivalently in expected payoff terms). Thus,

we need P t
0 < 1/2 to have a difference.

If is just P t
0 that is less than 1/2, then C guesses the same as B except if θ ≤ 1/2. But

for such a θ, it must be that P t
∅ ≤ 1/2 and so C guesses as well as B.

So, consider the case in which P t
1 > 1/2 and P t

0 < 1/2 and P t
∅ < 1/2. For C to guess

differently than B, it must be that θ ≥ 1/2.

We can compute the expected payoff’s for the three most relevant agents for this remain-

ing case (we ignore N now, since in these conditions it is dominated by one of the others)

for a given (p1, p0, µ, θ) satisfying the above constraints.

Letting UB, UC , US be the expected payoffs of agents B,C14 and S respectively, it follows

that

UB = Pr(st = 1)P t
1 + Pr(st = 0)(1− P t

0) + (1− Pr(st = 1)− Pr(st = 0))(1− P t
∅)

UC = Pr(st = 1)P t
1 + Pr(st = 0)(1− P t

0) + (1− Pr(st = 1)− Pr(st = 0))P t
∅

US = Pr(st = 1)P t
1 + Pr(st = 0)P t

0 + (1− Pr(st = 1)− Pr(st = 0))(1− P t
∅)

13They cover three disjoint events whose union is all possibilities, and so the overall probability of a 1 is a

convex combination of these conditionals, and so it is impossible to have them all weakly and some strictly

greater (or all weakly and some strictly less) than the prior.
14C has expected payoff UC = Pr(st = 1)P t1 + Pr(st = 0)(1 − P t0) + (1 − Pr(st = 1) − Pr(st =

0))
(
Iθ>1/2P

t
∅ + Iθ=1/21/2

)
. The expression in the main text is obtained by noting that the worst ratio

for this compared to B will be in cases for which θ > 1/2
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First, note that if p0 < 1 and µ > 0, then as t → ∞, then Pr(st = ∅) → 1 and P∅ → 1/2,

in which case the ratio of B to either of these goes to 1. If p0 < 1 and µ = 0, then B does

as well as S for every t. If p1 = p0 = 1, then B does as well as C for every t. These facts

together establish the last claim in the proposition that as t→∞, the ratio UB
max{US ,UC}

→ 1.

That the ratio is bounded above by 3/2 can be seen as follows. Since θ ≥ 1/2 and p1 > p0,

it follows that

Pr(st = 1) ≥ Pr(st = 0), P t
1 ≥ (1− P t

0), and so Pr(st = 1)P t
1 ≥ Pr(st = 0)(1− P t

0).

Then if Pr(st = 0)(1 − P t
0) ≤ (1 − Pr(st = 1) − Pr(st = 0))(1 − P t

∅) it follows that

US ≥ UB2/3. If Pr(st = 0)(1− P t
0) ≥ (1− Pr(st = 1)− Pr(st = 0))(1− P t

∅) then it follows

that UC ≥ UB2/3.

To complete the proof, we compute

max
p1,p0,θ,µ∈[0,1]

UB
max{US, UC}

.

for t = 1. We can rewrite the payoffs of agents B, S and C in the case P 1
1 > 1/2 and

P 1
0 < 1/2 and P 1

∅ < 1/2 as follows:

UB = θp1(1− µ) + (1− θ)(1− p0µ)

UC = θ(1− p1µ) + (1− θ)p0(1− µ)

US = θp1 + (1− θ)(1− p0)

where

θp1µ ≤ p0(1− θ)(1− µ) (7)

θ(1− p1) ≤ (1− θ)(1− p0) (8)

θ ≥ 1/2 (9)

µ ≤ 1/2 (10)

p1 ≥ p0 (11)

p1, p0, µ, θ ∈ [0, 1]. (12)

Case 1: US ≤ UC .

This condition can be rewritten as

θ(p1µ+ (p1 − 1)) ≤ (1− θ)(p0(1− µ) + (p0 − 1)) (13)

The program with this additional constraint can be written as

max
p1,p0,θ,µ satisfy 7-13

UB
UC
≡ max

p1,p0,θ,µ satisfy 7-13

θp1(1− µ) + (1− θ)(1− p0µ)

θ(1− p1µ) + (1− θ)p0(1− µ)

= max
p1,p0,θ,µ satisfy 7-13

θp1 + (1− θ)− µ(θp1 + (1− θ)p0)
θ + (1− θ)p0 − µ(θp1 + (1− θ)p0)
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≤ max
p1,p0,θ,µ satisfy 7-13

θ + (1− θ)2p0 − 2µ(θp1 + (1− θ)p0)
θ + (1− θ)p0 − µ(θp1 + (1− θ)p0)

where the inequality is from rearranging constraint 13, as θp1 + (1− θ) ≤ θ + (1− θ)2p0 −
µ(θp1 + (1− θ)p0), and plugging this into the numerator. It is easily verified that the above

ratio is decreasing in µ for any values of the remaining parameters 15. Moreover, reducing

µ to 0 only relaxes constraints 7, 10 and 13, and leaves the other constraints unaffected.

Therefore,

max
p1,p0,θ,µ satisfy 7-13

UB
UC
≤ max

p1,p0,θ satisfy 8-13

θ + (1− θ)2p0
θ + (1− θ)p0

It is clear that smaller values of θ increase this ratio, and by constraint 9, the smallest

value of θ is 1
2
. But while reducing θ down to 1

2
for given p1 and p0 relaxes constraint 8,

doing so may violate constraint 13. We therefore separately consider the cases where either

13 or 9 bind, since at least one of them must at the optimum.

Subcase 1: 13 is satisfied with equality, i.e., θ(1− p1) = (1− θ)(1− 2p0). Plugging this

in, the objective then becomes 2 1+θ(p1−1)
1+θ(p1−1)+θ , which is decreasing in θ, so it is optimal to set

θ = 1
2
. The objective is then 21+p1

2+p1
≤ 4/3. Note that at p1 = 1, p0 = 1

2
, θ = 1

2
, µ = 0, UB

UC
= 4

3
,

so this upper bound is tight.

Subcase 2: θ = 1/2. Then

UB
UC

=
p1 + 1− µ(p1 + p0)

p0 + 1− µ(p1 + p0)
,

which is weakly increasing in µ by constraint 11. Constraint 13 can be rearranged to be

µ ≤ 2p0 − p1
p1 + p0

,

which, first, implies that
UB
UC
≤ 2(p1 − p0) + 1

(p1 − p0) + 1
,

and second, along with the condition that µ ≥ 0, implies that

p0 ≥
p1
2
.

Since 2(p1−p0)+1
(p1−p0)+1

is decreasing in p0, this expression is maximized under the given constraints

when p0 = p1
2

. Therefore, UB
UC
≤ p1+1

p1
2
+1

, which is maximized when p1 = 1 and equals 4/3.

Case 2: US ≥ UC . The new constraint is

θ(p1µ+ (p1 − 1)) ≥ (1− θ)(p0(1− µ) + (p0 − 1)), (14)

and the relevant maximization program is

15 d
dx

A−2x
B−x ≤ 0 if A ≤ 2B and A,B > 0.
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max
p1,p0,θ,µ satisfy 8-12, 14

UB
US
≡ max

p1,p0,θ,µ satisfy 8-12, 14

θp1(1− µ) + (1− θ)(1− p0µ)

θp1 + (1− θ)(1− p0)
.

Notice that the ratio θp1(1−µ)+(1−θ)(1−p0µ)
θp1+(1−θ)(1−p0) is linear and decreasing in µ, and the constraints

are linear in µ as well. Constraint 7 only places an upper bound on µ, so it is not relevant

in pinning down this value at the optimum. On the other hand, constraint 14, which can be

rewritten as

2p0(1− θ)− p1θ − (1− 2θ) ≤ (p1θ + p0(1− θ))µ

and the constraint that µ ≥ 0 are relevant. There are two cases:

Subcase 1: 2p0(1− θ)− p1θ − (1− 2θ) ≥ 0, µ = 2p0(1−θ)−p1θ−(1−2θ)
p1θ+p0(1−θ) .

Then

UB
US

=
θp1 + (1− θ)− µ(θp1 + (1− θ)p0)

θp1 + (1− θ)− (1− θ)p0

=
θp1 + (1− θ)− 2(1− θ)p0 + p1θ + (1− 2θ)

θp1 + (1− θ)− (1− θ)p0

=
2θp1 + (2− 3θ)− 2(1− θ)p0
θp1 + (1− θ)− (1− θ)p0

= 2
θp1 + (1− 3

2
θ)− (1− θ)p0

θp1 + (1− θ)− (1− θ)p0

Clearly, the ratio is decreasing in θ, and moreover, decreasing θ only relaxes constraints 7

and 8. Therefore, constraint 9 binds and θ = 1
2

at the optimum, so

UB
US

= 2
p1 + 1

2
− p0

p1 + 1− p0
Since µ = 2p0−p1

p1+p0
at θ = 1

2
, constraints 7 and 8 reduce to just p1 ≥ p0. Since the ratio is

increasing in p1 − p0, the only binding constraint is that µ ≥ 0, i.e., 2p0 ≥ p1. Therefore at

the optimum, p1 = 1, p0 = 1
2
, µ = 0, θ = 1

2
, and UB

US
= 4

3
.

Subcase 2: 2p0(1− θ)− p1θ− (1− 2θ) ≤ 0, µ = 0. In this case, the problem reduces to

max
p1,p0,θ, satisfy 8,9,11, 12, 14

θp1 + (1− θ)
θp1 + (1− θ)(1− p0)

,

which is decreasing in θ. Now

2p0(1− θ)− p1θ − (1− 2θ) ≤ 0

⇐⇒ θ(2− 2p0 − p1) ≤ 1− 2p0

Suppose 2− 2p0 − p1 < 0. Since 1− 2p0 ≤ 1− 2p0 + (1− p1) = 2− 2p0 − p1 < 0, it follows

that θ(2−2p0−p1) ≥ θ(1−2p0) ≥ 1−2p0. Therefore, the only way to satisfy the constraint

is if p1 = 1 and θ = 1, in which case UB
US

= 1.

29



If 2− 2p0− p1 ≥ 0, then θ = 1
2

at the optimum, and so the constraint in this sub-subcase

becomes 2p0 ≤ p1, while the objective function is p1+1
p1+1−p0 . This constraint binds at the

optimum and again the optimal value is 4
3

at p1 = 1 and p0 = 1
2
.

The next lemma is useful in the proof of the second part of Proposition 3.

Lemma 8 Let p0 = p1 and suppose a Bayesian agent with prior θ on the state being 1

observes m signals of which k are 1s. Then the agent’s posterior that the state is 1 is

θX1(t)
k(1−X1(t))

m−k

θX1(t)k(1−X1(t))m−k + (1− θ)(1−X0(t))kX0(t)m−k
.

The proof is direct and omitted.

Proof of Proposition 3 :

We proceed by cases for different values of the parameters. We concentrate on situations

in which µ < 1/2 since if µ = 1/2 then content is completely uninformative and the result is

direct.

Case 1: µ = 0. Suppose without loss of generality that p0 ≤ p1. Any signal that reaches

the agent is perfectly informative of the state, so a threshold for learning for agents B and

C is the threshold for at least one signal to survive, which (following the logic of the proofs

above) is 1
pt1

.

Case 2: p1 = p0 and µ > 0. By Proposition 2, the threshold for learning for agent B is
1

pt1(1−2µ)2t
. In this case there is no information from signal survival, and by Lemma 8, agent

B’s posterior is the same as agent C’s posterior. Therefore, agent C has the same threshold

for learning as B.

Case 3: p0 6= p1 and µ > 0. Without loss of generality let p1 > p0. Then τ(t) = 1
P t1S

is a

threshold for learning for an agent conditioning only on signal survival, as shown in the proof

of Lemma 4. Let b(t) denote the beliefs of agent B after observing the outcome of n(t) original

sources of information sent along chains of depth t. Since agent B conditions on survival

and signal content, plim b(t)→ 1 or 0 whenever n(t)/τ(t)→∞. When n(t)/τ(t)→ 0, then

the probability of even a single signal surviving to reach the agent approaches 0. This holds

regardless of the starting state by Lemma 3 part 2, so plim b(t) → θ. Therefore, agent B

and S have the same thresholds for learning in this case.16.

16Strictly speaking, we only showed that they share a common threshold, but it is easy to see that being

a threshold for learning for B, for S or for neither partitions the space of functions on N→ N.
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