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Abstract

Infectious diseases, ideas, new products, and other “infectants” spread in

epidemic fashion through social contact. The Covid-19 pandemic, the prolifer-

ation of “fake news,” and the rise of antibiotic resistance have thrust economic

epidemiology into the forefront of public-policy debate and re-invigorated the

field. Focusing for concreteness on disease-causing pathogens, this paper pro-

vides a taxonomy of economic-epidemic models, emphasizing both the biology /

immunology of the disease and the economics of the social context. An economic

epidemic is one whose diffusion through the agent population is generated by

agents’ endogenous behavior. I highlight properties of the Nash-equilibrium epi-

demic trajectory and discuss ways in which public-health authorities can change

the game for the better, (i) by imposing restrictions on agent activity to reduce

the harm done during a viral outbreak and (ii) by enabling diagnostic-informed

interventions to slow or even reverse the rise of antibiotic resistance.
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The spring of 2020 will long be remembered for the loss of life and widespread

economic disruption due to Covid-19, the disease caused by the novel coronavirus

SARS-CoV2. Yet something constructive came out of those awful months: many

economists discovered infectious-disease epidemiology. The volume of new work was

so great that Covid Economics, an online journal of the Centre for Economic Policy

Research launched in April 2020, published twelve issues in May alone. Avinash Dixit,

a renowned economic theorist, wittily remarked: “If any pandemic spread faster than

Covid-19, it is that of research about Covid-19” (Dixit 2020).1

In fact, this was the second wave of infectious interest among economists in in-

fectious disease. The first came in the 1990s, motivated by the global HIV/AIDS

pandemic and adding an economic dimension to the classic epidemiological models

used to chart the course of a viral outbreak. Because HIV spreads primarily through

sexual intercourse, people’s decisions around sex clearly impact HIV’s spread. Geoffard

and Philipson (1996, 1997), Kremer (1996), and others therefore argued that the trans-

mission rate of the virus needed to be treated as a time-varying endogenous variable,

derived as a Nash-equilibrium outcome of a dynamic game.

The new generation of economists studying SARS-CoV2 fits the same basic mold

but, much like a superbug returning with new genetic machinery, today’s economic

epidemiologists come with new tools and perspectives drawn from other subfields of

economics. The intellectual connectedness between economic epidemiology and other

subfields was readily apparent in the various online workshops that sprung up in the

virus’ wake. For instance, the Covid-19 Search and Matching Workshop series (hosted

by the labor economist Simon Mongey) had “an emphasis on understanding how the

economics of search and matching models can be useful for understanding economic

and virological aspects of the coronavirus epidemic.”

Of course, viruses aren’t the only things that spread infectiously, and SARS-CoV2

isn’t the only parasite currently burdening our society. False information and hate-

ful beliefs are colonizing our minds, spreading much like viruses but accelerated by

social-media platforms and amplified by partisan outlets and foreign adversaries. In-

terestingly, the 1990s also saw the first substantial wave of interest in this other form of

infection. Social-learning models emerged in which infectious behavior played a central

1After the National Bureau of Economic Research (NBER) released more than a dozen
pandemic-related working papers on April 13th, the MIT economist Jonathan Parker
quipped, “Do we need to flatten the curve so we don’t exceed NBER WP capacity?”
(https://twitter.com/ProfJAParker/status/1249739129962876928).
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role, most notably Bikhchandani et al. (1992) and Banerjee (1992) on “information

cascades / herding” and Banerjee (1993) on “rumors.” New work has evolved these

foundational early models in directions that draw even closer parallels with infectious-

disease epidemiology, for instance, by re-framing social learning in an epidemic context

(McAdams and Song 2020a) and highlighting the possibility of mutation and selection

during an information outbreak (Jackson et al. 2018).

The general topic of economic infection intersects with enormous literatures in sev-

eral fields, from parasitology and public health (global pandemics, antibiotic resistance,

evolution of virulence) to finance and information systems (information diffusion, me-

dia). Rather than attempting to provide a comprehensive review, I have decided to

focus on two central thematic questions: how an economic epidemic unfolds over time

and whether economic infectants can “survive” in the long run. Moreover, I restrict

attention here to epidemics of biological pathogens—leaving information epidemics as

fertile ground for a future review.

I focus here on recent developments, but credit is due to the handful of economists

who pushed economic epidemiology forward during the 2000s and 2010s,2 a time when

most economists showed little interest in the field. A steady trickle of notable empirical

contributions appeared in leading economics outlets (e.g., Lakdawalla et al. (2006),

Adda (2016), Chan et al. (2016), Greenwood et al. (2019)) but, with a few exceptions

(e.g., Auld (2003)), the best new theoretical work by economists found its home in

biology journals (e.g., Chen (2004, 2006, 2012), Chen and Toxvaerd (2014)) or remained

unpublished for years (e.g., Rowthorn and Toxvaerd (2012)). Fortunately, theoretical

biology was a welcoming space for economic theorists, as mathematical epidemiologists

and evolutionary ecologists had already embraced game-theoretic methods; see e.g.,

Bauch et al. (2003), Bauch and Earn (2004), Cressman et al. (2004), and Reluga

(2010, 2013). What they did in those years, economists and biologists together, laid

the groundwork for the blossoming of economic epidemiology that we see today.

The rest of the paper is organized as follows. Section 1 provides a taxonomy of

economic-epidemic models, based on the immunology of infection, manner of trans-

mission, agent decision-making, and economic impacts of agent behavior. Section 2

discusses key features of the equilibrium epidemic trajectory, accounting for agents’

behavioral response. Section 3 then examines “lockdown policies” that restrict agents’

ability to remain socially active. Section 4 concludes by exploring the possibility of

2Useful surveys include Philipson (2000), Gersovitz (2011), and Manfredi and D’Onofrio (2013).
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eradicating a disease-causing pathogen through treatment (Section 4.1) and of eradi-

cating the antibiotic-resistant strains of a pathogen—thereby restoring the effectiveness

of existing antibiotics—through diagnostic-informed interventions (Section 4.2).

1 A taxonomy of economic-epidemic models

This section provides a taxonomy of economic-epidemiological models of a viral epi-

demic, categorizing these models along four main dimensions: immunology; trans-

mission; agent decision-making; and economic impacts. Along the way, I introduce

notation and preliminary analysis used throughout the rest of the paper.

1.1 Immunology

The epidemiological dynamics of infection hinge on how the virus interacts with the

host immune system. Is it possible to recover from infection? If so, does recovery

confer subsequent immunity from re-infection? Does transmission begin immediately

after infection? How about harmful symptoms? Is it possible to spread the virus

without showing any symptoms? Is infection deadly? Are some hosts more prone

to be infected, experience symptoms, transmit the virus, or die? Because there are

so many possibilities, there is no single benchmark model of a viral epidemic. There

is rather an array of benchmark models, what I will refer to as the “SI-X models.”3

See Hethcote et al. (2002) for an epidemiological review and Avery et al. (2020) for a

useful critical survey of early models of the SARS-CoV-2 epidemic from an economic

perspective.

SI model. The simplest variation is the “Susceptible-Infected (SI) model.” A pathogen

circulates among a unit-mass population of hosts, each of whom is either uninfected

(i.e., “susceptible,” state S) or infected (state I) at each point in time t. Let S(t) and

I(t) be the mass of susceptible and infected agents at time t. Each susceptible host

becomes infected upon meeting an infected host, with such meetings occurring at rate

3These models build on an intellectual foundation laid over a century ago by Ronald Ross and Hilda
Hudson (Ross 1916, Ross and Hudson 1917) and further systematized by Kermack and McKendrick
(1927). For more on the history of the theory of epidemics, see Serfling (1952) and the citation tree
on Tim Reluga’s website (http://personal.psu.edu/tcr2/post20150624.html).

4



βI(t), where β > 0 is the “transmission rate.”4

In the SI model, hosts never recover from infection but may5 be born into the

susceptible state and may die due to infection and/or for other reasons. In the simplest

case when the host population is fixed, epidemic dynamics are characterized by the

differential equation

I ′(t) = βI(t)S(t) (1)

and the adding-up condition S(t) + I(t) = 1. In this case, everyone in the population

will eventually be infected. More generally, suppose that there is an equal flow z ≥ 0

of births and deaths across the population, and assume for simplicity that each host

dies at constant rate z. Equation (1) then becomes I ′(t) = βI(t)S(t)− zI(t), and the

steady-state mass of infection I∞ ≡ limt→∞ I(t) = 1− z
β
.

What if, in addition, infected hosts die at some rate x > 0? The host population,

typically denoted N(t) = S(t) + I(t), is no longer fixed:

I ′(t) = βI(t)S(t)− (z + x)I(t) (2)

N ′(t) = z − z(S(t) + I(t))− xI(t) (3)

For simplicity, I henceforth focus on models with a fixed host population, an assumption

that is most appropriate when the epidemic is fast-moving and the disease is not deadly.

SIRS/SIR/SIS model. Suppose next that infected hosts recover at rate γ > 0

and, after recovery, are initially immune but lose their immunity at some rate ι ≥ 0,

after which they become susceptible to re-infection. In addition to the susceptible and

infected states, let R denote the “recovered with acquired immunity” state and let

R(t) denote the mass of hosts in this state. The special case with permanent immunity

(ι = 0) is called the “SIR model,” while that with no immunity (ι = ∞) is the “SIS

model.” The more general case spanning both possibilities is the “SIRS model.”

Epidemic dynamics in the SIRS model (with a fixed host population) are governed

4If each host meets another randomly-selected host at rate β, then each susceptible host meets
an infected host at rate βI(t). Note that such “meetings” corresponds to exposure plus successful
infection. If a susceptible person exposed to the virus only becomes infected with probability y ∈ (0, 1),

then the rate of infection for susceptible agents is β̂I(t), where β̂ = βy.
5If transmission occurs mainly within a single age cohort (as might approximately be the case, say,

for sexually-transmitted diseases), then the relevant host population consists of all those in the same
age cohort, with death but no birth.

5



by the following system of differential equations

S ′(t) = −βI(t)S(t) + ιR(t) (4)

I ′(t) = βI(t)S(t)− γI(t) (5)

plus the adding-up condition S(t) + I(t) +R(t) = 1.

Each infected person on average exposes R0 = βL others during the course of their

infection, where L = 1/γ is average for length of time until recovery. R0 (pronounced

R-naught) is the pathogen’s “basic reproduction number.” An epidemic with R0 ≤ 1

is self-extinguishing, the prevalence of infection falling over time toward zero. By

contrast, an epidemic with R0 > 1 grows explosively and, so long as ι > 0, persists

with long-run steady state prevalence of infection I∞ = 1−γ/β
1+ι/γ

.6

In the SIR model, equation (4) simplifies to S ′(t) = −βI(t)S(t). When R0 > 1, the

prevalence of infection increases until the number of previously infected hosts 1− S(t)

reaches 1 − γ/β, the level required for “herd immunity.” More hosts become infected

after that point, but at a decreasing rate, and some escape infection entirely. The

fraction of hosts who are eventually infected is known as the “attack rate” and is

always less than one; see Brauer et al. (2012) and Katriel and Stone (2012).

In the SIS model, equation (4) simplifies to S ′(t) = −βI(t)S(t)+γI(t). When R0 >

1, the prevalence of infection increases monotonically from approximately zero (when

the pathogen first enters the host population) to a steady-state level I∞ ≡ 1− γ0/β.

SCIRS/SCIR/SCIS model. Many bacterial pathogens colonize hosts for an ex-

tended period of time, an asymptomatic infection phase referred to as “carriage”

(C) during which they may also be transmitted to new hosts.7 For instance, enteric

pathogens are transmitted through feces, whether or not they are currently causing

harmful symptoms. Some viruses, including SARS-CoV-2 and HIV, can also transmit

from carriage. To avoid confusion, I refer to a pathogen as “colonizing” its host while

in carriage and “infecting” the host while causing symptomatic infection.

Suppose for simplicity that the transmission rate β and recovery rate γ are the

same during carriage and infection, and let ψ > 0 be the rate at which the pathogen

6In the SIRS model, the system oscillates around this steady state while converging toward it.
Other more complex variations may never reach a steady state (Hethcote et al, 2002).

7For pathogens that are unable to transmit during an initial quiescent phase, the SIRS model is
typically extended to include a non-transmitting “exposed” state (E) prior to infection.
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proceeds from carriage to infection. All other variables and parameters are the same

as in the SIRS model.

Epidemic dynamics are governed by the following system:

S ′(t) = −β(C(t) + I(t))S(t) + ιR(t) (6)

C ′(t) = β(C(t) + I(t))S(t)− (ψ + γ)C(t) (7)

I ′(t) = ψC(t)− γI(t) (8)

plus the adding-up condition S(t) + C(t) + I(t) +R(t) = 1.

From an economics point of view, it is useful to divide the recovered state R into

two substates: RC , for those who recovered most recently from carriage (without expe-

riencing any symptoms); and RI , for those who recovered from symptomatic infection.

Note that R′C(t) = γC(t)− ιR′C(t) and R′I(t) = γI(t)− ιR′I(t).
The SCIRS model differs qualitatively from the others discussed so far, in that hosts

do not immediately observe when they have been colonized. For instance, consider the

special case of the “SCIR model” with permanent immunity after recovery. An agent

who has not yet experienced disease by time t might currently be (a) susceptible (state

S), (b) colonized (state C), or (c) recovered from carriage (substate RC). On the other

hand, agents know when they begin to experience disease (state I) and when they

recover from disease (substate RI).

Absent diagnostic testing, the epidemiological states {S,C,RC} constitute an in-

formation set, referred to as “not-yet-sick” and denoted by N , with S(t)+C(t)+RC(t)

being the mass of not-yet-sick agents. For each state (or “health status”) h ∈ N , let

ph(t) denote agents’ belief about the likelihood that their health status is h, conditional

on being not-yet-sick. By Bayes’ Rule, ph(t) = h(t)
S(t)+C(t)+RC(t)

.8

Agent heterogeneity. Agents naturally differ in many ways that impact infection

and transmission. For example: older people and those with co-morbidities may be

more likely to die of infection; those with access to health care will receive supportive

care (and curative treatment, if available) that reduces their subsequent transmissibil-

ity; those who have been vaccinated are less likely to become infected after exposure;

8The resulting belief dynamics are non-trivial. For instance, although fewer agents remain suscep-
tible over time in the SCIR model, their likelihood pS(t) of being susceptible conditional on being
not-yet-sick—a key consideration in the “social distanicng” game-theoretic models considered later—
may rise or fall over time.
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those with wider social networks are more likely to be exposed and to expose others;

and so on.

Such heterogeneity is typically captured by defining “sub-compartments” (i.e., sub-

states) of each of the basic epidemiological states and modeling the epidemic as follow-

ing a Markov process with respect to this enriched state space. For instance, suppose

that some of the population is vaccinated and that vaccination cuts in half the likelihood

of developing infection each time that an agent is exposed to the virus.9 This can be

incorporated by dividing susceptible agents into two classes—those who are vaccinated

(substate SV ) and those who are not (substate S0)—with vaccinated people becoming

infected at half the rate. In particular, in the SIR model, the differential equation

S ′(t) = −βI(t)S(t) would be replaced by the pair of equations S ′0(t) = −βI(t)S0(t)

and S ′V (t) = −βI(t)SV (t)/2, with SV (t) + S0(t) = S(t).

From an economic-theory perspective, an especially intriguing (and understudied)

source of heterogeneity is information, especially: information about the epidemic,

which itself may spread infectiously; information about one’s own health status, cre-

ating new options for targeted treatment and control; and information about others’

health status, enabling people to avoid infectious contact.

1.2 Manner of transmission

How a virus circulates among the host population, and what agents know about trans-

mission, is essential to the trajectory of an epidemic.

“Fully mixed” vs. network models of transmission. In 1999, an American

psychiatric facility was struck with an outbreak of Mycoplasma pneumonia, a leading

cause of “walking pneumonia.” The bacterium spread widely through the facility, but

not through random meetings. Each patient was confined to a single ward, and hence

unable to transmit the bacterium directly to those in other wards. However, some

caregivers worked in multiple wards and, as such, served as links in a transmission

network over which the bacterium spread throughout the facility. Meyers et al. (2003)

modeled this network as a directed graph, based on detailed data collected by the

Centers for Disease Control and Prevention (CDC) (Hyde et Hyde et al. (2001)), and

estimated the rate of transmission along each edge of the graph—finding, for instance,

9If vaccination reduces the harm of infection and increases the degree or duration of immunity after
recovery, then one would also want to divide the infection and recovery classes in an SIRS model.
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that the bacterium was more likely to pass from caregivers to patients than vice versa.

Models with random meetings (referred to as “fully-mixed”) are especially easy

to analyze, in terms of a system of differential equations tracking how many hosts

are in each epidemiological state at each point in time. Due to this simplicity, many

applied-theory papers in the theoretical biology literature (and most of the recent

Covid-inspired literature within economics) assume that transmission occurs via ran-

dom meetings, or slight variations thereof with a small number of agent types.

Richer models with transmission over a network might seem hopelessly complex but,

in fact, infection that spreads over a network can also be tractably analyzed. Newman

(2002) characterizes epidemic dynamics for an arbitrary directed graph in terms of an

adjacency matrix capturing exposure/transmission intensities between different agents

or types of agents. Jackson and López-Pintado (2013) builds on this analysis, providing

conditions on the adjacency matrix under which a new infectant (“an idea, a product,

a disease, a cultural fad, or a technology”) will spread from a small seed of initially-

infected agents to a significant fraction of the population. See also Prakash et al.

(2012), who provide thresholds for epidemic spread over a network.

Network models of transmission are appealing given their generality and tractabil-

ity, and I expect the literature to shift in the near future more in this direction, espe-

cially given the increasing availability of individual-level data on physical mobility; see

e.g., Fang et al. (2020) and Glaeser et al. (2020). However, in this review, I will follow

the bulk of the existing literature and focus on models in which the infectant, here a

biological virus, is spread through random meetings.

Awareness of contagious contact. The SARS outbreak of 2003 was quickly brought

under control, with only about 8,000 people infected, in large part because the SARS-

CoV-1 virus is (mostly) unable to transmit itself to new hosts until after causing severe

symptoms, at which point those hosts are in the hospital and out of the general pop-

ulation. By contrast, SARS-CoV-2 can transmit from an asymptomatic state, making

containment much more challenging absent diagnostics capable of determining who is

carrying the virus.

This critical difference between SARS-CoV-1 and SARS-CoV-2 highlights an im-

portant modeling distinction in the economic epidemiology literature, regarding what

hosts know about their own and/or others’ health status. In particular, models differ

on (i) whether there is an asymptomatic phase before symptomatic infection and (ii)
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whether others can detect whether a host is infected, e.g., by measuring their temper-

ature or performing a rapid diagnostic. It also matters whether people can credibly

disclose their health status to others. As Paul Romer explained in a New Yorker article

featuring his advocacy for greater testing: “I don’t want to go back to the dentist’s

office in New York City until I know that he can show me a recent negative test, and

he doesn’t want me to come into his office until I can show him that I’ve got a recent

negative test” (Chotiner 2020).

1.3 Agent decision-making process

Hosts (also called “agents”) make many sorts of decisions that impact the trajectory

of an epidemic, such as how frequently to wash their hands, whether to stay at home,

whether to get tested, and so on. The way in which hosts are assumed to make decisions

varies across the literature, falling into three main categories:

1. mechanistic behavior : agents’ actions are determined by the current state of the

epidemic

2. rule-of-thumb behavior : agents act to maximize an objective different (and typi-

cally simpler) than maximizing their own welfare

3. individually-optimal behavior : agents’ actions are individually optimal given oth-

ers’ current and future behavior

All three approaches have their merits. Mechanistic models allow one to gain insight

into the epidemiological properties of infection phenomena and lay the groundwork for

future research that seeks to endogenize behavior. (Indeed, this is how the literature

on infectious-disease dynamics has progressed, with about a century of work in mostly

mechanistic models now growing in new directions that account for the dynamics of

agent intention.) Models with individually-optimal behavior are useful as a fully-

rational benchmark but, of course, may fail to predict actual outcomes if people are

not the sophisticated reasoners that such models assume them to be. If so, rule-of-

thumb models may come closer to capturing how people actually reason and process

information and hence do a better job at predicting epidemic outcomes.

Example: social distancing. Consider a SCIR model in which not-yet-sick hosts

decide at each point in time whether to reduce their likelihood of exposure to the virus
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by staying away from others. Bootsma and Ferguson (2007) model such decisions by

assuming that “individuals reduce their contacts as a function of the number of deaths

occurring in the population in the previous time period.”10 However, because the risk

of infection is not tied directly to the number of recent deaths, it is difficult to construct

a reasonable objective function maximized by such a rule. Thus, in my phraseology,

Bootsma and Ferguson (2007) assumes “mechanistic behavior.”

Keppo et al. (2020) (and its predecessor Quercioli and Smith (2006)) approach

behavioral adaptation during an epidemic in a different way, assuming that hosts’

social distancing choices constitute a Nash equilibrium of a game in which each host

acts as if maximizing an objective that depends only on the current epidemic state,

their own distancing choice, and others’ choices, i.e., agents are strategic yet also

myopic. Since agents maximize an objective, but this objective does not correspond

to their actual payoffs, Keppo et al. (2020) assumes “rule-of-thumb behavior.” Having

a simpler objective makes it easier to characterize the epidemic trajectory, relative

to models that assume agents maximize the expected present value of their lifetime

payoffs; see e.g., Reluga (2010), Farboodi et al. (2020), Toxvaerd (2020), McAdams

(2020), and McAdams and Song (2020b), discussed in more depth later.

To convey ideas as clearly and simply as possible, I will focus the mathematical

exposition of ideas here mostly in models with rule-of-thumb behavior and SIR or SIS

transmission. However, with a few exceptions, most papers in the economics litera-

ture assume that agents are forward-looking optimizers, and some work within other

transmission models. Table 1 categorizes several papers highlighted in this review,

depending on (i) how agents make decisions (mechanistic, rule-of-thumb, or forward-

looking), and (ii) the transmission model (SI, SIR/SIS/SIRS,11 SCIR, or SCIS).

1.4 Economic impacts

Infectious disease creates economic harm directly through sickness, and indirectly as

people take costly steps to avoid becoming sick.

10The economist John Cochrane took a similar approach in a May 2020 blog post, assuming that
distancing varies with current infection prevalence or current death rate (Cochrane 2020).

11Some of these papers consider just the SIR model or just the SIS model, while others consider
both separately or the more general SIRS model that encompasses both as special cases.
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mechanistic rule-of-thumb forward-looking

SI

Geoffard Philipson (1996)
Kremer (1996)

Geoffard Philipson (1997)
Auld (2003)

Chen (2004, 2006)
Chan et al. (2016)

SIR /
SIS /
SIRS

Del Valle et al. (2005)
Bootsma Ferguson (2007)

Cochrane (2020)

Rowthorn et al. (2009)
Reluga (2010)
Chen (2012)

Rowthorn Toxvaerd (2012)
Farboodi et al. (2020)
Alvarez et al. (2020)

Bethune Korinek (2020)
Toxvaerd (2020)

Brotherhood et al. (2020)

SCIR
Keppo et al. (2020)

McAdams Day (2020)
McAdams (2020)

McAdams Song (2020)
SCIS McAdams et al. (2019)

Table 1: A selection of papers with dynamic economic-epidemiological models, catego-
rized by their assumptions about decision-making and pathogen transmission.

Standard framework: Geoffard and Philipson (1996). The economic litera-

ture on infectious disease has for the most part followed Geoffard and Philipson (1996)

in modeling the economic impacts of infection. In their approach, agents get instan-

taneous flow utility of the form u(ht, at), where ht is an agent’s health status and

at ∈ [0, 1] is their chosen level of “social activity,” and seek to maximize the expected

present value of their lifetime utility stream. (Equivalently, one can describe agents as

choosing their “social distance” dt = 1− at.) A recent paper that takes this modeling

approach is Farboodi et al. (2020). As they explain:

“The assumptions that preferences u depend on social activity while dis-

ease transmission depends on social interactions are central to our view

of social distancing. The former captures the idea that individuals value

social activity (going to a restaurant, going for a walk, going to the office)

and, absent health issues, are indifferent about whether other people are

also engaging in social activity. On the other hand, if an individual goes

for a walk and doesn’t encounter anybody, they cannot get sick. Thus

interactions are critical for disease transmission.”

Under these assumptions, the “social-distancing game” at time t exhibits both positive
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externalities (agents benefit when others distance more, due to reduced exposure risk)

and strategic substitutes (agents have less incentive to be active themselves when others

are more active). These properties of the game have significant theoretical implications,

such as uniqueness of the epidemic trajectory, and policy implications, such as that a

social planner always finds it optimal to tax social activity; see Rowthorn et al. (2009)

and Rowthorn and Toxvaerd (2012).

Extension: multi-dimensional actions. Agents are typically modeled as making

a one-dimensional choice—either (i) how much to curtail their public / social activ-

ities (“self-isolation”) or (ii) how much to protect themselves during such activities

(“vigilance”)—but both sorts of decisions are relevant. For instance, a person might

reduce how frequently they visit with friends and take precautionary steps such as

wearing a mask when doing so. Monotone equilibrium comparative statics can be

unintuitive in games with strategic substitutes (Roy and Sabarwal (2010)), especially

with multidimensional actions, and social distancing is no exception. Salanié and Tre-

ich (2020) examine this issue in a static-game context. If self-isolation protects others

but vigilance does not, they show that a social planner can increase social welfare by

taxing vigilance. Why? Slightly reducing each agent’s vigilance from its equilibrium

level has a negligible (second-order) welfare effect due to the Envelope Theorem, but

induces agents to increase their self-isolation, creating a first-order indirect benefit.

Extension: Complementarities in social activity. In the standard framework,

social activity creates an infection spillover as more active agents are more likely to in-

fect others with the virus, but there are no economic spillovers associated with activity.

This seems reasonable if “activity” in akin to going for a walk. But what if “activity”

is going to work in an office or playing a team sport? The risk of infection due to social

activity is highest when others are active, but so is the benefit of being active yourself.

Consequently, the social-activity game may exhibit strategic complements—and per-

haps have multiple Nash equilibria—and it might sometimes be optimal to subsidize

social activity. McAdams (2020), discussed later, is to my knowledge the first paper

to extend the standard framework to allow for economic complementarities associated

with economic activity.

Extension: Impact on search and matching. In the standard framework, social

activity has no impact on who “matches” with whom but does impact the likelihood
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of viral transmission due to each match. As Geoffard and Philipson (1996) explains:

“Agents continuously meet one another over time, and upon each meeting,

they must decide whether to engage in transmissive or protective behavior.

If a susceptible agent chooses [transmissive behavior], he runs a risk of

contracting the disease..”

This seems reasonable if “protective behavior” corresponds, say, to wearing a condom,

but less so if it corresponds to abstaining from sexual activity altogether. A person

looking for a sexual partner will find, not a random person, but someone else who is

also looking. In a seminal contribution discussed more later, Kremer (1996) shows how

such selection effects create the potential for multiple equilibrium epidemic trajectories,

driven by a positive feedback between the composition of those looking for sex and the

riskiness of doing so.

2 Equilibrium epidemic trajectory

This section examines how an epidemic unfolds over time, when agents decide for

themselves whether to incur a cost to “distance” themselves from others. The analysis

here synthesizes ideas in Toxvaerd (2020) and McAdams (2020), while also drawing

on ideas in several other papers, especially Reluga (2010), Farboodi et al. (2020), and

Keppo et al. (2020). A common theme in all these papers is that behavioral adaptation

can have a profound impact on the epidemic trajectory.

2.1 Epidemic limbo

As the SARS-CoV-2 virus ripped through the United States in May 2020, two hair

stylists in Springfield, Missouri continued working for several days despite having Covid

symptoms. They saw 139 clients in total during that time but, when public-health of-

ficials scrambled to trace those contacts, they were surprised to find that none tested

positive for the virus, and none developed symptoms. A subsequent field report pub-

lished in the CDC’s Morbidity and Mortality Weekly Report attributed this lack of

transmission to the fact that the hair stylists and their clients wore face coverings

throughout their interactions (Hendrix et al. 2020). Citing this report, CDC Director

Robert Redfield said that “If we could get everybody to wear a mask right now, I really

think in the next four, six, eight weeks, we could bring this epidemic under control.”
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Del Valle et al. (2005) examines the impact of behavioral change on the course of

a viral epidemic. Within the context of a mathematical model of a biological attack

resulting in a smallpox outbreak, they computed (i) how many people in a population of

one million are ultimately infected and (ii) how long it takes until 99% of all infections

have occurred, under various medical interventions and behavioral responses. In the

baseline case with no intervention and no behavioral response, over 966,000 are infected

and the outbreak lasts 307 days. By contrast, quick adoption of a behavioral response

that reduces transmission by 90% reduces the number of cases to 306 over 208 days,

while slower adoption of this response leads to 1,647 cases over 274 days.

Sustained and effective behavioral response speeds the end of the epidemic by driv-

ing down the basic reproductive number (R0) of the virus, the average number of people

exposed to the virus by each infected person. R0 naturally changes over time, depend-

ing on public-health interventions and voluntary behavioral change. Smallpox’s R0 is

estimated at being between 3 and 6; so, a behavioral change that reduces transmission

by 90% will drive R0 down to less than one and result in an exponentially decreasing

number of cases. But as the number of cases falls, people’s incentive to continue to

“distance” themselves from others also naturally declines. Indeed, as the outbreak is

squashed and almost no one in the community is infected, people have an incentive to

relax, in which case the outbreak could flare up once again.

Game-theoretic models of social distancing have emerged to account for this feed-

back between the state of the epidemic and people’s behavior. These models differ in

several important respects, but a common feature emerges in many of them, what I

refer to as epidemic limbo. People have an incentive to adopt precautionary measures

once the epidemic has become sufficiently severe; so, the epidemic turns out to be not

as bad as one would have predicted without accounting for behavioral response. How-

ever, as the epidemic wanes and there is less risk of being exposed, people eventually

have an incentive to return to their usual behavior. Due to this self-limiting feedback,

the epidemic can remain for an extended period of time in a limbo of intermediate

severity: not so bad that all people take it seriously enough to distance themselves,

but remaining enough of a threat that some people do so.

Fine and Clarkson (1986) was the first to provide a game-theoretic analysis of

agents’ incentives to take precautionary measures to avoid infection during an epi-

demic. More sophisticated dynamic analysis followed in the 1990s, with pioneering

work by Philipson and Posner (1993), Kremer (1996), and Geoffard and Philipson
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(1996), among others.12 A recurring theme of this literature is that there is a limit

to what can be achieved through voluntary precautionary measures, because of the

negative feedback between infection prevalence and the incentive to take precautions.

For instance, diseases that spread through random meetings13 cannot be eradicated by

costly vaccination alone, since the benefit of vaccination vanishes as the disease comes

close to being eradicated; see e.g., Geoffard and Philipson (1997).

In the same way, there is a limit to how much voluntary social distancing can reduce

the overall harm done during an epidemic. Reluga (2010) provides a game-theoretic

model of a viral epidemic with forward-looking agents, in which agents decide at each

point in time how intensively to distance themselves from others. Numerically solving

the equilibrium epidemic trajectory for a relatively wide range of parameters, he finds

that voluntary distancing reduces the overall harm done during the epidemic by at most

30%, relative to a no-distancing benchmark. That’s a far cry from the 99.9% reduction

in infection cases found by Del Valle et al. (2005), when assuming that agents engage

in quick and sustained social distancing.

SIR model with rule-of-thumb vigilance. Consider an SIR model with trans-

mission rate β and recovery rate γ, and hence basic reproduction number R0 = β
γ
.

Suppose that agents have the option at each point in time to take an action (referred

to by Keppo et al. (2020) as “vigilance”) that has no effect on who they meet but re-

duces the likelihood of viral transmission during each given meeting. In particular, for

simplicity, suppose that vigilance is a zero-one decision that reduces the instantaneous

risk of transmission during a meeting (being infected or infecting others) to zero, at

flow cost c > 0. Moreover, suppose that agents are rule-of-thumb decision-makers who

act as if willing to pay H > 0 to avoid becoming infected. H is their “perceived harm”

from being infected. (The actual economic harm associated with being infected varies

over the course of the epidemic, as discussed later.)

Those who are infected have no individual incentive to be vigilant. Any susceptible

agent who is not vigilant will therefore become infected whenever meeting an infected

agent, which happens at rate βI(t), creating expected perceived harm of HβI(t) per

unit time. So, each susceptible agent strictly prefers to be vigilant when I(t) > I ≡ c
βH

,

12The economists working on the game theory of infection prevention in the 1990s and 2000s were
apparently unaware that epidemiologists had beat them to the punch. Yamin and Gavious (2013)
were the first to cite Fine and Clarkson (1986) in an economics journal.

13Perisic and Bauch (2009) show that equilibrium eradication may be possible for diseases that
spread over a persistent network.
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strictly prefers not to be vigilant when I(t) < I, and is indifferent when I(t) = I.

The resulting equilibrium epidemic trajectory is uniquely determined and easily

characterized, with three distinct phases, as illustrated in Figure 1 below.

Phase #1: Rising epidemic. Let t1 be the first time at which I(t1) = I, i.e., t1 =

sup{t : I(t) ≤ I}. If I is sufficiently high that t1 =∞, then no one is ever vigilant and

the epidemic progresses as in a standard SIR model without behavioral adaptation.

Otherwise, no one is vigilant and infection prevalence is strictly increasing up until

time t1, at which point the epidemic transitions to Phase #2.

Figure 1: Infection prevalence in standard SIR model without any behavioral change
(dotted line), equilibrium infection prevalence I(t) (blue line) and fraction of agents
A(t) who are not vigilant (red line) in SIR model with rule-of-thumb vigilance. This
is a slightly modified version of Figure 3 in Toxvaerd (2020).

Phase #2: Epidemic limbo. Once the mass of infections hits I, some but not all

susceptible agents must choose to be vigilant, just enough so that the mass of infections

remains equal to I. This requires exactly fraction 1 − γ
βS(t1)

of susceptible agents to

be vigilant, meaning that fraction A(t) = γ
βS(t1)

are not vigilant (A is mnemonic for

“active”); note that A(t)βS(t1) = γ. If more susceptible agents than this were vigilant,

the mass of infections would fall and none would want to be vigilant, a contradiction.

Similarly, if fewer were vigilant, the mass of infections would rise and all would want

to be vigilant, another contradiction.
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The resulting epidemic dynamics are characterized by the system:

S ′(t) = −βIS(t)A(t) = −γI (9)

I(t) = I (10)

A(t) =
γ

βS(t1)
(11)

plus the usual adding-up condition S(t) + I(t) + R(t) = 1. Since infections clear at

rate γ, the flow of agents out of the infected state is γI. Equilibrium social distancing

1 − A(t) is just enough so that the flow of new infections also equals γI. Note that,

since the mass of susceptible agents S(t) falls over time, agents distance less and less

throughout the “limbo” phase of the epidemic, i.e., activity A(t) is increasing.

Let t2 be the time at which S(t) = γ
β
. This is moment at which the population as

a whole achieves “herd immunity,” in the sense that the mass of infected agents will

henceforth fall over time even if no one distances.14

Phase #3: Declining epidemic. After time t2, no one is vigilant and the mass of

infections declines over time, with I ′(t2) = 0, I ′(t) < 0 for all t > t2, and limt→∞ I(t) =

0.

Vigilance versus self-isolation. Suppose that, instead of deciding whether to take

protective actions (such as wearing a mask) to prevent transmission during each given

meeting, agents decide whether to avoid such meetings altogether. The effect of such

“self-isolation” on others depends on whether isolating oneself reduces the number of

encounters that others experience.

The most common assumption in the literature, following Geoffard and Philipson

(1997), is that isolating yourself causes transmission events that would have happened

not to happen at all. For instance, suppose that a susceptible person decides to go for a

walk in the park, and that half of all susceptible people stay home (but all infected and

recovered people go out). That person will “cross paths” with half as many susceptible

people but the same number of infected people, and hence be at the same amount of

risk as if no one had stayed home. The overall flow of new exposures in this case when

half of susceptible agents stay home is therefore the same as in the earlier “vigilance

14Herd immunity is achieved in the SIR model with random meetings once mass 1 − γ
β of hosts

have been exposed, leaving mass γ
β still susceptible. In an uncontrolled epidemic, herd immunity

is achieved at the moment when infection prevalence is at its peak. Distancing reduces the overall
number of infections by reducing how many people are infected after herd immunity is achieved.
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model” with half of all susceptible agents choosing to be vigilant.

This modeling approach has been widely adopted in the recent Covid-inspired the-

oretical literature, but misses a key feature of the social context of disease transmission

captured originally by Kremer (1996). In many settings, people get partner-unspecific

benefit from social interactions and, because of this, will seek out alternative partners

if the person they would have otherwise matched with is absent. To see the point,

suppose that the person going to the park is there to play a game of pickup basket-

ball.15 Fewer teams will form, but whoever is there will still form teams and play.

Moreover, because only susceptible people stay home, the people playing will be more

likely to be infected than if no one had stayed at home. In this way, social distancing

by susceptible people makes other susceptible people more likely to be infected when

not distancing themselves.

In Kremer (1996)’s pioneering model, each agent in an atomless population decides

how many interactions they want to have, and then agents are randomly matched in a

way so that each agent has the number of interactions that they desire. For example,

suppose that the host population consists of two equally-likely types—“high-activity

agents (H type)” who are fully active (ai = 1) and “low-activity agents (L type)” who

cut back by half (ai = 1/2)—and that, if everyone were fully active, everyone would

encounter 6 H types and 6 L types per unit time on average. In Kremer (1996), H

types encounter 8 H types and 4 L types per unit time, while L types encounter 4

H types and 2 L types. By contrast, in the more commonly-used approach, H types

encounter 6 H types and 3 L types, while L types encounter 3 H types and 1.5 L

types.

The key difference is that, in Kremer (1996), people’s distancing decisions impact

not just how many matches occur, but who matches with whom. In particular, one

type of agent staying out of the “matching market” makes it more likely that market

participants will match with other types. Social distancing by susceptible agents there-

fore creates a positive feedback: the more that susceptible people distance, the more

that other susceptible people want to distance. The game among susceptible agents

therefore exhibits strategic complements and, as such, can possess multiple equilibria.

15The same issues arise in many other contexts. For instance, in Kremer (1996)’s original example,
someone going to a brothel for sex is going to have sex with someone, but the odds that that person
is HIV-positive depends on the relative likelihood that HIV-positive and HIV-negative women will
being working at the brothel.
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Extension: economic complementarities. Building on a model introduced in

McAdams (2020), McAdams and Song (2020b) explores the impact of economic com-

plementarities on the equilibrium epidemic trajectory. Each agent i is assumed to get

flow economic payoff of the form

u(ai;A) = α0 + α1ai + α2aiA, (12)

where ai is agent i’s activity level, A is the population-wide average activity level, and

α0, α1, α2 ≥ 0 are parameters capturing the importance of isolated, public non-social,

and public social activities, respectively, for agent welfare.16 (Those who are sick incur

an additional cost and may or may not be incapacitated.)

Interpretation of parameters: α0 captures the baseline level of benefits that a well

agent gets while quarantined in the home; α1 captures the extra benefits associated

with being able to leave the home, e.g., the extra pleasure and health benefit of walking

outside; and α2 captures the extra benefits associated with sharing the same physical

space with others, e.g., hugging a friend rather than just talking on the phone. These

parameters can be changed in many ways. For instance, a restaurant service that

delivers safely-prepared fresh-cooked meals would increase α0 and reduce α2, as would

improved virtual-meeting technology that enhances remote collaboration.

The presence of economic complementarities (α2 > 0) changes the qualitative fea-

tures of the social-distancing game played by agents throughout the epidemic, in two

main ways. First and most importantly, there can be multiple equilibrium trajectories.

The course of the epidemic may therefore depend on coordinating mechanisms (e.g.,

public announcements) that induce agents to play one equilibrium rather than another.

Second, as people begin to distance, there is a positive feedback as others’ inactivity

reduces agents’ incentive to be active themselves. For instance, entrepreneurs who

share an incubator space might have a strong incentive to work in their office so long

as everyone else is doing so, to share ideas during impromptu encounters, but not once

most other people are working from home. Similarly, there is less reason to go to a

shopping area when most stores are closed, less benefit from operating a production

facility if suppliers and shut down, and so on.

McAdams and Song (2020b) has forward-looking agents but, to gain intuition, it

is helpful to consider the impact of economic complementarities in the SIR model

16Assuming linear payoffs simplifies equations but is not essential. The analysis can also be easily
modified to allow for congestion effects (α2 < 0).
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considered above, with rule-of-thumb decision-makers who have perceived harm H

from being infected. However, now assume that the cost of self-isolation takes the form

c(A) = α1 +α2A, where A is the fraction of the overall population that remains socially

active. In this context, each agent has a dominant strategy to self-isolate whenever

infection prevalence I(t) is greater than I ≡ c(1)
βH

= α1+α2

βH
and a dominant strategy not

to self-isolate whenever I(t) is less than I ≡ c(0)
βH

= α1

βH
. When I(t) ∈

(
I, I
)
, then are

multiple equilibria, including one in which all susceptible agents isolate and another in

which no one isolates.

In the equilibrium with the most infection, I(t) increases until time t1 at which

I(t1) = I, when agents are indifferent whether to self-isolate. Immediately after time

t1, at least fraction 1− γ
βS(t1)

of susceptible agents must isolate (by the same argument

as before). But then the economic benefit of activity falls, from α1 +α2 to α1 +α2
γ

βS(t1)
,

causing agents to strictly prefer to self-isolate. Everyone isolates and the equilibrium

prevalence of infection falls precipitously right after time t1—very unlike the “epidemic

limbo” that prevails in models without complementarities.

The most extreme version of this phenomenon arises when all of the benefit of

public activity comes from social activity, i.e., when α1 = 0 but α2 > 0. Once infection

prevalence hits I at time t1, each susceptible agent is indifferent whether to isolate

when no one else is doing so. But then as some people start isolating, all agents

strictly prefer to isolate and the unique equilibrium has everyone hunkered down in

isolation, getting flow utility u(0; 0) = α0 from isolated activities alone. Such sudden

collective voluntary isolation stops the virus in its tracks but, so long as there is even a

small amount of virus in circulation, it remains an equilibrium for everyone to remain

at home. In this context, a social planner can increase welfare by subsidizing some

agents to re-engage in social activity, to prod them out of the no-activity equilibrium.

Extension: altruism. Altruism can also have a dramatic effect on equilibrium epi-

demic outcomes. Suppose that people are willing to pay B ≥ 0 to avoid causing

someone else to be infected, and recall that dS(t) is the share of susceptible agents who

distance. Each infected agent encounters a susceptible agent at rate βS(t)(1− dS(t)),

and hence gets expected altruistic benefit BβS(t)(1−dS(t)) when isolating themselves

from others. Since self-isolation costs c > 0, infected agents strictly prefer to isolate at

time t if and only if S(t)(1− dS(t)) > S ≡ c
βB

.

Early during an outbreak, susceptible agents choose not to isolate because infection
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is rare (shown earlier); that is, dS(t) = 0. Altruistic agents who become infected early

on while infection is rare therefore choose to isolate if and only if B > c
β
. The outbreak

will therefore die out with only a few people infected ... and never reach the “epidemic

limbo” phase.

Extension: asymptomatic infection. Consider the SCIR model described in Sec-

tion 1.1. At time t, each susceptible agent who does not distance becomes infected

at rate β(C(t) + I(t)), where C(t) and I(t) are, respectively, the mass of agents with

asymptomatic infection (“carriage”) and symptomatic infection (“sickness”). Each

agent who has not yet gotten sick by time t therefore has an incentive to distance so

long as pS(t)Hβ(C(t) + I(t)) > c, where pS(t) = S(t)
S(t)+C(t)+RC(t)

is the likelihood of

being susceptible conditional on being not-yet-sick at time t.

For any given prevalence of infection, not-yet-sick agents have less incentive to

distance in the SCIR model than susceptible agents do in the SIR model, due to their

uncertainty about whether they remain susceptible, i.e., due to the fact that pS(t) < 1.

Consequently, (i) a smaller fraction of not-yet-sick agents distance in the SCIR model

for any given prevalence of infection, and (ii) agents wait longer in the SCIR model

before they begin distancing, i.e., they do not distance until C(t) + I(t) exceeds a

threshold strictly higher than I. This implies, as one would expect, that more people

ultimately become infected when the pathogen has asymptomatic spread.

2.2 Forward-looking behavior

The analysis thus far has assumed that agents are (myopic) rule-of-thumb decision-

makers, whose behavior depends only on the current prevalence of infection, their own

perceived harm from being infected, and, in the SCIR model, their own likelihood of

being susceptible. How does agent behavior and the epidemic trajectory change when

agents are forward-looking optimizers?

Consider first an SIR model as in Farboodi et al. (2020) and Toxvaerd (2020),

in which agents know once they have become infected and there are no economic

complementarities. Moreover, for simplicity and to highlight key ideas as clearly as

possible, assume that agents make a discrete choice whether to isolate themselves fully

or not distance at all. In particular, suppose that agents seek to maximize the expected

present value of their future lifetime payoff stream (“continuation welfare”), incur flow

cost s > 0 while sick, incur flow cost c > 0 while self-isolating, and use interest rate
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r > 0 to discount future payoffs. As in the analysis surrounding Figure 1, let β > 0

be the transmission rate absent any distancing, let γ > 0 be the infection recovery

rate, and assume that agents are not altruistic and self-isolation reduces the risk of

transmission to zero.

Equilibrium social distancing. For each epidemiological state ω ∈ {S, I, R}, let

Πω(t) be the continuation welfare of agents in state ω at time t. Susceptible agents are

willing to pay H(t) ≡ ΠS(t) − ΠI(t) in order to avoid becoming infected. Since they

become infected at rate βI(t) when not distancing, susceptible agents strictly prefer

to distance if and only if I(t) > I(t) ≡ c
βH(t)

, much as in the previous rule-of-thumb

analysis but now with an endogenous time-varying cost H(t) of being infected.

Infected agents’ welfare. Once someone has become infected, they will choose thereafter

not to distance themselves, earn flow payoff −s < 0 while infected, and then earn zero

flow payoff once recovered. Since recovery occurs at rate γ, each infection has likelihood

e−γL of lasting longer than length of time L. Given discounting at interest rate r, the

expected present value of the sickness costs incurred during a given infection is therefore

ΠI = −s
∫ ∞

0

e−(r+γ)LdL =
s

r + γ
(13)

and does not depend on the time t; in particular, ΠI(t) = s
r+γ

for all t.

Susceptible agents’ welfare. The continuation welfare of a susceptible agent varies over

time, and in a non-monotone fashion. Early in the epidemic while infection is rare,

susceptible agents do not distance and face little immediate risk of exposure. However,

as time passes, the risk of soon being infected grows exponentially and the epidemic

looms larger in agents’ welfare considerations. Over this timeframe, susceptible agents’

welfare is declining over time. On the other hand, near the end of the epidemic when

infection is once again relatively rare, agents will once again choose not to distance. The

difference is that now, as time passes, susceptible agents’ remaining risk of becoming

infected falls as the epidemic continues to fade, causing their continuation welfare to

increase.

Equilibrium trajectory. An equilibrium epidemic with forward-looking agents typically

follows a similar17 three-part trajectory as in the previous rule-of-thumb analysis: (i)

17Other patterns are possible. For instance, if distancing is only partially effective at limiting
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first, a period of uncontrolled growth in the prevalence of infection until time t1; (ii)

second, an intermediate period until time t2 in which some but perhaps not all agents

self-isolate; and (iii) a final period after t2 in which no one distances, but the prevalence

of infection continues to fall because “herd immunity” has been achieved.

The main difference is that the prevalence of infection I(t) is no longer constant but

falls over time during the intermediate phase.18 To gain intuition, note that agents are

indifferent whether to incur the cost c to self-isolate. A susceptible agents’ continuation

welfare at time t ∈ (t1, t2), ΠS(t), is therefore the expected present value associated

with incurring cost c all the way from time t until t2 and then getting lump-sum

payment ΠS(t2) at time t2. Moreover, because agents strictly prefer not to distance

after time t2, they are obviously better off than if they had to pay c in perpetuity.

Consequently, ΠS(t) is strictly increasing from time t1 until time t2. That implies that

the harm of infection H(t) = ΠS(t)− ΠI is also increasing in t. In order for agents to

be indifferent whether to self-isolate, the risk of infection must therefore be decreasing

in t, which requires that fewer people are infected over time.

Impact of a vaccine or treatment. Those who are vaccinated are less likely to

become infected for any given level of activity and hence will choose to be more active

than otherwise. If the vaccine is imperfect, the overall effect of such “risk compensa-

tion” can be to increase the amount of infection; see e.g. Hoy and Polborn (2015) and

Talamas and Vohra (2018). Similarly, treatments that reduce the harm of infection

may lead to greater transmission, as people are less cautious about avoiding infection.

Even before a vaccine or treatment becomes available, the anticipation of its arrival

can change behavior. Suppose that agents are forward-looking optimizers and that

they expect a perfect vaccine to become available at time T > 0. Anyone exposed

at or after time T will not become infected; so, susceptible agents have no reason to

distance and will not become sick, i.e., ΠS(t) = 0 for all t ≥ T . Just before time T , the

harm of being infected, H(t) = ΠS(t)−ΠI(t) ≈ −s
r+γ

, is therefore as large as it can ever

be. This gives agents a relatively strong incentive to distance just before the vaccine

becomes available—the intuition being that they have nearly “made it” to the point

when they won’t need to distance any longer.

transmission events, then there can be periods in which all agents distance, interspersed with periods
in which some but not all distance.

18Toxvaerd (2020) states that the prevalence of infection is constant over the intermediate phase.
This is incorrect, as I have confirmed through an email correspondence with the author. Fortunately,
the underlying error is easily corrected and his other main qualitative findings remain.
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What if, instead, a perfect treatment becomes available at time T > 0. Anyone

infected at or after time T will not suffer; so, as with a perfect vaccine, susceptible

agents have no reason to distance and ΠS(t) = 0 for all t ≥ T . The main difference

is that those who are infected shortly before time T now also do not suffer much at

all. In particular, ΠI(t) ≈ −s(T − t) ≈ 0 for all t slightly less than T , implying that

the harm of infection is approximately zero. Thus, agents respond quite differently to

news of a coming vaccine versus a coming treatment.

3 Lockdown policies

In early April 2020, the Wall Street Journal reported that “U.S. counties under lock-

down orders ... represent nearly 96% of national output” and that “at least one-

quarter of the U.S. economy has suddenly gone idle ... an unprecedented shutdown

that economists say has never occurred on such a wide scale.” Many Americans chafed

under these restrictions and called for them to be eased, including President Donald

Trump,19 but the case for government intervention of some kind was strong. States like

Florida and Texas whose governors initially resisted public-health measures to slow the

virus’ spread were soon overwhelmed and forced to follow suit.

Consider the simple example analyzed in Section 2.1. During the “limbo phase” of

the epidemic, when some but not all agents distance, agents have a choice between (i)

suffering economically by distancing or (ii) facing the risk of infection by not distanc-

ing. A key feature of the equilibrium epidemic during this period is that agents are

indifferent whether to distance. Indeed, they suffer more than if everyone had been

completely locked down since, with a lockdown, there would at least have been less

infection when activity is allowed to resume.

What type of lockdown policy is socially optimal? The answer depends on three

key questions about the economic-epidemiological environment: (i) can infections be

identified?, (ii) is social distancing voluntary?, and (ii) are there economic complemen-

tarities associated with economic activity?

19After relatively small protests against state-ordered lockdowns in mid-April, Trump tweeted “LIB-
ERATE MINNESOTA” and “LIBERATE MICHIGAN” and criticized the Democratic governors of
these and other states. Two weeks later, protesters armed with assault rifles occupied the Michigan
statehouse (DeBrabander 2020).
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What if infections can be identified? If public-health authorities can identify

who is infected, then the epidemic can potentially be halted in its tracks by imposing

a targeted lockdown that only restricts the activity of infected agents.20

Suppose for the moment that lockdown reduces an agent’s social activity to fraction

0 ≤ ψ < 1 of its normal level and that, absent lockdown, all agents would engage in

their normal level of activity. If ψ < γ
β
, then locking down all infected agents reduces

the basic reproduction number of the virus from R0 = β
γ

to R0 = ψβ
γ
< 1, extinguishing

the epidemic. What if ψ >
β
? Locking down infected hosts is then not enough to

stop the virus from infecting a substantial fraction of the population. However, since

the virus spreads as if it has transmission rate ψβ rather than β, fewer people will

be infected and, if recovery does not confer immunity, the steady-state prevalence of

infection will be lower.

Bethune and Korinek (2020) characterize the socially-optimal targeted lockdown

policy, assuming that the social planner can dictate each agent’s level of activity ai ∈
[0, 1] and that agents get concave flow utility u(a) from activity-level a, with u′(1) = 0

so that small reductions in activity have a negligible impact on agent welfare. Figure

2 illustrates their findings in the SIS model, the panels on the left showing agents’

equilibrium activity as a function of current infection prevalence, for a high-cost disease

such as Covid (top) and a low-cost disease such as the common cold (bottom), and the

panels on the right showing the corresponding socially-optimal activity levels.

In the decentralized equilibrium without any forced lockdown, only susceptible

agents reduce their activity and much more so in the case of a high-cost disease, as

expected. For the high-cost disease, the social planner always imposes a sufficiently se-

vere lockdown policy so that the virus’ basic reproduction number R0 is held below one,

so that the prevalence of infection falls over time. However, this is achieved through

a combination of restrictions on infected and susceptible agents, with restrictions on

infected and susceptible agents growing more and less severe, respectively, as the preva-

lence of infection falls over time. In the long run, as infection prevalence vanishes to

zero, susceptible agents are unrestricted and only infected agents are restricted.

The most interesting case is when the disease is less severe, as illustrated in the

lower panels of Figure 2. If infection is sufficiently rare—for instance, if there is an

20Locking down all infected hosts and no susceptible hosts has the same effect as locking down
all susceptible hosts and no infected hosts. Thus, even after most people have become infected, an
epidemic’s further expansion can be stopped if the uninfected hunker down in isolation—a key plot
point in most zombie-apocalypse movies.
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Figure 2: Equilibrium (“decentralized”) and socially-optimal activity levels for suscep-
tible and infected agents in the SIS model, for a severe disease (top panels) and a mild
disease (bottom panels). Courtesy of Zachary Bethune and Anton Korinek.

outbreak of a novel virus—then the social planner finds it optimal to target infected

agents with severe restrictions, enough to reduce R0 below one and drive the prevalence

of infection to zero. Although these restrictions are burdensome on those who become

infected, the mass of agents who ever become infected is small; so, the overall burden

of the lockdown policy is small, relative to the harm that would have been done if

the outbreak had been allowed to grow into an epidemic. However, once infection

prevalence passes a threshold (about 0.15 in Figure 2), the lockdown “cure” is worse

than the disease and the social planner finds it optimal to blunt the epidemic but not

stop it.

What if infections cannot be identified? Suppose that the disease spreads mainly

during an early asymptomatic phase and that there is no way to determine who is
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asymptomatically infected. In this case, the social planner is constrained to uniform

lockdown policies. Alvarez et al. (2020), Bethune and Korinek (2020), and Rowthorn

and Maciejowski (2020) characterize the optimal uniform lockdown in an SIR model,

under various parameter conditions motivated by the Covid-19 outbreak. In Alvarez

et al. (2020), “the optimal policy prescribes a lockdown starting four weeks after the

outbreak, and covering 45% of the population after 8 weeks.” Similarly, in Rowthorn

and Maciejowski (2020), “the lockdown lasts 5.3 weeks and brings the disease under

control quite soon, although not before millions of people have been infected and many

thousands have died.” On the other hand, Bethune and Korinek (2020) find that it is

optimal not to allow the infection ever to become common. In all three cases, continued

“relaxed” restrictions are maintained for an extended period, to keep R0 close to one

and prevent a resurgence of the epidemic.

Two features21 of optimal lockdown here are worth emphasizing. First, the social

planner waits until the outbreak is sufficiently large before imposing any restrictions.

To see why, suppose that the social planner were to severely constrain activity while

infection is extremely rare. Infection would grow even more rare, but would not dis-

appear entirely. Once the lockdown is eased, the virus will then come roaring back

and, since few have been exposed, the population as a whole will then be in the same

position as if they had not just locked down their economy.

Second, the social planner applies relatively intense restrictions and then eases up

over time. Why? Because lockdowns are costly and must be applied across the board,

it is never optimal to maintain such restrictions forever. But then that means that the

virus must eventually infect enough people for the population to achieve herd immnuity,

after which the rate of new infection declines over time. In an uncontrolled epidemic,

the number of people who are infected reaches its peak at the point in time when herd

immunity is achieved, and the epidemic blows through the herd-immunity threshold;

in the end, many more are infected than needed to be. By constraining activity while

the epidemic would otherwise be raging, the social-planner can ensure that relatively

few people are infected after herd immunity is reached.

Of course, both of these findings hinge critically on the assumption that there is

no way to detect infection. Should testing for asymptomatic infection be available, the

social planner typically finds it optimal to isolate those who are found to be infected—

21These features are evident in Alvarez et al. (2020) and Rowthorn and Maciejowski (2020), but
also present in Bethune and Korinek (2020), just with a very low prevalence threshold for lockdown
and a very long time until herd immunity is reached.
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not just to slow or smooth out the epidemic trajectory, but to eliminate the virus

entirely.

Discussion: nuances around testing and heterogeneity. Testing to discover asymp-

tomatic carriers is essential, as it empowers public-health authorities to get the epi-

demic under control without a large number of people being infected. However, as

Acemoglu et al. (2020b) and Deb et al. (2020) have noted, testing without appropriate

incentives can lead to perverse outcomes. As Acemoglu et al. (2020b) explains:

“Testing enables the isolation of infected individuals, slowing down the

infection. But greater testing also reduces voluntary social distancing or

increases social activity, exacerbating the spread of the virus. We show that

the effect of testing on infections is non-monotone. This non-monotonicity

also implies that the optimal testing policy may leave some of the testing

capacity of society unused.”

Further nuances arise when agents have heterogeneous types. Brotherhood et al. (2020)

and Acemoglu et al. (2020a) analyze an extension of the SIR model allowing for multiple

agent types that differ in their health status (e.g., “old” are more likely to die if

infected) and/or in their connections with others (e.g., “young” interact mostly with

themselves). A shared insight that emerges in these papers is that it may be optimal

to allow infection to spread more widely among the young.22 This can be good for the

young, since they are not as burdened economically, but can also be good for the old

as herd immunity can be reached with fewer of the old becoming sick.23

Are there economic complementarities associated with economic activity?

McAdams and Day (2020) explores the implications of economic complementarities

on lockdowns. Consider an SCIR model in which a lockdown can be imposed on

not-yet-sick agents. In this context, restricting others’ activity benefits agents by re-

ducing pathogen transmission (“health spillover”) but also harms agents economically,

by reducing the benefit that agents get from social activity (“economic spillover”).

McAdams and Day (2020) find that, if transmission only occurs during carriage, then

22An earlier literature grapples with the question of how to optimally devote limited infection-
prevention resources. In a multi-population SIS model, Anderson et al. (2012) show that it can be
optimal to focus entirely on just one population.

23As these authors note, this conclusion hinges on the assumption of unlimited hospital capacity. If
the young take up limited hospital beds, then more of the old could die even as fewer are infected.
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the health spillover always dominates the economic spillover, in the sense that agents

benefit by having a lockdown imposed before they would begin to distance voluntarily.

On the other hand, if transmission occurs primarily during infection, then not-yet-

sick agents may sometimes benefit by being forced to be active when they would not

otherwise voluntarily choose to do so.

4 Pathogen eradication

When can a pathogen be eradicated from a host population? An extensive literature

explores the potential to eradicate diseases through vaccination; see e.g., Geoffard and

Philipson (1996) and Chen and Toxvaerd (2014) on vaccination in fully-mixed models

and Perisic and Bauch (2009) in a model with transmission over a network. Here I

focus on complementary approaches that leverage treatment and/or infection control.

Section 4.1 follows Rowthorn and Toxvaerd (2012), focusing on the special case of

their model in which a highly-effective treatment is available and there are no pre-

vention options. The main finding is that an infectious disease can potentially be

eradicated through treatment alone, but only if the treatment is introduced while in-

fection remains sufficiently rare.

Section 4.2 follows McAdams et al. (2019) in considering a context in which mul-

tiple strains of the same pathogen co-exist, some of which are resistant to antibiotic

treatment. The main finding is that resistant strains can potentially be eradicated,

thereby restoring the effectiveness of existing antibiotics to which resistance has al-

ready emerged, but only if (i) diagnostics are available to detect resistant infection

and (ii) public-health resources can be deployed specifically to reduce transmission of

resistant strains.

4.1 Eradicating a disease

Consider an SIS-model infectious disease for which a costly treatment is available, and

suppose that this treatment is sufficiently effective that the disease could be eradicated

if every infection were treated. Here I focus on two central questions. First, is it

socially optimal to eradicate the disease? Second, can the disease be eradicated in a

decentralized (Nash equilibrium) setting in which each infected person incurs the cost

of treatment and decides whether to receive treatment?
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Epidemiological model. A pathogen circulates among a unit-mass population of

hosts according to a standard SIS model. While infected, each host may or may not

receive treatment that speeds recovery. Let S(t) and I(t) denote the mass of susceptible

and infected hosts, respectively, with S(t) + I(t) = 1 because the population has unit

mass. Let IY (t) and IN(t) denote the mass of infected hosts who are treated (Y

for “yes”) or not treated (N for “no”). Infected hosts recover at baseline rate γ0 if

untreated or at faster rate γA > γ0 if treated. The overall flow of newly-recovered

agents therefore equals γ0IN(t) + γAIY (t) = γ0I(t) + (γA − γ0)IY (t). The resulting

epidemiological dynamics are characterized by the differential equation

S ′(t) = −βI(t)S(t) + γ0IN(t) + γAIY (t) (14)

with I(t) = IY (t) + IN(t) and S(t) + I(t) = 1. If all infections are treated, equation

(14) simplifies to S ′(t) = I(t)(γA − β(1− I(t))).

Eradication through treatment is possible when γA > β, since then S ′(t) > 0 (and

hence I ′(t) < 0) no matter how many agents are currently infected. I will focus here on

the case when γA > β > γ0, meaning that the disease will be eradicated if all infections

are treated but not if no infections are treated.

Untreated infections last on average for length of time L0 = 1
γ0

. Each untreated

infected person therefore on average exposes R0 = β
γ0
> 1 others during the course of

their infection. Should all infections be left untreated, the prevalence of infection will

increase from approximately zero (when the pathogen first enters the host population)

to a steady-state level I∞0 ≡ 1 − γ0
β

. On the other hand, if all infections are treated,

then R0 = β
γA
< 1 and the long-run steady state prevalence of infection is zero.

To close the model, it remains to characterize when infected hosts receive treatment.

To do so, one needs to overlay an economic model on top of the epidemiological model.

Economic model. Each host i receives flow payoff πi(t) = 0 when susceptible,

πi(t) = −s when sick and untreated (s is “sickness cost”), or πi(t) = −s − c when

sick and treated (c is used here for “treatment cost”), and discounts payoffs with re-

spect to interest rate r > 0. While infected, each agent decides whether or not to

receive treatment.

Maximizing social welfare. Across the entire population, the disease does harm

sI(t) + cIY (t) at each time t. Treating more infections at time t raises the costs that
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are immediately incurred, but reduces the future prevalence of infection. Rowthorn

and Toxvaerd (2012) show that the socially-optimal treatment policy is bang-bang. In

particular, a threshold Î exists such that it is socially optimal to treat all infections

whenever I(t) < Î but to leave all infections untreated whenever I(t) > Î.

The bang-bang nature of optimal treatment arises because treatment is more so-

cially valuable when a disease is rarer. To gain intuition, note that the prevalence of

infection grows exponentially during the early phase of an outbreak while infection is

relatively rare, but that the rate of growth declines as more people become infected.

Treating any given infection therefore prevents more infections when the overall preva-

lence of infection is lower.

Nash-equilibrium outcomes. What if individuals decide for themselves whether

or not to be treated? The resulting game exhibits strategic complements, with each

agent having more incentive to be treated if they believe that others (now and in the

future) are more likely to seek out treatment as well. To gain intuition, note that agent

i’s benefit of recovering from infection depends on the risk of re-infection: the lower the

rate of re-infection, the longer that agent i expects to remain infection-free and hence

the more valuable it is to recover. If others are more likely to be treated (now and

in the future), then fewer people will be spreading infection once agent i eventually

recovers, increasing agent i’s incentive to be treated herself.

As in any game with strategic complements, there is a maximal and a minimal Nash

equilibrium (Milgrom and Roberts 1990). Rowthorn and Toxvaerd (2012) characterize

these maximal and minimal equilibria in terms of two additional infection-prevalence

thresholds, denoted here as I and I, with 0 ≤ I ≤ I ≤ Î.

In the maximal equilibrium, all infections are treated at time t if I(t) < I but none

are treated if I(t) > I. Similarly, in the minimal equilibrium, all infections are treated

at time t if I(t) < I but none are treated if I(t) > I. Note that the disease is eradicated

in all equilibria if its initial prevalence I(0) is less than I, and is eradicated in some

equilibrium if I(0) ≤ I.

A necessary condition for equilibrium eradication. Suppose that agent i is

infected but that the disease is exceedingly rare, so that agent i faces negligible re-

infection risk. When deciding whether to seek out treatment, agent i will compare

the expected present value of the costs associated with her current infection, with and

without treatment.
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When untreated, agent i incurs flow cost s until recovery, which occurs at rate γ0.

When treated, agent i incurs flow cost s+ c until recovery at rate γA. Let C0 and CA

be the expected present value of the costs incurred during an untreated and treated

infected, respectively:

C0 =

∫ ∞
0

se−rte−γ0tdt =
s

r + γ0

(15)

CA =

∫ ∞
0

(s+ c)e−rte−γAtdt =
s+ c

r + γA
(16)

If γA ≤ s+c
s
γ0 + c

s
r, then C0 ≤ CA and agent i is strictly better off being left untreated.

In this case, the disease cannot be eradicated in any equilibrium. Otherwise, if γA >
s+c
s
γ0 + c

s
r, then C0 > CA and agent i is strictly better off being treated so long as the

infection is sufficiently rare. In this case, the disease will be eradicated so long as the

treatment becomes available sufficiently early, while infection remains sufficiently rare.

4.2 Restoring antibiotic effectiveness

“Some experts say we are moving back to the pre-antibiotic era. No. This

will be a post-antibiotic era ... an end to modern medicine as we know it.”

– Margaret Chan, Director-General of the World Health Organization, 2012

Staphylococcus aureus (“staph”), a bacterium that commonly colonizes the nasal pas-

sage, has numerous strains that dwell peacefully within the human microbiome. But

some strains long ago acquired the genetic machinery to produce toxins that cause dis-

ease and, more recently, to survive exposure to the antibiotics used to treat bacterial

infection (“antibiotic resistance”; see Laxminarayan et al. 2013). These staph strains

are in a competition24 that naturally favors the antibiotic-resistant strains, since they

are more likely to survive when a person receives antibiotic treatment. For instance,

methicillin-resistant staph (MRSA) first emerged in the 1960s but by 2014 accounted

for over half of hospital-associated staph infections in the United States (WHO 2014,

pg. 118).

24Dall’Antonia et al. (2005) found that colonization by a methicillin-sensitive strain reduced a
person’s likelihood of subsequently being colonized by a MRSA strain by 78%. Yang et al. (2018)
found in mice that a commensal strain suppressed the growth of a MRSA strain and elicited both
innate and adaptive immunity against MRSA skin infection.
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Since antibiotic exposure is more effective at killing antibiotic-sensitive bacteria,

increased indiscriminate antibiotic use advantages resistant strains and hence hastens

the rise of untreatable infection. In that context, antibiotics are “exhaustible resources”

whose value is diminished by use (Laxminarayan and Brown 2001). As the CDC and

the Review on Antimicrobial Resistance (AMR Review) explained: “Because antibiotic

resistance occurs as part of a natural evolution process, it can be significantly slowed

but not stopped” (CDC 2013); and “Any use of antimicrobials, however appropriate

and conservative, contributes to the development of resistance” (AMR Review 2014).

While indiscriminate antibiotic use promotes resistance, increased targeted use of

any given antibiotic can slow or even reverse the rise of resistance to other antibi-

otics. This point was first made in McAdams (2014) and subsequently elaborated in

McAdams (2017) for an obligate pathogen (SIS model) and in McAdams et al. (2019)

for an opportunistic pathogen (SCIS model) with incidental antibiotic exposure in car-

riage. With targeted interventions, antibiotics become preservable resources whose

value can be maintained even as all patients receive the best-available treatment.25

SIS model with competing strains. Consider an SIS model with multiple strains

having different antibiotic-resistance profiles. In particular, suppose that there are two

antibiotics, drug A and drug B, and four strains in circulation: “strain 0,” sensitive

to both drugs; “strain A,” resistant to drug A but sensitive to drug B; “strain B,”

resistant to drug B but sensitive to drug A; and “strain AB,” resistant to both drugs.

For each resistance profile X ∈ {0, A,B,AB}, let IX(t) be the mass of hosts with

strain-X infection at time t; so, I(t) =
∑

X IX(t), and S(t) + I(t) = 1, where S(t) is

the mass of uninfected hosts.

Let βX be the transmission rate of strain X. Being resistant to an antibiotic can

sometimes disadvantage bacteria in other ways. Such “fitness costs” can be captured

by assuming that β0 > max{βA, βB} and min{βA, βB} > βAB. When there are fitness

costs, withholding treatment is enough to put resistant bacteria at disadvantage and

cause their (relative and eventually absolute) number to dwindle over time. I focus

here on the more challenging case without fitness costs, i.e., βX = β > 0 for all X.

Treatment is assumed to have two sorts of effects: (i) speedier recovery, from baseline

25In their final report, citing an early version of McAdams et al. (2019), the AMR Review ac-
knowledged the game-changing potential of rapid diagnostics to reverse the rise of resistance: “The
information garnered from rapid diagnostics might eventually allow doctors to improve treatment and
infection control to such an extent that this places negative selective pressure on resistance pathogens,
thus reducing resistance in older drugs” (AMR Review 2016, pg. 35).
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rate γ0 > 0 to γA > γ0 for A-sensitive infections treated with drug A, or γB > γ0 for B-

sensitive infections treated with drug B; and (ii) resistance emergence,26 with sensitive

infections becoming resistant to the drug being used for treatment at rate η ≥ 0.

Case #1: indiscriminate treatment. Suppose for a moment that all patients are treated

with drug A. The resulting flows among epidemiological states are as follows. New

infection (S → IX): Each X-infected host meets a susceptible host at rate βS(t), cre-

ating flow βS(t)IX(t) from the susceptible state S to the X-infected state IX . Treated

recovery (I0, IB → S): 0- and B-infections clear at treated rate γA, creating flows

γAI0(t) from I0 to S and γAIB(t) from IB to S. Untreated recovery (IA, IAB → S):

A- and AB-infections clear at untreated rate γ0, creating flows γ0IA(t) from IA to S

and γ0IAB(t) from IAB to S. Emergence of drug-A resistance (I0 → IA, IB → IAB):

0- and B-infections acquire A-resistance at rate η, creating flows ηI0(t) from I0 to

IA and ηIB(t) from IB to IAB. The resulting epidemiological dynamics, expressed as

percentage rates of change, are given by the following system of equations:

I ′0(t)

I0(t)
=
I ′B(t)

IB(t)
= βS(t)− γA − η (17)

I ′A(t)

IA(t)
= βS(t)− γ0 + η

I0(t)

IA(t)
(18)

I ′AB(t)

IAB(t)
= βS(t)− γ0 + η

IB(t)

IAB(t)
(19)

Note that strains 0, B grow at a slower percentage rate than strains A,AB. The

percentage of infections that can be effectively treated with drug A therefore falls over

time until, eventually, all infections are resistant to drug A.

Case #2: targeted treatment and no control. A rapid resistance diagnostic enables

doctors to identify each infection’s resistance profile and prescribe the best-available

antibiotic treatment. Suppose that doctors prefer to prescribe drug A when both are

effective, perhaps because drug A is less expensive or induces milder side effects. 0-

and B-infections will continue to be treated with drug A, but now A-infections will be

treated with drug B while AB-infections will be left untreated (to avoid harmful side

26“Resistance emergence” is shorthand for all the various ecological pathways by which a host who is
initially infected (only or primarily) by sensitive bacteria can transition to being infected by resistant
bacteria. Notably: (i) treatment-induced mutation, whereby antibiotic exposure triggers accelerated
mutation (via stress response, chemical signaling by other bacteria, etc.), increasing the likelihood
of a resistance-conferring mutation; and (ii) competitive release, whereby killing off sensitive bacteria
promotes explosive growth of resistant bacteria that were already colonizing the host in small numbers.
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effects). This leads to quicker clearance and hence less transmission of A-infection, but

also faster emergence of multidrug resistance as AB-infections now emerge both from

A-infections being treated with drug B and B-infections being treated with drug A.

In particular, equations (18,19) become

I ′A(t)

IA(t)
= βS(t)− γB − η + η

I0(t)

IA(t)
(20)

I ′AB(t)

IAB(t)
= βS(t)− γ0 + η

IA(t) + IB(t)

IAB(t)
(21)

If both drugs are equally effective (γB = γA), then
I′AB(t)

IAB(t)
>

I′A(t)

IA(t)
>

I′B(t)

IB(t)
>

I′0(t)

I0(t)
. Strains

0, B dwindle over time the fastest, and strain A is also eventually overwhelmed by

strain AB—a “post-antibiotic world” dominated by untreatable infection.

Case #3: targeted treatment and targeted control. While targeted treatment alone

is insufficient to prevent a post-antibiotic world, targeted treatment combined with

targeted infection control can be enough to put resistant strains at a disadvantage.

“Targeted infection control” can take many forms depending on the pathogen and

relevant host population, e.g., requiring a child with resistant pneumoccal infection to

stay home from school (Ekdahl et al. 1998), providing skilled wound care (Solberg

2000) or free needles (Bassetti and Battegay 2004) for those with resistant skin staph

infection, etc.

For simplicity, I assume here that infection control takes the form of perfect isolation

of up to mass ∆ > 0 of hosts, with prioritized isolation first of those with untreatable

AB-infection, then the B-infected, and then the A-infected, but no isolation of the

0-infected or of the uninfected. Moreover, I will assume that (i) isolation capacity is

very limited, i.e., ∆ ≈ 0, (ii) untreatable AB-infections are sufficiently rare at first to

all be isolated, i.e., IAB(0) < ∆, and (iii) resistance emergence is sufficiently rare27 that

η < ∆γ0 and η < ∆γ0
β

.

Under these assumptions, all AB-infections can be isolated in perpetuity. Tar-

geted isolation reduces strain AB’s average transmission rate from β to β̂AB(t) ≡
βmax

{
IAB(t)−∆
IAB(t)

, 0
}

. If AB-infection were already sufficiently widespread at time 0

that IAB(0)
∆
� 1, then β̂AB(t) ≈ β and targeted isolation would have a negligible effect

27Resistance-conferring mutation is rare in bacteria and, so long as resistance to an antibiotic
remains rare, competitive release will also tend to be rare as few hosts are colonized by even small
numbers of the resistant strain. The assumption here that η ≈ 0 therefore appears reasonable while
resistance remains rare, but perhaps not once resistance has become common.
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on epidemiological dynamics. However, because IAB(0) < ∆, all untreatable infections

can be isolated and β̂AB(0) = 0. Equation (21) at time 0 then becomes

I ′AB(0)

IAB(0)
= −γ0 + η

IA(0) + IB(0)

IAB(0)
(22)

Note that I ′AB(0) < 0 if and only if IAB(0) < ÎAB(0) ≡ η
γ0

(IA(0) + IB(0)). Since

η < γ0∆ (by assumption) and IA(0) + IB(0) < 1 (obviously), we have ÎAB(0) < ∆.

Consequently, either IAB(0) < ÎAB(0) and I ′AB(0) > 0 or IAB(0) ∈
(
ÎAB(0),∆

)
and

I ′AB(0) < 0. Either way, AB-infection prevalence remains strictly less than ∆, allowing

all AB-infections to continue to be isolated. Because this logic continues to apply after

time 0, all AB-infections can be isolated in perpetuity. Moreover, limt→∞
IAB(t)

IA(t)+IB(t)
=

η
γ0

< ∆ ≈ 0 and limt→∞ IAB(t) ≤ ∆(1 − γ0/β) (straightforward details omitted),

implying that at least ∆γ0
β

isolation capacity is available to target other infections.

Since B-infections are equally-well treated as 0-infections (with drug A) and some

B-infections are isolated,
I′B(t)

IB(t)
<

I′0(t)

I0(t)
. The prevalence of B-infection must therefore

eventually fall to zero. What about A-infections? Let ∆A(t) = max{∆ − IAB(t) −
IB(t), 0} denote the isolation capacity available at time t to isolate A-infected hosts.

Isolation reduces the flow of new A-infection from βS(t)IA(t) to max{βS(t)(IA(t) −
∆A(t)), 0}; modifying equation (20) and comparing to (17) yields

I ′0(t)

I0(t)
− I ′A(t)

IA(t)
= (γB − γA) + βS(t)

∆A(t)− ηI0(t)

IA(t)
(23)

Consider the case in which both drugs are equally effective, so that γB − γA = 0.28

As discussed previously, limt→∞∆A(t) ≥ ∆γ0
β

. Since η < ∆γ0
β

(by assumption) and

I0(t) < 1 (obviously), we have ∆A(t) − ηI0(t) > 0 and hence
I′0(t)

I0(t)
>

I′A(t)

IA(t)
for all large

t. The prevalence of A-infection must therefore also eventually fall to zero—and, with

A-infection and B-infection each vanishing, AB-infection must also vanish.

In the end, the effectiveness of both antibiotics is completely restored, even as

all patients receive the best-available antibiotic treatment—a complete turning of the

tables on resistant bacteria!

What made this possible? First, doctors and public-health officials had access to a

rapid resistance diagnostic, to know what treatment to prescribe and where specifically

28If γA > γB , then strain A may grow in number and eventually dominate the bacterial population.
However, drug B remains effective in this case and can be used to treat A-resistant infections.
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to deploy public-health resources. Second, a highly-effective infection-control option

(“isolation”) is available that specifically disrupts transmission from targeted infections.

Finally, the pathogen in question spreads according to an SIS model, i.e., it is an obligate

pathogen that causes disease immediately after colonizing the host.

Infection-oriented interventions such as isolation are much less effective against

opportunistic pathogens that dwell in carriage for extended periods, such as Strepto-

coccus pneumoniae (pneumococcus) and Escherichia coli. However, other microbiome-

oriented interventions can potentially reverse the rise of resistance among such pathogens.

For instance, McAdams et al. (2019) argues that (i) an annual “microbiome checkup”

to detect resistant bacteria currently colonizing a patient plus (ii) a moderately effective

intervention aimed at clearing these bacteria from carriage (e.g., seeding or promoting

the growth of competitor bacteria) may be enough to select against resistance.
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Limiting the spread of penicillin-resistant Streptococcus pneumoniae: experiences

from the South Swedish Pneumococcal Intervention Project. Microbial Drug Resis-

tance, 4(2):99–105, 1998.

H. Fang, L. Wang, and Y. Yang. Human mobility restrictions and the spread of the

novel coronavirus (2019-nCoV) in China. NBER Working Paper 26906, 2020.

M. Farboodi, G. Jarosch, and R. Shimer. Internal and external effects of social dis-

tancing in a pandemic. NBER Working Paper 27059, 2020.

P. Fine and J. Clarkson. Individual versus public priorities in the determination of

optimal vaccination policies. American Journal of Epidemiology, 124(6):1012–1020,

1986.

P.-Y. Geoffard and T. Philipson. Rational epidemics and their public control. Inter-

national Economic Review, pages 603–624, 1996.

P.-Y. Geoffard and T. Philipson. Disease eradication: private versus public vaccination.

American Economic Review, 87(1):222–230, 1997.

M. Gersovitz. The economics of infection control. Annual Review Resource Economics,

3(1):277–296, 2011.

E. L. Glaeser, C. S. Gorback, and S. J. Redding. How much does covid-19 increase

with mobility? evidence from new york and four other us cities. NBER Working

Paper 27519, 2020.

J. Greenwood, P. Kircher, C. Santos, and M. Tertilt. An equilibrium model of the

African HIV/AIDS epidemic. Econometrica, 87(4):1081–1113, 2019.

M. J. Hendrix, C. Walde, K. Findley, and R. Trotman. Absence of apparent transmis-

sion of SARS-CoV-2 from two stylists after exposure at a hair salon with a univer-

sal face covering policy—Springfield, Missouri, may 2020. Morbidity and Mortality

Weekly Report, 69, 2020.

41



H. Hethcote, M. Zhien, and L. Shengbing. Effects of quarantine in six endemic models

for infectious diseases. Mathematical Biosciences, 180(1-2):141–160, 2002.

M. Hoy and M. K. Polborn. The value of technology improvements in games with

externalities: A fresh look at offsetting behavior. Journal of Public Economics, 131:

12–20, 2015.

T. B. Hyde, M. Gilbert, S. B. Schwartz, E. R. Zell, J. P. Watt, W. L. Thacker, D. F.

Talkington, and R. E. Besser. Azithromycin prophylaxis during a hospital outbreak

of Mycoplasma pneumoniae pneumonia. Journal of Infectious Diseases, 183(6):907–

912, 2001.
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