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Abstract: This paper introduces a simple market model for news: consumers benefit

from and want to share true news and producers incur costs to produce true news.

News veracity is endogenous, shaped by the social network. When producer revenues

derive from consumers’ viewing stories (e.g., advertising revenue), veracity is low in dense

networks, since even false news spreads widely. With revenues from consumers’ actions

based on stories (e.g, voting), veracity is higher in dense networks, since consumers make

better inferences about news truth. Adding third-party misinformation can increase

equilibrium true-news production as consumers respond by being more judicious when

sharing stories.

Keywords: social networks, news veracity, misinformation

Kranton: Economics Department, Duke University (email: rachel.kranton@duke.edu).

McAdams: Fuqua School of Business and Economics Department, Duke University

(email: david.mcadams@duke.edu). We thank seminar participants at Cornell, Dart-

mouth, Duke, EUI, GSE Barcelona, Johns Hopkins, Penn State, the 6th European Con-

ference on Networks, the 17th IO Theory Conference, and the 2019 Cowles Conference

in Economic Theory for helpful comments. We also thank Guglhupf Bakery, Cafe, &

Biergarten in Durham, NC for its hospitality while this research was conducted.



The 2016 Presidential election in the United States and the subsequent media envi-

ronment have raised both public and academic interest in “fake news” and overall news

quality. “Fake news” often refers to information that the provider knows to be false. As

such, fake news is not new. Tabloid newspapers have long published questionable stories

about celebrities. Governments have used false information to influence public opinion

at home and abroad (elaborated below), and one objective of disinformation campaigns

is to undermine overall trust in the news. At the same time, bona fide news producers

make decisions about the quality of the stories they broadcast to the public. This paper

studies news quality in a stylized model of the current news market, distinguished by

providers who can reach consumers through online distribution channels and consumers

who share stories through social media.

Our innovation is to endogenize the veracity of the news. Producers decide whether

to incur costs to produce “high-quality,” true stories. Consumers evaluate the news that

they receive and desire to share and act only on true news. We characterize outcomes

first in the baseline case when producers are paid per consumer who views their story,

such as through accompanying advertising. We consider the impact of network structure

on news veracity as well as the effect of third-party misinformation. We then study

news producers with more partisan motives, where revenues derive from the number of

consumers who take action based on their stories, such as voting.

The model applies to any decision-relevant information shared socially and specifically

captures the spectrum of provider motivations in the contemporary media market. Tra-

ditional brick and mortar newspapers, such as The New York Times, or fictitious-news

websites, such as denverguardian.com,1 earn revenues from advertising accompanying

their articles. While consumers might base decisions on their stories, these outlets do

1Fake-news website denverguardian.com famously published a false story linking Hillary Clinton to
the death of an FBI agent (Borchers, 2016).
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not typically directly earn revenue from those decisions. News outlets such as Fox News,

MSNBC, Breitbart, and Sinclair Media earn revenues from advertising but can also

be supported by owners who care about advancing their own political views.2 Finally,

government-sponsored media, such as the British propagandists of 1940 or the Russian

troll factories of today, seek to induce people to take some desired action or to disrupt

the media market altogether.3

Our results emphasize how network structure and the way in which producers earn

revenue impact equilibrium news veracity. In a sparsely connected network when pro-

ducers’ revenues are based on views, more links increase equilibrium quality; producers

correctly anticipate that true stories are shared and hence viewed more frequently. But

as the network becomes very dense, producers have little incentive to invest in story qual-

ity since even false stories spread widely. By contrast, when producers’ revenues derive

from actions based on their stories and consumers are highly connected, producers have

a strong incentive to invest in story quality. Consumers’ inferences about the truth of a

story become more precise as they are able to observe more neighbors’ sharing decisions.

However, even in this case, consumers’ ability to discern the truth may be limited, i.e.,

there may not be a “wisdom of the crowd.”

Misinformation from outside sources, such as from government agencies that publish

false news stories, alter equilibrium veracity in different ways. As might be expected, a

large quantity of misinformation leads to a breakdown of the news market. Consumers

do not believe or share any stories, and bona fide producers do not invest in quality

content. However, a small quantity of misinformation can in some cases increase true-

2For an exposé of Sinclair Media and its CEO David Smith, see Kroll (2017).
3Britian deployed three thousand operatives to the United Stated in 1940 to spread (sometimes false)

stories under the guise of news reports to raise American popular support for entering the war effort
against Nazi Germany (Cull 1995). More recently, the Russian-based Internet Research Agency created
Heart of Texas, a fictitious advocacy group that promoted Texas secession from the United States and
other provocative positions. When its Facebook page called for a protest against “the Islamification of
Texas” in 2017, real people showed up to protest and counterprotest (Allbright, 2017).
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news production. Knowing that false stories are being injected into the market from

outside sources, consumers become more judicious when deciding which stories to share,

which in turn gives bona fide producers more incentive to invest in publishing high-quality

news.

The paper contributes to three distinct literatures: (i) social learning, information

transmission, and networks, (ii) media markets, and (iii) misinformation.

Social learning, information transmission, and networks. The demand side of our market

specifies information transmission and social learning that is both similar to and different

from other models. Consumers here receive private signals and rationally update beliefs

about each news item based on others’ sharing decisions. However, unlike in the cascades

literature (e.g., Banerjee 1992 and Bikhchandani, Hirshleifer, and Welch 1992), consumers

observe multiple neighbors’ independent sharing decisions in one round of social learning.

As in Bloch, Demange, and Kranton (2018) and Chatterjee and Dutta (2016), but unlike

much of the network literature on information diffusion (e.g., Acemoglu, Ozdaglar, and

ParandehGheibi 2010 and Banerjee et al. 2013), consumers in our model choose whether

or not to pass on information to their neighbors. These decisions ultimately determine

the network’s role in spreading and filtering the news. To the best of our knowledge, this

is the first paper to endogenize the product which spreads in a network setting—how the

product itself is shaped by the network.4

Media markets. Much previous work on news markets studies possible sources of media

4Many papers in diverse fields have examined how network structure impacts the decisions of a third
party who cares about outcomes, e.g., a health authority deciding how best to control an epidemic
(Peng et al. 2013) or a supply-chain manager deciding how best to operate its warehouses (Beamon
and Fernandes 2004). The idea of endogenizing what passes through the network is rarely explored in
these literatures, but there are exceptions, e.g., Read et al. (2015) on endogenous pathogen virulence
and Bimpikis, Fearing, and Tahbaz-Salehi (2018) on upstream sourcing in a supply chain. Previous
research studies the effect of social-network structure on other producer decisions for a given product,
such as relying on traditional versus word-of-mouth advertising (Galeotti and Goyal 2009) or targeting
consumers when launching a new product (Chatterjee and Dutta 2016, Bimpikis, Ozdaglar, and Yildiz
2016).

4



bias. In Gentzkow and Shapiro (2006), news producers earn revenues based on their

reputation for accuracy and thus have an incentive to slant their news towards consumers’

initial beliefs. In Besley and Prat (2006) and Gentzkow, Glaeser, and Goldin (2006),

earning revenue from advertising, rather than a sponsor, reduces bias. In Ellman and

Germano (2009), however, newspapers bias their news towards their advertisers. In the

present paper, consumers care about the veracity of news. A key insight from the analysis

is that news veracity is lower when producers’ revenues depend only on advertising.

In that case, producers only care about how many consumers view their stories and,

in dense networks, even false news is widely viewed. When producers earn revenues

from consumers’ actions, in contrast, their incentive to produce true news is based on

consumers’ inferences, which improve in dense networks.5

Misinformation and gaslighting. In 1923, the Soviet Union launched the first modern

black-propaganda office, with the aim of “manipulating a nation’s intelligence system

through the injection of credible but misleading data” (Safire 1989), a tactic Joseph Stalin

dubbed “dezinformatsiya (disinformation)” (Manning and Romerstein 2004). State-

sponsored disinformation efforts now abound6 and are often online.7 Consumers en-

counter false news from other sources as well, including individuals and social bots who

5Several recent papers study other features of contemporary media markets, such as competition for
consumers’ limited attention (Chen and Suen 2018), media bias when consumers have heterogeneous
preferences and pass on news to like-minded individuals (Redlicki 2017), and competition to break a
story that leads to lower-quality news (Andreottola and de Moragas 2018).

6To give some examples: In 2016, an Iranian operation published over one hundred fake articles on
websites posing as legitimate news outlets, including a story apparently from the Belgian newspaper
Le Soir claiming that Emmanuel Macron’s campaign was financed by Saudi Arabia (Lim et al. 2019).
In 2014, Russia spread false stories about the downing of a civilian airliner, attempting to implicate
Ukrainian forces (Mills 2014). In 1985, the Soviets conducted “Operation INFEKTION” to drive world
opinion that the United States had invented AIDS to kill black people (Boghardt 2009), a falsehood still
believed by nearly one in five young black South Africans as late as 2009 (Grebe and Nattrass 2012). In
1978, a Soviet-controlled newspaper in San Francisco published a story falsely claiming that the Carter
administration supported the apartheid government of South Africa (Romerstein 2001).

7With the rise of “deep fake” video technology, it will become even harder for news con-
sumers to distinguish true from false sources. Even seeing may no longer be enough to believe
(https://www.cnet.com/videos/were-not-ready-for-the-deepfake-revolution/).
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spread conspiracy theories on social media and in memes.8 The problem is so severe

that, even seven years ago, the World Economic Forum listed digital misinformation in

online social media as one of the main threats to our society (Howell 2013a, b). A large

and varied literature studies misinformation, examining how falsehoods and conspiracy

theories spread differently than fact-based information on the Internet (del Vicario et al.

2016 and Vosoughi, Roy, and Aral 2018).9 The psychology literature on “gaslighting”

also studies how an abuser, through persistent lying and contradiction, seeks to cause

targeted individuals to doubt their own memory and perception (Dorpat 1996).

We evaluate the impact of misinformation, interpreted as the third-party broadcast

of false stories, and gaslighting, interpreted as lowered consumer confidence in their pri-

vate signals, on bona fide news producers’ equilibrium investment in news truth. While

large misinformation campaigns and highly-effective gaslighting unambiguously under-

mine the news market, smaller efforts can in some cases lead to increased true-news

production. Consumers pass on fewer stories, but producers’ incentive to broadcast true

stories increases, as false stories are less likely to get through consumers’ more stringent

filter.

The paper proceeds as follows. Section 1 presents the basic news-market model.

Section 2 characterizes equilibrium outcomes when producers are paid for views, and

Section 3 considers how expanding social networks affects news veracity. In Section 4, we

study large markets in which producers’ revenues derive from consumers taking actions

based on their stories. The Conclusion outlines directions for future research.

8A recent trending example is the meme “Epstein didn’t kill himself” (Ellis 2019).
9Specific studies include the effect of misinformation on an Ebola outbreak in West Africa (Oyeyemi,

Gabarron, and Wynn 2014) and on a French presidential election (Ferrera 2017); how exposure to
misinformation can shape memory (Loftus 2005 and Zhu et al. 2010); and how to identify misinformation
and reduce its harmful impact (Qazvinian et al. 2011 and Shao et al. 2016).
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1 Model: The Market for News

The market for decision-relevant information, which we refer to as “news,” consists of

a large finite number N of consumers, of whom M generate revenue for producers.10

Producers are modeled as a unit-mass continuum of agents, but the analysis applies

equally to a setting with finitely-many producers or even a single identifiable producer,

as long as producers lack commitment power.11 Low quality stories are costless to produce

and are false with probability one; high-quality stories entail a “reporting cost” cR > 0

and are true with probability one.12 (Our analysis extends easily to the case when low-

quality news is sometimes true and high-quality news is sometimes false.) The cost cR is

an i.i.d. random variable across stories with support (0,∞) and continuous distribution

H(cR).

Each consumer is linked to others in a directed social network, with a link from

consumer i to consumer j indicating that i can observe whatever news j decides to share,

i.e., i “follows” j. We use the word “neighbors” to describe consumers who are linked,

with the context indicating the link’s direction. For simplicity, we focus on networks in

which each consumer follows d others and refer to d as “social connectedness;” networks

with higher d are then “more connected.”

10The distinction between revenue-generating and non-revenue-generating consumers allows us to
study the impact of increasing the number of social links while holding producers’ revenue base fixed; see
Section 3. The model also encompasses situations in which producers only care about reaching (say) a
single consumer. For example, some stories aired on Fox News in 2019 were aimed specifically at Donald
Trump, reaching him while he watched the channel and indirectly through related social-media activity
(Shields and Dlouhy 2019).

11The model thus applies to particular news providers or reporters, each interacting with consumers
in its own “news market.” In this setting, there could be a reputational cost associated with publishing
a false story, which can be incorporated into the model by adjusting the support of the cost distribution
(specified below) to allow for negative reporting costs.

12While we focus on a context in which the thing being produced is a factual claim, our analysis applies
more broadly to settings where consumers care about any unobservable product characteristic, e.g., the
entertainment value of a new movie, the effectiveness of a new scientific practice (with “consumers”
being scientists), or the viability of a potential political candidate (with “consumers” being political
donors).
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The news-market game proceeds in three phases t = {0, 1, 2}. At t = 0, each producer

sees the realization of his reporting cost cR and decides whether to produce a high- or low-

quality story. All stories are then “broadcast,” seen by each consumer with independent

probability b ∈ (0, 1].13 Let p0 be the ex ante likelihood that stories are true, referred to

as “news veracity.”

At t = 1, each consumer who saw a story’s broadcast decides whether to share

the story with her neighbors. By assumption, consumers cannot directly observe story

quality but they can evaluate stories based on their own expertise, personal experience,

or access to other information, modeled as a private signal si ∈ {T, F} about news truth.

These signals are informative, with Pr(si = T |true) = Pr(si = F |false) = ρ ∈
(

1
2
, 1
)
,

conditionally i.i.d. across consumers and i.i.d. across stories.14 Consumers prefer to

share true stories15 but not false stories.16 A consumer earns “sharing payoff” πST > 0

from sharing a true story, −πSF < 0 from sharing a false story, and zero payoff from

not sharing. Consumers therefore prefer to share whenever they believe that a story’s

likelihood of being true exceeds “sharing threshold” pS =
πSF

πST+πSF
∈ (0, 1). For notational

simplicity, we normalize πST = πSF so that pS = 1
2
.

At t = 2, consumers view the stories shared by their neighbors and each consumer

who has seen a story decides whether to take an “action” based on it, earning πAT > 0

when acting on a true story, −πAF < 0 when acting on a false story, and zero payoff when

not acting. Consumers therefore prefer to act on a story when its likelihood of being true

13In Appendix B, we extend the analysis to allow consumers to have different likelihoods of seeing the
broadcast, bi, different numbers of neighbors, di, and different private-signal precisions, ρi, among other
asymmetries.

14Because private signals are i.i.d. across stories, signals and sharing behavior about one story are
uninformative about other stories. We can therefore consider each story in isolation.

15A consumer’s overall incentive to share a story could depend on observable characteristics, such as
novelty, as well as on unobservable quality. Our analysis focuses on the strategic issues created by the
presence of an unobservable characteristic, namely “truth,” holding observable characteristics fixed.

16 The analysis becomes trivial if consumers prefer to share false stories, since then nothing is learned
from others’ sharing behavior.
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exceeds “action threshold” pA =
πAF

πAT+πAF
∈ (0, 1). For expositional ease, we assume in the

main text that πAT = πAF so that pA = 1
2
.17

The truth of the story is revealed at the end of t = 2, at which point consumers’

sharing and action payoffs are realized. In the baseline model studied next, producers

earn a unit of revenue for each consumer that has viewed its story. We then study markets

where producers earn a unit of revenue for each consumer that acts on its story.18

2 News Markets with Revenues from Views

In this section, we characterize equilibrium outcomes in the news market when each

producer earns one unit of revenue per consumer who views their story.19

Figure 1: Schematic of a views-supported news market.

Figure 1 illustrates this news-market game. Producers decide whether to produce

high- or low-quality news, which determines p0. This news veracity informs consumers’

sharing decisions, which in turn determine the likelihood that any given consumer sees a

17This assumption that consumers have the same threshold belief for action as for sharing (pA = pS =
1
2 ) simplifies the analysis but also rules out some interesting possibilities. In Appendix C, we extend our
analysis to allow consumers to have a higher or a lower standard for action than for sharing.

18Appendix C analyzes an extension in which producers earn revenue from both views and actions.
19Consumers may encounter the same news item multiple times but, by assumption, the producer is

only paid once per consumer who sees the news. The analysis can be extended in a straightforward way
to allow for non-linear producer revenue.
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story, that story’s “visibility,” denoted VT and VF for true and false news, respectively.

Producers’ incentive to invest depends on the extra visibility of true news, denoted ∆V ≡

VT − VF .

We focus on dynamically-stable Bayesian Nash equilibria in which consumers use the

same sharing strategy (“equilibria,” for short). (For details on dynamic stability, see

Appendix A. For characterization of all Bayesian Nash equilibria, see Appendix B.) We

solve for equilibria by working backward, first considering consumers’ incentives to share

and then producers’ incentive to invest.

Optimal consumer sharing. Suppose that consumer i has seen a story’s broadcast.

Given private signal si = T or si = F , i’s updated beliefs, denoted p1(si; p0), are

p1(T ; p0) =
p0ρ

p0ρ+ (1− p0)(1− ρ)
and p1(F ; p0) =

p0(1− ρ)

p0(1− ρ) + (1− p0)ρ

by Bayes’ rule. Let zT and zF denote each consumer’s likelihood of sharing after private

signal si = T and si = F , respectively. z = (zT , zF ) is called the “sharing rule.” Optimal

consumer sharing depends on the prior p0, as illustrated in Figure 2:

Figure 2: News-veracity regions and optimal consumer sharing.

• Always-share region p0 ∈ (ρ, 1]: If news veracity is high enough, consumers find it

optimal to share news after a good and after a bad signal, since both p1(T ; p0) > 1
2

and p1(F ; p0) > 1
2
. In this case, sharing is uninformative.
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• Never-share region p0 ∈ [0, 1− ρ): If news veracity is low enough, consumers find

it optimal never to share news, since both p1(T ; p0) < 1
2

and p1(F ; p0) < 1
2
.

• Filtering region p0 ∈ (1 − ρ, ρ): If news veracity is in this intermediate range,

consumers find it optimal to share after a good signal because p1(T ; p0) > 1
2
, but

find it optimal not to share after a bad signal because p1(F ; p0) > 1
2
. Sharing

here is informative and we say that consumers “filter” the news. Let z̃ ≡ (1, 0) be

shorthand for the optimal sharing rule in this case.

• Thresholds p0 ∈ {1 − ρ, ρ}: If news veracity is exactly p0 = ρ, what we call the

“always-share threshold,” consumers are indifferent whether to share after seeing

a bad signal (p1(F ; p0) = 1
2
) and hence use a sharing rule of the form z = (1, zF ).

Similarly, if news veracity is p0 = 1−ρ, the “never-share threshold,” consumers are

indifferent after seeing a good signal (p1(T ; p0) = 1
2
) and use a sharing rule of the

form z = (zT , 0).

Lemma 1 describes consumers’ best-response correspondence, denoted Z(p0):

Lemma 1. (i) If p0 < 1 − ρ, then Z(p0) = (0, 0). (ii) If p0 > ρ, then Z(p0) = (1, 1).

(iii) If p0 ∈ (1− ρ, ρ), then Z(p0) = z̃ ≡ (1, 0). (iv) Z(1− ρ) = {(zT , 0) : zT ∈ [0, 1]} and

Z(ρ) = {(1, zF ) : zF ∈ [0, 1]}.

Consumer sharing determines the visibility of news stories. Since each neighbor shares

true stories with probability b(ρzT + (1− ρ)zF ), we have

VT (z) = 1− (1− b)(1− b(ρzT + (1− ρ)zF ))d. (1)

Similarly, because each neighbor shares false stories with probability b((1− ρ)zT + ρzF ),

we have

VF (z) = 1− (1− b)(1− b((1− ρ)zT + ρzF ))d. (2)
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Optimal producer investment. Next, we turn to each producer’s decision whether to

incur the reporting cost cR to produce a true story. Let RT (z) and RF (z) be the expected

revenue of true and false stories, respectively. With M revenue-generating consumers,

RT (z) = MVT (z) andRF (z) = MVF (z). True stories earn a “revenue premium” ∆R(z) =

M∆V (z), where ∆V (z) ≡ VT (z)− VF (z).

Producers maximize expected profit by producing high quality whenever cR < M∆V (z),

which occurs with ex ante probability H(M∆V (z)). The resulting news veracity is de-

noted p0(z) and referred to as the “best-response news veracity:”

p0(z) = H (M∆V (z)) . (3)

Since cR = M∆V (z) occurs with probability zero, the producer has an essentially-unique

best response to any sharing rule.

Figure 3 illustrates the best-response news veracity.20 First, producers never invest

if consumers always share or never share, i.e., p0(1, 1) = p0(0, 0) = 0, but do sometimes

invest whenever consumer sharing is informative, i.e., p0(z) > 0 whenever zT > zF .

Then, starting from the left, p0(zT , 0) is increasing in zT below a threshold zT ≤ 1 and,

if zT < 1 (as shown), decreasing in zT above that threshold. Intuitively, sharing after a

good private signal magnifies the visibility of true stories more than false stories when

sharing is sufficiently rare. However, as zT increases, false stories are increasingly shared

as well, causing ∆V (z) to fall when d is sufficiently large.21 Second, p0(1, zF ) is decreasing

in zF , since sharing after a bad signal spreads false stories more than true stories.

Lemma 2 gathers together these facts about best-response news veracity p0(z).

20To avoid confusion, note that the x-axis of this figure consists of all sharing rules that could poten-
tially be a best response for consumers, i.e., those of the form (zT , 0) or (1, zF ).

21The critical value zT is strictly less then one if d is sufficiently large. However, the magnitudes
involved are not large. For example, with b = 1

2 and ρ = 2
3 , zT ≈ 0.823 if d = 5 and zT ≈ 0.53 if d = 9.
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Figure 3: The best-response news veracity function p0(z), the maximal news veracity
p0 ≡ maxz p0(z), and the filtering news veracity p̃0 ≡ p0(1, 0).

Lemma 2. (i) p0(zT , zF ) > 0 if zT > zF and p0(zT , zF ) = 0 if zT = zF . (ii) p0(zT , 0)

is strictly increasing in zT over the interval [0, zT ] and strictly decreasing in zT over

the interval [zT , 1] for some zT ∈ (0, 1]. (iii) p0(1, zF ) is strictly decreasing in zF . (iv)

arg maxz p0(z) = (zT , 0). (v) p0(z) is continuous in z.

Two specific news-veracity levels are key to the equilibrium analysis below and also

illustrated in Figure 3. First, the maximal news veracity, denoted p0, is the highest

veracity that can be achieved when producers invest optimally, given any sharing rule:

p0 ≡ max
z
p0(z) = p0(zT , 0) = H (M∆V (zT , 0)) ,

with (zT , 0) being the sharing rule that maximizes producers’ incentive to invest (Lemma

2(iv)). Second, the filtering news veracity, denoted p̃0, is the producers’ best reply when

13



consumers filter the news:

p̃0 ≡ p0(1, 0) = H (M∆V (1, 0)) .

2.1 Equilibrium characterization

This section characterizes the equilibria of the news-market game. In a “dysfunctional

equilibrium,” producers never invest, all stories are false, and consumers never share.

By contrast, in a “functional equilibrium,” producers sometimes invest, consumers some-

times share, and some stories are true. We find, first, that a dysfunctional equilib-

rium always exists. Second, a functional equilibrium exists if and only if the maximal

news veracity exceeds the never-share threshold, i.e., p0 > 1 − ρ. Third, when a func-

tional equilibrium exists, it is essentially unique with news veracity, denoted p∗0, equal to

max{1 − ρ,min{p̃0, ρ}}. In particular, p∗0 must equal either ρ (always-share threshold),

p̃0 (filtering news veracity), or 1− ρ (never-share threshold). Since news veracity cannot

exceed ρ, some false news circulates in any equilibrium.

Formally, let H(·; γ) denote the distribution of producers’ reporting costs when scaled

by a parameter γ > 0, so that H(cR; γ) = H(cR/γ) for all cR > 0. Viewed as functions

of the cost-scaling parameter γ, the filtering news veracity is p̃0(γ) ≡ H(M∆V (1, 0)/γ)

and the maximal news veracity is p0(γ) ≡ H(M∆V (zT , 0)/γ). Since p̃0(γ) and p0(γ) are

each continuous and strictly decreasing functions of γ, with p̃0(γ) ≤ p0(γ) for all γ, we

can define thresholds 0 < γ1 < γ2 ≤ γ3 < ∞ implicitly by the conditions p̃0(γ1) = ρ,

p̃0(γ2) = 1− ρ, and p0(γ3) = 1− ρ.

The equilibria depend on the distribution of producers’ costs, as illustrated in Figure

4 for four cases, when γ is: (a) less than γ1, so that p̃0(γ) > ρ; (b) between γ1 and

γ2, so that p̃0(γ) ∈ (1 − ρ, ρ); (c) between γ2 and γ3, so that p̃0(γ) < 1 − ρ < p0; or

14



(d) greater than γ3, so that p0(γ) ≤ 1 − ρ. In each of the four panels of Figure 4: the

x-axis depicts consumers’ sharing rule; the y-axis is news veracity; the thick line depicts

consumers’ best-response correspondence (given by Lemma 1); and the thin line depicts

the best-response news veracity (as in Figure 3).

Figure 4: Illustration of the equilibria when (a) p̃0 > ρ; (b) p̃0 ∈ (1 − ρ, ρ); (c) p̃0 <
1− ρ < p0; and (d) p0 < 1− ρ.

Each crossing point of these best-reply curves corresponds to a Bayesian Nash equi-

librium. In (a-c), there are three such crossing points. However, as shown in Appendix

A, only the highest and the lowest of these crossing points are dynamically stable,22

corresponding to the unique functional equilibrium and the dysfunctional equilibrium,

respectively.

22The intermediate-veracity equilibrium always has news veracity equal to 1 − ρ. To see why this
equilibrium is dynamically unstable, suppose that news veracity were perturbed to be slightly lower
than 1− ρ. Consumer adaptation would lead them to share less frequently, inducing producers to invest
less frequently, reinforcing the original perturbation.
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(a) High equilibrium news veracity (Fig 4(a)). If γ < γ1, low reporting costs are suffi-

ciently likely that the filtering news veracity p̃0(γ) exceeds ρ. In the unique functional

equilibrium, p∗0 = ρ and the consumer sharing rule is of the form z∗(γ) = (1, z∗F (γ)). As

γ increases over this range, news veracity remains equal to ρ but consumers’ likelihood

z∗F (γ) of sharing after a bad signal decreases from 1 to 0.

(b) Intermediate equilibrium news veracity (Fig 4(b)). If γ ∈ (γ1, γ2), then p̃0(γ) ∈

(1 − ρ, ρ). In the unique functional equilibrium, p∗0 = p̃0(γ) and consumers filter the

news, using sharing rule z∗(γ) = z̃ ≡ (1, 0). As γ increases over this range, news veracity

decreases from ρ to 1− ρ.

(c) Low equilibrium news veracity (Fig 4(c)). If γ ∈ (γ2, γ3), then p̃0(γ) < 1 − ρ and

p0(γ) > 1 − ρ. In the unique functional equilibrium, p∗0(γ) = 1 − ρ and consumers’

sharing rule is of the form z∗(γ) = (z∗T (γ), 0). As γ increases over this range, news

veracity remains equal to 1 − ρ but consumers’ likelihood z∗T (γ) of sharing after a good

signal decreases from 1 to zT (defined in Lemma 2).

(d) Dysfunctional news market (Fig 4(d)). If γ > γ3, then p0(γ) < 1 − ρ and the

dysfunctional equilibrium is the unique equilibrium.

Theorem 1 summarizes these findings, including as well the boundary cases when the

cost-scaling parameter γ equals one of the three thresholds.

Theorem 1. For any γ, there exists a dysfunctional equilibrium in which no consumer

shares and no producer invests. (a) If γ ≤ γ1, then a unique functional equilibrium

exists and p∗0(γ) = ρ. (b) If γ ∈ (γ1, γ2), then a unique functional equilibrium exists,

p∗0(γ) = p̃0(γ) ∈ (1−ρ, ρ), and p∗0(γ) is strictly decreasing in γ. (c) If γ ∈ [γ2, γ3), then a

unique functional equilibrium exists and p∗0(γ) = 1− ρ. (d) If γ ≥ γ3, then no functional

equilibrium exists.
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2.2 Misinformation and Equilibrium News Truth

This section examines the impact of misinformation injected into the news market. In

addition to the unit mass of “bona fide producers” with reporting costs drawn from dis-

tribution H(·), suppose that there is a mass m ≥ 0 of “misinformation agents” who only

produce false stories (as if they have infinite reporting cost). Total quantity 1 + m of

stories is produced, fraction 1
1+m

by bona fide producers and fraction m
1+m

by misinfor-

mation agents.23 As one might expect, if m is sufficiently large, then the dysfunctional

equilibrium is the unique equilibrium. Moreover, when a functional equilibrium exists,

adding more misinformation never increases equilibrium news veracity.

However, perhaps surprisingly, more misinformation can induce bona fide producers

to invest more, resulting in a greater quantity of true news. Consumers share more

judiciously when there is more misinformation in circulation, which in turn can increase

the incentive to produce true news.

The analysis mirrors that of the previous section: Let p̃0(m), p0(m), and p∗0(m) denote

the filtering news veracity, maximal news veracity, and equilibrium news veracity, as

functions of the quantity of misinformation, with shorthand p̃0 = p̃0(0) and p0 = p0(0)

for the baseline case when m = 0. Given any sharing rule z, bona fide producers optimally

produce quantity p0(z) of true news. The share of news that is true is therefore p0(z;m) =

p0(z)
1+m

; in particular, the filtering news veracity is p̃0(m) = p̃0
1+m

and maximal news veracity

is p0(m) = p0
1+m

. Define three key thresholds m1 < m2 ≤ m:

m1 =
p̃0

ρ
− 1;m2 =

p̃0

1− ρ
− 1; and m =

p0

1− ρ
− 1. (4)

23As discussed in footnote 11, our analysis also applies to identifiable individual producers. In that
context, “misinformation” corresponds to false stories produced by a third party but made to appear as
if produced by that individual, such as impersonation accounts (Goga, Venkatadri, and Gummadi 2015)
and social bots (Shao et al. 2018).
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By construction, p̃0(m1) = ρ, p̃0(m2) = 1− ρ and p0(m) = 1− ρ. Thus, p̃0(m) > ρ if and

only if m < m1, p̃0(m) > 1 − ρ if and only if m < m2, and p0(m) > 1 − ρ if and only if

m < m.

Figure 5: The impact of different quantities of misinformation.

Figure 5 shows how misinformation affects equilibrium outcomes in a scenario with

low producer costs, γ < γ1, so that p̃0 > ρ and hence m1 > 0. The thick line shows

consumers’ best-response correspondence and the highest thin line shows the bona fide

producers’ best reply p0(z), as in Figure 4(a). The other four thin lines show the share

of news that is true, p0(z;m) = p0(z)
1+m

, given different quantities of misinformation. The

highest crossing-point of each thin line with the thick line corresponds to the functional

equilibrium for that quantity of misinformation.

(i) Small quantity of misinformation. Suppose first that m ∈ (0,m1). The presence

of misinformation shifts down the best-response news veracity curve, from the highest

line (m = 0) to the second-highest line in Figure 5. However, because m < m1, the

filtering news veracity p̃0(m) remains above ρ; so, p∗0(m) remains equal to ρ. Since the

overall fraction of news that is true remains the same, even though misinformation is
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being injected into the market, bona fide news producers must be increasing true-news

production from p∗0 = ρ to (1 + m)p∗0(m) = (1 + m)ρ. A sufficiently small amount of

misinformation therefore increases the equilibrium quantity of true stories in circulation.

As misinformation quantity increases from 0 to m1, consumers become more judicious,

reducing their probability of sharing after a false signal (z∗F falls). This in turn increases

the relative visibility of true news, giving bona fide producers more incentive to invest

in news truth. This can be seen visually in Figure 5, as best-response news veracity is

decreasing to the right of (1, 0).

(ii) Intermediate quantity of misinformation. Suppose next that m ∈ [m1,m2]. The best-

response news veracity curve shifts down from the second-highest to the third-highest

line in Figure 5. Because m ∈ [m1,m2], the filtering news veracity p̃0(m) ∈ [1 − ρ, ρ].

The unique functional equilibrium therefore has news veracity p∗0(m) = p̃0(m) = p̃0
1+m

and consumers use the filtering rule z̃ = (1, 0). Bona fide producers optimally respond

by producing a constant quantity p̃0 of true news, and overall equilibrium news veracity

falls as misinformation increases over this range.

(iii) Large quantity of misinformation. Suppose next that m ∈ (m2,m), corresponding

to the second-lowest line in Figure 5. In this case, filtering news veracity p̃0(m) < 1− ρ

because m > m2, but the maximal news veracity p0(m) > 1 − ρ because m < m. The

functional equilibrium now has news veracity p∗0(m) = 1 − ρ and quantity (1 + m)(1 −

ρ) of true news, which is increasing in m. So, once again, increasing the quantity of

misinformation can lead to more true news being produced.

(iv) Overwhelming quantity of misinformation. In the last case when m > m, p0(m) <

1− ρ and the dysfunctional equilibrium is the unique equilibrium.

Proposition 1 summarizes these findings:
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Proposition 1. (i) A functional equilibrium exists if and only if m < m. (ii) Equilibrium

news veracity, p∗0(m), is non-increasing over the range m < m and strictly decreasing

over the range m ∈ (m1,m2). (iii) The quantity of true news, (1 + m)p∗0(m), is non-

decreasing over the range m < m and strictly increasing over the ranges m ∈ (0,m1) and

m ∈ (m2,m).

2.3 Consumer Evaluation of News and Equilibrium Veracity

Here we study the impact of deep fake technology and efforts to “gaslight” consumers,

reducing their ability to assess what is true. Decreasing signal precision from ρ to ρ′

has three direct effects. First, holding fixed p0, consumers switch from always sharing

to filtering if p0 ∈ (ρ′, ρ) or switch from filtering to never sharing if p0 ∈ (1 − ρ, 1 − ρ′).

Second, again holding fixed p0, a consumer who only shares after a good signal will share

more false stories and fewer true stories. Third, holding consumers’ sharing rule fixed,

the drop from ρ to ρ′ leads to less true news shared and viewed, giving producers less

incentive to produce true news.

The interaction of these effects determines how equilibrium news veracity, now de-

noted p∗0(ρ), varies with ρ. If p∗0(ρ) > 1/2 so that most news is true, then all three effects

go in the same direction and decreasing ρ unambiguously decreases p∗0(ρ). However, when

p∗0(ρ) < 1/2, decreasing ρ may actually increase equilibrium news veracity.

More precisely, the effect of decreasing ρ depends on how ρ compares to thresholds ρ

and ρ implicitly defined by the conditions p0(ρ) = 1− ρ and p̃0(ρ) = 1− ρ, respectively.

Intuitively, ρ is the lowest possible signal precision that supports a functional equilibrium,

and ρ is the highest signal precision for which equilibrium news veracity is at the never-

share threshold. Referring back to Figure 4:

(i) Low signal precision. If ρ ≤ ρ, then p0(ρ) ≤ 1 − ρ and the unique equilibrium is
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the dysfunctional equilibrium. This parameter range is depicted in Figure 4(d). Any

decrease in ρ has no effect.

(ii) Intermediate signal precision. If ρ < ρ ≤ ρ, then p0(ρ) > 1 − ρ ≥ p̃0(ρ). There is

a unique functional equilibrium, with news veracity p∗0(ρ) = 1− ρ. Over this parameter

range, then, p∗0(ρ) is strictly decreasing in ρ. This counter-intuitive effect can be seen

graphically in Figure 4(c). As ρ decreases, producers’ best-response news veracity (the

thin line) moves down but the bottom step of consumers’ best-response correspondence

moves up. The crossing-point of these curves therefore moves up and to the left; producers

invest more in quality and consumers’ share less often after a good signal.

(iii) High signal precision. If ρ > ρ, then p̃0(ρ) > 1− ρ. A unique functional equilibrium

exists with news veracity p∗0(ρ) = min{p̃0(ρ), ρ}. Since p̃0(ρ) and ρ are each greater than

1 − ρ and strictly increasing in ρ, so is p∗0(ρ) over this parameter range. Graphically,

in Figure 4(a-b), as ρ decreases, producers’ best-response news veracity (the thin line)

and the top step of consumers’ best-response correspondence (the thick line) both de-

crease. The crossing-point corresponding to the functional equilibrium must therefore

also decrease.

Proposition 2 summarizes:

Proposition 2. Signal-precision thresholds 1
2
< ρ ≤ ρ ≤ 1 exist such that: (i) if ρ ∈

(1/2, ρ], then the dysfunctional equilibrium is the unique equilibrium; (ii) if ρ ∈ (ρ, ρ],

then there is a unique functional equilibrium, p∗0(ρ) = 1 − ρ, and p∗0(ρ) is decreasing in

ρ over this range; and (iii) if ρ ∈ (ρ, 1], then there is a unique functional equilibrium,

p∗0(ρ) = min{p̃0(ρ), ρ} > 1− ρ, and p∗0(ρ) is increasing in ρ over this range.

Thus, if equilibrium news veracity is high enough that consumers always share after

a good private signal, i.e., p∗0(ρ) > 1 − ρ, then reducing consumers’ ability to discern

which stories are true causes news veracity to fall. On the other hand, if p∗0(ρ) = 1 − ρ

21



so that consumers are indifferent whether to share after a good signal, slightly reducing

consumers’ ability to discern the truth causes news veracity to increase. As consumers

become more cautious and share stories less often, the visibility of true and false stories

declines, but more so for false stories. As a result, the extra visibility of true stories

increases, giving producers greater incentive to invest.

3 Social Connectedness and News Veracity

This section examines how more links among consumers impacts equilibrium news ve-

racity when producers are paid for views. We find that adding links to a sparse network

leads to more true news, while adding links to a dense network leads to less true news.

Moreover, when social connectedness is sufficiently high, equilibrium news veracity can-

not exceed 1− ρ, the lowest level consistent with any consumer sharing.

3.1 Finitely Dense Networks

As a first step, consider how the filtering news veracity, denoted here as p̃0(d), varies

with social connectedness d. In the Appendix, we show that p̃0(d) is single-peaked in d,

rising to a maximum at a level denoted d̃ and then declining to zero as d grows large.

For intuition, consider the specific impact of increasing d = 0 to d = 1 and from d to

d+ 1 large. For d = 0, all stories are seen with broadcast probability b; true stories have

no extra visibility. Producers therefore have no incentive to invest, and p̃0(0) = 0. When

a consumer follows one person, d = 1, that link increases the consumer’s likelihood of

viewing any given story by (1− b)bρ if the story is true or by (1− b)b(1− ρ) if the story

is false. The extra visibility of true stories therefore increases from 0 to (1− b)b(2ρ− 1),

inducing producers sometimes to invest. In particular, p̃0(1) = H(M(1−b)b(2ρ−1)) > 0.

When a consumer follows d others, where d is large, almost all stories are false condi-
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tional on not being shared by any of those d neighbors. The stories shared only by the

(d+ 1)-st neighbor are therefore almost all false. Adding a (d+ 1)-st neighbor therefore

increases false-news visibility more than it increases true-news visibility, reducing the

extra visibility of true stories and thereby reducing producers’ incentive to invest.

Given that p̃0(d) is single-peaked in d, there exist thresholds d and d such that p̃0(d) >

1− ρ if and only if d ∈
(
d, d
)
. By Thm 1(a-b), a unique functional equilibrium therefore

exists whenever d ∈
(
d, d
)
, with news veracity p∗0(d) = min{p̃0(d), ρ}. Note that p∗0(d)

only depends on d through its impact on the filtering news veracity p̃0(d), and indeed

that p∗0(d) is a non-decreasing function of p̃0(d). The fact that p̃0(d) is single-peaked and

maximized at d̃ therefore implies that p∗0(d) is single-peaked over the range d ∈
(
d, d
)

and also maximized at d̃.

The flip side of this observation is that equilibrium news veracity cannot exceed 1−ρ

whenever d ≤ d or d ≥ d. In those cases, there are two possibilities: either only the

dysfunctional equilibrium exists (as when d = 0), so that all stories are false, or a

functional equilibrium exists with news veracity equal to 1 − ρ, so that consumers are

indifferent whether to share after a good private signal. (We examine what happens in

markets with large d in more detail in Section 3.2.)

Proposition 3 summarizes:

Proposition 3. There exist 0 ≤ d ≤ d < ∞ such that: p∗0(d) > 1 − ρ if and only if

d ∈
(
d, d
)
; p∗0(d) is single-peaked in d over this range; and p∗0(d) is maximized at d = d̃.

Moreover, for all d ≤ d and d ≥ d, either the dysfunctional equilibrium is the unique

equilibrium or a unique functional equilibrium exists with news veracity equal to 1− ρ.

Proposition 3 highlights a weakness of densely connected news markets. When pro-

ducers are paid for views, as assumed in this section, most news is false in any equilibrium.

To see why, suppose that news veracity were higher than 1 − ρ. Everyone with a posi-
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tive private signal would then share, causing true and false stories all to be very likely

seen. But this would give producers approximately zero incentive to invest, causing best-

response news veracity to be approximately zero, a contradiction. However, equilibria can

exist with news veracity equal to 1− ρ in which stories are shared—but not so widely as

to undermine producers’ incentive to invest. In such equilibria, consumers use a sharing

rule of the form z∗(d) = (z∗T (d), 0), where z∗T (d) grows small as d grows large.24

3.2 Infinitely Dense Networks

Consider next the limit of a sequence of news markets, each having the same number

M of revenue-generating consumers but with social connectedness d going to infinity,

what we refer to as the “limit-market.” If news quality and consumers’ sharing rule were

fixed, consumers in the limit-market would, by the Law of Large Numbers, be able to

discern perfectly which stories are true based on the (non-zero) fraction of their infinitely

many neighbors who share each piece of news. There would be a “wisdom of the crowd”

(Galton 1907). However, news quality and consumers’ sharing behavior is not fixed but

rather determined in equilibrium.

The equilibria in the limit-market depend on the precision of consumers’ private

signals. For each d, let ρ(d) be the lower signal-precision threshold defined in Section

2.3, and let ρ∞ ≡ limd→∞ ρ(d). Similarly, let p∗0(d) denote the news veracity in the

unique functional equilibrium for any given d, if it exists, or p∗0(d) = 0 if no functional

equilibrium exists, and let p∗∞0 = limd→∞ p
∗
0(d). We have:

Proposition 4. (i) If ρ < ρ∞, then p∗∞0 = 0 and the limit-market is dysfunctional. (ii)

If ρ > ρ∞, then the limit market has a unique functional equilibrium and p∗∞0 = 1− ρ.

There is no “wisdom of the crowd” in equilibrium. In the only functional equilibrium,

24As established in Appendix B, limd→∞ dz∗T (d) ∈ (0,∞), i.e., z∗T (d) goes to zero as rate 1/d.
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veracity is equal to 1 − ρ, and consumers are unable to infer for sure which stories are

true based on others’ sharing behavior. Mathematical details are in Appendix B but, to

gain intuition, note that news veracity being equal to 1− ρ means that true stories must

generate H−1(1−ρ) more revenue than false stories. This in turn requires that true-story

visibility VT exceed false-story visibility VF by H−1(1 − ρ)/M > 0. Hence, a significant

fraction of stories must go unseen by each consumer, even though they have infinitely

many neighbors. A consumer who sees a story’s broadcast but sees no neighbor sharing

infers that others’ failure to share the story is “bad news” but, since some true stories are

also never shared, cannot determine for sure whether the story is true or false. Similarly,

if a consumer were to see several neighbors sharing, that would be “good news” but also

not definitive. Consumers will not know for sure which stories are true and which are

false.

4 News Markets with Revenues from Actions

In this section, we study markets where producers earn revenue for each consumer who

takes a specific action based on their story, such as voting (partisan news) or buying a

product (sponsor-supported news).

Figure 6 illustrates this news-market game. Producers choose quality, and consumers

then decide whether to share stories. Observing the number of neighbors that share a

story, consumers make inferences about the story’s truth, which inform their decisions

whether or not to act on the story. Consumers’ sharing decisions thus impact producers’

incentives in two ways, affecting how widely true and false news spreads and consumers’

inferences about news truth.
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Figure 6: Schematic of an actions-supported news market.

4.1 Limit-market equilibrium characterization

For clarity and brevity, we focus on the “limit-market” introduced in Section 3.2.25 We

characterize the limit-market equilibria and the corresponding news veracity, denoted

p∗A∞0 . As in a views-supported market, there is always a dysfunctional equilibrium in

which producers never invest, so that all stories are false, and consumers never share

nor act on any stories. Moreover, no functional equilibrium exists with veracity higher

than ρ or lower than 1− ρ. If the former, consumers would share and act on all stories,

giving producers no incentive to invest and causing all stories to be false, a contradiction.

If the latter, consumers would never share nor act on any stories, and producers would

again have no incentive to invest, another contradiction. All functional equilibria must

therefore have news veracity in the range [1− ρ, ρ].

Suppose for a moment that consumers were able to perfectly discern which stories are

true. Consumers would then act on all true stories and not act on all false ones, generating

the greatest possible revenue (M) for true stories and the least possible revenue (zero) for

false ones. Producers would then have the greatest possible incentive to invest, whenever

reporting cost cR < M . We refer to the resulting news veracity, H(M/γ), as the “maximal

conceivable news veracity.” Next, define cost-parameter thresholds γ and γ implicitly by

25Appendix C provides a full analysis of actions-supported news markets with finite social networks,
as well as an extension allowing producers to be paid for both views and for actions.
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the conditions H(M/γ) = 1− ρ and H(M/γ) = ρ. The thresholds γ and γ capture how

high news veracity could conceivably be: greater than ρ if γ < γ (“low costs”); in the

interval (1 − ρ, ρ] if γ ∈
[
γ, γ
)

(“intermediate costs”); or less than or equal to 1 − ρ if

γ ≥ γ (“high costs”). Figure 7 illustrates the equilibrium outcomes for costs in different

ranges.

Figure 7: Illustration of limit-market equilibria when revenue is based on consumer
actions, in three cases: (a) when γ ≥ γ (“high costs”); (b) when γ ∈

[
γ, γ
)

(“intermediate
costs”); and (c) when γ < γ (“low costs”).

Case #1: High costs and the dysfunctional limit-market. Suppose first that γ ≥ γ,

pictured in Figure 7(a). Because H(M/γ) ≤ 1 − ρ, news veracity must be strictly less

than 1 − ρ in any equilibrium. Consumers never share in any equilibrium and, learning

nothing from others, never act. True and false stories therefore all earn zero revenue,

giving producers zero incentive to invest. Thus, the dysfunctional equilibrium is the

unique equilibrium.

Case #2: Intermediate costs and the wise limit-market. Suppose that γ ∈ [γ, γ), pictured

in Figure 7(b). The limit-market then has a functional equilibrium in which consumers

use the filtering sharing rule z̃ = (1, 0) and the maximal conceivable news veracity is

realized, i.e., p∗A∞0 = H(M/γ). To see why, consider the case when γ = γ − ε for

some small ε, and suppose for a moment that consumers use the filtering sharing rule.

Each neighbor’s observed sharing behavior is then a binary random variable (“share/not
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share”) with “share” occurring with probability bρ and b(1 − ρ), respectively, for true

and false stories. By the Law of Large Numbers, a consumer who follows many others

can therefore infer with high confidence whether any given story is true or false.

In the limit-market when following infinitely many others, consumers can perfectly

discern which stories are true–and hence only act on true stories. True stories then earn

M revenue while false stories earn zero revenue, causing producers to invest whenever

cR < M , the most possible, and inducing news veracity H(M/γ). Finally, because γ is

slightly below γ, H(M/γ) is slightly higher than 1− ρ and consumers find it optimal to

use the filtering sharing rule; so, there is indeed an equilibrium in the limit-market in

which producers invest maximally and consumers enjoy a “wisdom of the crowd.”

Case #3: low costs and the high-veracity limit-market. Suppose that γ < γ, pictured in

Figure 7(c). In this case, the limit-market has a functional equilibrium with news veracity

p∗A∞0 = ρ.26 In the sequence of finite-market equilibria converging to this limit-market

equilibrium (as d → ∞), consumers use a sharing rule of the form z∗A(d) = (1, z∗AF (d))

where limd→∞ z
∗A
F (d) = 1. Because each consumer almost always shares, even after a bad

private signal, each consumer in a large finite market views approximately fraction b of

their neighbors sharing, for true and false stories. The exact number of sharing neighbors

is informative, since true stories are slightly more likely to be shared, but such learning

is limited even in the limit as consumers follow infinitely many others.

The amount that consumers are able to learn in equilibrium is determined by the

need to provide producers with just enough incentive to invest that exactly fraction ρ of

stories are true. In particular, for all large d, true-story visibility V ∗T (d) must be exactly

H−1(ρ)/M > 0 more than false-story visibility V ∗F (d). This requires each consumer not to

encounter each true and false story with probability 1−V ∗T (d) and 1−V ∗F (d), respectively.

26An actions-supported limit market may have multiple functional equilibria. See Appendix C for a
complete (implicit) characterization of all equilibria.
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Theorem 2 summarizes:

Theorem 2. In an actions-supported limit-market: (i) If γ ≥ γ, then the unique equilib-

rium is the dysfunctional equilibrium. (ii) If γ ∈ [γ, γ), then there is a unique functional

equilibrium with p∗A∞0 = H(M/γ) and perfect learning by consumers. (iii) If γ < γ, then

there exists a functional equlibrium with news veracity p∗A∞0 = ρ and some (imperfect)

learning by consumers.

Impact of misinformation. Suppose that quantity m ≥ 0 of misinformation is in-

jected into a revenue-from-actions news market. The maximal conceivable news veracity

falls from H(M/γ) to H(M/γ)
1+m

. Theorem 2 then applies with thresholds γ(m) and γ(m)

defined implicitly by
H(M/γ(m))

1+m
= ρ and H(M/γ(m))

1+m
= 1− ρ.

To visualize the impact of increased misinformation, suppose that bona fide producers

have “low costs” (H(M/γ) > ρ) so that, absent any misinformation, limit-market equilib-

rium news veracity would be equal to ρ, as shown in Figure 7(c). Increasing the quantity

of misinformation shifts down the news veracity that can be supported when consumers

filter the news, so that the picture eventually shifts into the “wise market” case of Figure

7(b), and then into the “dysfunctional market” case of Figure 7(a). When there is an

intermediate amount of misinformation, so that a “wise market” emerges, more true news

is produced than when there was no misinformation at all and consumers are better able

to discern which stories are true. In this way, misinformation campaigns can sometimes

backfire and actually improve the performance of a news market.

Impact of gaslighting. Suppose that the precision of consumers’ private signals falls

from ρ to ρ′ ∈ (1/2, ρ), as in Section 2.3. Such a change shrinks the filtering region from

(1 − ρ, ρ) to (1 − ρ′, ρ′), which can be seen visually as reducing the width of the step

in Figure 7 but not changing its height. In the limit-market given any news veracity
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in (1 − ρ′, ρ′), consumers will still be able to perfectly discern which stores are true,

maintaining producers’ incentive to produce quantity H(M/γ) of true news. Thus, if

H(M/γ) ∈ (1 − ρ′, ρ′), then decreasing consumers’ private-signal precision has no effect

on equilibrium outcomes in the limit-market. By contrast, if H(M/γ) ∈ (1 − ρ′, 1 − ρ),

then equilibrium outcomes will shift from the “wise market” case of Figure 7(b) to the

“dysfunctional market” case of Figure 7(a), with equilibrium news veracity falling from

H(M/γ) to zero. Similarly, if H(M/γ) ∈ (ρ′, ρ), then equilibrium outcomes will shift

from the “wise market” case to the “high-veracity market” case of Figure 7(c), with

equilibrium news veracity falling from H(M/γ) to ρ′.

4.2 Veracity Comparison: Revenue from Views vs. Actions

We find that whenever any true news is produced in a revenue-from-views limit-market,

strictly more true news is produced in an otherwise-identical revenue-from-actions limit-

market. Given our previous results, the argument is straightforward: Equilibrium news

veracity in a views-supported limit market, denoted p∗V∞0 , is anemic at best; by Propo-

sition 4, either p∗V∞0 = 1− ρ or p∗V∞0 = 0. Moreover, whenever p∗V∞0 = 1− ρ, it must be

the case that H(M/γ), the maximal conceivable news veracity exceeds 1− ρ. And then

Theorem 2 implies p∗A∞0 = min{H(M/γ), ρ} > 1− ρ. 27

Proposition 5. Either p∗V∞0 = p∗A∞0 = 0 or p∗A∞0 > p∗V∞0 .

Hence, when producers want consumers to actually believe their stories, social net-

works enhance producers’ incentives to invest in quality news. Network connections both

spread stories and allow followers to distinguish which news is true and which is false.

27Because all stories have visibility of at least b, the extra visibility of true stories ∆V ≤ 1 − b < 1.
Thus, even if consumers’ signals were perfectly informative and only true stories were shared, producers’
best-response news veracity would only be H(M(1−b)/γ). The fact that p∗V∞0 = 1−ρ therefore implies
H(M(1− b)/γ) ≥ 1− ρ and hence H(M/γ) > 1− ρ.
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5 Conclusion

This paper analyzes the supply and demand for decision-relevant information, referred to

as “news.”Ȯur model captures contemporary media markets in which consumers share

stories over social networks, news producers cannot commit to quality, and news pro-

ducers are paid when consumers view their stories or when consumers act on the basis

of their stories. In each case, a dysfunctional equilibrium always exists in which no

consumer shares any story and no producer invests in news truth. A unique functional

equilibrium exists when producer costs are sufficiently low and/or consumers’ private

signals are sufficiently precise.

Social-network density has a non-monotonic effect on true-news production in views-

supported news markets. Adding more links to a sparse network induces producers to

invest more in news truth, since true stories are more likely to be shared. However, if con-

sumers already follow many others, additional links favor the spread of false stories and

hence reduce investment. Indeed, in the limit as consumers follow infinitely-many others,

a views-supported news market either is dysfunctional or provides the bare minimum of

true stories, just enough to induce consumers sometimes to share.

In contrast, when producers are paid for each consumer who acts on their story, dense

social networks can support high news veracity. As long as the distribution of producer

costs is neither too high nor too low, a “wisdom of the crowd” emerges when consumers

follow infinitely-many others, allowing consumers to perfectly infer which stories are true

and hence avoid acting on false information.

Any news market is vulnerable to misinformation, deep-fake technology, and gaslight-

ing in the sense that, at sufficiently high levels, no functional equilibrium exists. However,

smaller amounts of misinformation and smaller decreases in consumers’ private abilities

to discern true from false can actually prompt bona fide news producers to invest more
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in news production, since consumers become more cautious when sharing news stories.

This paper serves as a jumping-off point for the study of supply and demand in

networked news markets. Several directions for future work could build on our analysis.

A natural next step would be to endogenize the social network, allowing consumers

to decide how many people to follow, paying a cost for each social link. This possibility

would have implications for the efficiency of media platforms. In an actions-supported

news market, high-veracity news can arise in equilibrium if consumers are densely con-

nected (Thm 2(iii)). But if stories are very likely to be true, consumers have little to gain

by following others and hence little incentive to invest in social connections, potentially

resulting in a sparse network that cannot support high news veracity. In this context,

platforms such as Facebook and Twitter that make it easier for consumers to follow one

another (reducing link costs) might indirectly promote higher-quality journalism.

On the supply side, natural next steps are to consider the industrial organization of

news production and different business models. News producers recently have shifted

toward subscription-based revenue (see e.g., New York Times 2015). Whoever controls

a subscription channel then has an incentive to maximize its overall value to consumers,

to increase subscribers’ willingness to pay for channel access. However, subscriber en-

gagement also drives advertiser and sponsor revenue28 and these different revenue sources

generate potentially competing incentives, in ways that deserve further study. For in-

stance, a channel that earns its revenue only from subscribers might have an incentive

to block readers from sharing content outside of its own walled garden, while one that

also earns advertising and/or content-sponsor revenue might prefer to enable stories to

be more widely shared by subscribers.

Newspapers and other news-distribution platforms can serve as intermediaries, screen-

28As the New York Times explained: “By focusing on subscribers, The Times will also maintain a
stronger advertising business than many other publications. Advertisers crave engagement: readers who
linger on content and who return repeatedly” (New York Times 2017).
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ing the stories that consumers encounter and/or lending credibility to news producers.

For instance, a politician with an opinion might post it directly on Twitter or some other

online channel such as Medium that does not fact-check content if the goal is just to grab

attention,29 but submit it to a reputable paper such as the Washington Post for editorial

review if the goal is to change minds.

News-distribution platforms can also create their own “news markets,” by distinc-

tively identifying the stories that consumers discover through their channels. For in-

stance, at Facebook, a “curation team” consisting of journalists from partner news or-

ganizations decides which stories to highlight under the banner of “Today’s Stories,”

creating a distinct news market with material re-published from original sources. Such

curated channels could benefit consumers, by highlighting high-quality stories by high-

quality producers.30 However, consumers of such news might also share less judiciously,

limiting how much others can learn from their sharing choices. In addition, a dominant

curated channel might have anti-competitive and/or anti-democratic effects, if those cu-

rating the news seek to enhance the market power of existing producers and/or promote

an ideological or partisan agenda.

Finally, future work could extend our analysis to allow for multidimensional invest-

ment. Producers in this present paper invest in a single unobservable characteristic

(“truth”) but, of course, producers also invest heavily in observable characteristics. Such

investments directly affect consumers’ incentives to share (e.g., consumers may want to

29Through a partnership with PolitiFact, Medium adds fact-check annotations to some posts after
publication (PolitiFact 2015). This allows readers who encounter such stories on Medium to better
assess which factual claims are true, akin in our model to providing an extra signal about news truth to
all those who see the original broadcast, and may give politicians more incentive not to lie. However, to
the extent that such claims are re-reported or spread by word of mouth without the extra annotations,
falsehoods may still find their audience.

30Allcott, Gentzkow, and Yu (2019) found that, throughout 2017, user engagement with false content
fell sharply on Facebook but continued rising on Twitter, suggesting that Facebook’s efforts to combat
misinformation after the 2016 election were effective. However, in September 2019, Facebook announced
that it would not fact-check politicians’ speech, exempting politicians’ content and ads from a third-party
fact-checking program used to assess other content (Constine 2019).
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share funny or shocking content, even if they suspect it is untrue) and act, while also

indirectly affecting those decisions by shaping consumers’ beliefs about unobservable

characteristics. For instance, suppose that a news producer can invest in the (unobserv-

able) truth and/or (observable) appeal of its stories, where “appeal” increases consumers’

payoff when sharing a story but has no effect on their action payoff. If the cost of increas-

ing news appeal is small relative to the cost of news truth, producers paid for views may

find it optimal to invest only in news appeal, leading to equilibrium outcomes in which

all stories are false but appealing: widely shared because of their appeal but ineffective

at driving action because no one believes them. By contrast, producers paid for actions

may find it optimal to disinvest in news appeal as a way of increasing the return to their

investments in news truth, as doing so can cause consumers to filter the news and thereby

activate a “wisdom of the crowd.”
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Online Appendices

Appendix A provides details on dynamic stability of equilibria. Appendix B contains

proofs and extended analysis for the market in which producers are paid for views of

their news stories (Sections 2-3. Appendix C contains proofs and extended analysis for

the market in which producers are paid for consumers’ actions (Section 4).

A Dynamic stability

Our analysis focuses on equilibria that are “dynamically stable.” In this appendix, we

define our stability concept and identify conditions under which equilibria in a views-

supported news market are dynamically stable or unstable.

Definition 1 (Perturbed best-response news veracity). For any pair of sharing rules

z, ẑ, let pε0(z; ẑ) = p0(z(1 − ε) + ẑε) denote the “perturbed best-response news veracity”

when consumers use sharing rule z(1− ε) + ẑε.

Definition 2 (Dynamic stability). A sharing rule z is “dynamically stable” (or simply

“stable”) if, for all ẑ and all ε ≈ 0, z is a strictly better response for consumers than ẑ

given news veracity pε0(z; ẑ).31 Similarly, z is “dynamically unstable” (or simply “unsta-

ble”) if there exists ẑ such that, for all ε ≈ 0, ẑ is a strictly better response for consumers

than z given news veracity pε0(z; ẑ).

Lemma A1. Consider a views-supported news market. (i) Any equilibrium with news

veracity p0 6∈ {1 − ρ, ρ} is dynamically stable. (ii) Any equilibrium with news veracity

p0 = ρ is dynamically stable. (iii) Any equilibrium with news veracity p0 = 1 − ρ and

31Implicit in this definition is a simplifying assumption that producers adapt immediately to any
change in consumers’ sharing strategies while consumers adapt gradually over time to changes in pro-
ducers’ investment strategies. However, this is not essential. Our results hold under any monotone
co-adaptation dynamics (Samuelson and Zhang 1992); straightforward details omitted to save space.
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sharing rule of the form (zT , 0) is dynamically stable or unstable if z∗T > zT or z∗T ≤ zT ,

respectively, where (zT , 0) is the sharing rule that maximizes producers’ incentive to invest

(Lemma 2(iv)).

Proof: Consider any equilibrium with news veracity p0 6∈ {1− ρ, ρ}. Consumers have a

unique best response, z(p0), equal to (1, 1) if p0 > ρ, (1, 0) if p0 > (1− ρ, ρ), or (0, 0) if

p0 < 1 − ρ. For any given ẑ 6= z(p0) and ε ≈ 0, pε0(z; ẑ) ≈ p0. (By equation (3), p0(z)

is continuous in z, a fact we use repeatedly throughout the proof.) Thus, for all ε ≈ 0,

z(p0) continues to be consumers’ unique best response; in particular, z(p0) is a better

reply than ẑ and hence ẑ cannot successfully invade. This completes the proof of (i).

Next, consider any equilibrium with news veracity equal to ρ. Consumers strictly

prefer to share given signal si = T and are indifferent whether to share given signal

si = F ; the equilibrium sharing rule must be z = (1, zF ) for some zF ∈ [0, 1]. For any

ẑ 6= z, perturbed news veracity pε0(z; ẑ) ≈ ρ, given which consumers still strictly prefer

to share when si = T and are approximately indifferent whether to share when si = F .

The rest of the proof that ẑ cannot successfully emerge has three steps. First, consider

any ẑ with ẑT < 1. After receiving signal si = T (probability Pr(si = T |p0 = ρ) > 0),

a consumer who shares with probability ẑT loses approximately (1 − ẑT )πS(2ρ − 1) > 0

relative to the best response of always sharing. By contrast, after receiving signal si = F ,

the benefit (if any) that a consumer gets by sharing with probability ẑF rather than

probability zF goes to zero as ε goes to zero. Overall, then, ẑ is a worse reply than

z for all small enough ε. Second, consider any ẑ = (1, ẑF ) with ẑF < zF , inducing

perturbed news veracity pε0(z; ẑ) = p0(1, zF − ε(zF − ẑF )). Because p0 = (1, zF ) is strictly

decreasing in zF (Lemma 2(ii)), pε0(z; ẑ) > ρ and consumers have a strict incentive to

share after signal si = F . Since ẑF < zF , ẑ is therefore a worse reply than z. Third

and finally, consider any ẑ = (1, ẑF ) with ẑF > zF , inducing perturbed news veracity
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pε0(z; ẑ) = p0(1, zF+ε(ẑF−zF )). Because p0(1, zF ) is strictly decreasing in zF , pε0(z; ẑ) < ρ,

giving consumers a strict incentive not to share after signal si = F and making ẑ a worse

reply than z since ẑF > zF . This completes the proof of (ii).

Finally, consider any equilibrium with news veracity equal to 1 − ρ. Consumers are

indifferent whether to share after getting a positive signal si = T and strictly prefer not

to share after a negative signal si = F ; the equilibrium sharing rule must be z = (zT , 0)

for some zT ∈ [0, 1]. One can easily show that any ẑ with ẑF > 0 cannot emerge; so,

we will only consider potential strategies of the form ẑ = (ẑT , 0). Suppose first that

zT ≤ zT and consider the perturbing sharing rule ẑ = (0, 0), inducing news veracity

p0(zT − εzT , 0). By Lemma 2(iii), p0(zT , 0) is strictly increasing over the range [0, zT ); so,

p0(zT − εzT , 0) < p0(zT , 0) = p0 = 1− ρ. Since consumers have a strict incentive not to

share given private signal si = F after the perturbation, the equilibrium is dynamically

unstable. Suppose next that zT > zT and consider any ẑ = (ẑT , 0). By Lemma 2(iii),

p0(zT , 0) is strictly decreasing over the range (zT , 1]; so, pε0(z; ẑ) > 1−ρ whenever ẑT < zT

(making z a better reply than ẑ) and pε0(z; ẑ) < 1 − ρ whenever ẑT > zT (again making

z a better reply than ẑ). We conclude in this case that the equilibrium is dynamically

stable. This completes the proof of (iii).

B Proofs and extensions: revenue from views

This appendix provides formal proofs for the results in Sections 2-3 and analyzes several

extensions in the case when producers are paid for views.

Lemma 1 follows directly arguments provided in the main text. Its proof is omitted

to save space.
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B.1 Proofs

B.1.1 Proof of Lemma 2

Parts (i,v). By equation (3), p0(zT , zF ) = H(M∆V (zT , zF )), where

∆V (zT , zF ) = (1− b)
(
(1− b((1− ρ)zT + ρzF ))d − (1− b(ρzT + (1− ρ)zF ))d

)
(A1)

by equations (1,2). Recall that, by assumption, the producer’s reporting cost has c.d.f.

H(·) and atomless support; so, H(0) = 0, H(cR) > 0 for all cR > 0, and H(cR) is

continuous in cR. Part (i) now follows immediately from the fact that ∆V (zT , zF ) = 0

when zT = zF and ∆V (zT , zF ) > 0 when zT > zF . Part (v) is also immediate, following

from the continuity of H(·) and the easily-checked continuity of ∆V (·).

Part (ii). Define x(zT ) = ∆V (zT ,0)
1−b . To prove part (ii), it suffices to show that x(zT ) is

strictly increasing in zT over the interval [0, zT ] and strictly decreasing in zT over [zT , 1]

for some zT ∈ (0, 1]. Note that

x′(zT ) = db
(
ρ(1− bρzT )d−1 − (1− ρ)(1− b(1− ρ)zT )d−1

)
. (A2)

Suppose first that d = 1. Since x′(zT ) = b(2ρ−1) > 0, x(zT ) is strictly increasing over the

whole interval zT ∈ [0, 1], establishing the desired result with respect to zT = 1. Suppose

next that d ≥ 2. x′(zT ) > 0 if and only if ρ
1−ρ >

(
1−b(1−ρ)zT

1−bρzT

)d−1

which, after re-arranging,

can be written as zT < ẑT ≡
( ρ
1−ρ)

1
d−1−1

b

(
ρ( ρ

1−ρ)
1
d−1−(1−ρ)

) . So, x(zT ) is strictly increasing in zT

over the interval [0,min{ẑT , 1}] and, if ẑT < 1, strictly decreasing over the interval [ẑT , 1],

establishing the desired result with respect to zT ≡ min{ẑT , 1}.

Part (iii). Define w(zF ) = ∆V (1,zF )
1−b . To prove part (iii), it suffices to show that w(zF ) is

43



strictly decreasing in zF . Note that

w′(zF ) = db
(
(1− ρ)(1− b(ρ+ (1− ρ)zF ))d−1 − ρ(1− b(1− ρ+ ρzF ))d−1

)
. (A3)

Since ρ > 1
2

and zF ≤ 1, 1− ρ < ρ and ρ+ (1− ρ)zF ≥ 1− ρ+ ρzF ; thus, w′(zF ) < 0 for

all zF ∈ [0, 1], as desired.

Part (iv). Define y(zT , zF ) = ∆V (zT ,zF )
1−b . To prove part (iv), it suffices to show that

y(zT , 0) ≥ y(zT , zF ) for all zT , zF ∈ [0, 1]. First, note that y(zT , zF ) ≤ 0 whenever

zT ≤ zF but y(zT , 0) > 0; so, we may restrict attention to sharing rules with zT > zF .

Next, note that ρ > 1
2

and zT > zF implies 1−ρ < ρ and ρzT +(1−ρ)zF > (1−ρ)zT +ρzF ;

thus,

∂y(zT , zF )

∂zF
= db

(
(1− ρ)(1− b(ρzT + (1− ρ)zF )d−1 − ρ(1− b((1− ρ)zT + ρzF )d−1

)
< 0

(A4)

Finally, y(zT , 0) ≥ y(zT , 0) for all zT ∈ [0, 1] by definition of zT . We conclude y(zT , 0) ≥

y(zT , zF ) for all zT , zF , as desired.

B.1.2 Proof of Theorem 1

Here we characterize all Bayesian Nash equilibria (BNE) in which consumers use the

same sharing rule.32 These “symmetric BNE” may or may not be dynamically stable,

and may or may not exhibit positive investment by producers. In the main text and

here, we refer to any symmetric BNE that is dynamically stable and has zero producer

investment as “dysfunctional,” and any symmetric BNE that is dynamically stable and

has positive producer investment as “functional.”

32All BNE in which consumers use different sharing rules are characterized in Section C.1, when we
consider the most general model in which producers may be paid for views and/or for actions.
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Dysfunctional equilibrium exists. Suppose for a moment that all stories were false. Con-

sumers would find it optimal to never share, causing all stories to earn the same revenue

(Mb) and giving producers zero incentive to invest in news truth. Because producing

true stories is costly (by assumption33), producers then find it optimal only to produce

false stories. Thus, a BNE always exists in which consumers never share and producers

never invest. Moreover, this equilibrium is dynamically stable by Lemma A1(i).

Equilibrium news veracity p∗0 6> ρ. BNE do not exist with news veracity greater than

ρ. In such an equilibrium, consumers would find it optimal to always share, causing

all stories to generate equal revenue. But then producers would have zero incentive to

invest, so that news veracity must be zero, a contradiction.

Equilibrium news veracity p∗0 6∈ (0, 1− ρ). BNE do not exist with news veracity between

0 and 1 − ρ. In such an equilibrium, consumers would find it optimal to never share,

causing all stories to generate equal revenue and giving producers zero incentive to invest,

a contradiction.

Proof of part (a). Suppose that γ ≤ γ1. Since p̃0(γ) ≥ ρ, no BNE exists with news

veracity between 1−ρ and ρ. In such an equilibrium, consumers would find it optimal to

filter the news, causing true stories to have extra visibility ∆V (z̃) and giving producers

incentive to invest with probability p̃0 ≥ ρ, a contradiction. However, BNE do exist with

news veracity equal to ρ and equal to 1− ρ.

Given news veracity p0 = ρ, consumers find it optimal to use sharing rules of the

form (1, zF ) for all zF ∈ [0, 1]. If zF = 0, then producers will respond by investing

with probability p0(1, 0) = p̃0 ≥ ρ while, if zF = 1, then best-response news veracity

33Our analysis and results can be easily extended to a setting in which producers’ reporting cost is
zero (or negative) with probability α > 0. Results change in a qualitative way if α > 1− ρ since, in that
case, enough true news is always produced to induce consumers to share after a good private signal. On
the other hand, so long as α ≤ 1 − ρ, a “minimally-functional equilibrium” continues to exist in which
consumers never share any stories and producers only publish true stories when doing so is costless.
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p0(0, 0) = 0 < ρ. Since p0(1, zF ) is continuous and strictly decreasing in zF (Lemma 2),

there exists a unique z∗F ∈ [0, 1) such that p0(1, z∗F ) = ρ. We conclude that there exists a

unique symmetric BNE with news veracity ρ. Moreover, this equilibrium is dynamically

stable by Lemma 2(i) and hence a functional equilibrium.

Given news veracity p0 = 1− ρ, consumers find it optimal to use sharing rules of the

form (zT , 0) for all zT ∈ [0, 1]. Since p(1, 0) > 1 − ρ and p0(zT , 0) is strictly decreasing

over zT ∈ [zT , 1], p0(zT , 0) > 1 − ρ for all zT ∈ [zT , 1]. However, because p0(0, 0) = 0

and p0(zT , 0) is continuous and strictly increasing over zT ∈ [0, zT ] (Lemma 2), there

exists a unique z∗T ∈ (0, zT ) such that p0(1, z∗F ) = 1 − ρ. We conclude that there exists

a unique symmetric BNE with this news veracity level. However, because 0 < z∗T < z,

this equilibrium is dynamically unstable by Lemma 2(i) and hence is not a functional

equilibrium.

Proof of part (b). Suppose that γ ∈ (γ1, γ2) so that p̃0(γ) ∈ (1 − ρ, ρ). If consumers

filter the news, then optimal investment induces best-response news veracity p̃0(γ), given

which consumers find it optimal to filter the news. Hence, a symmetric BNE exists in

which consumers use sharing rule z̃ = (1, 0) and news veracity p∗0 = p̃0. This equilibrium

is dynamically stable by Lemma A1(i) and hence is a functional equilibrium.

To establish that this is the unique functional equilibrium, we rule out all other

possibilities. First, no symmetric BNE exists in which consumers use sharing rule of

the form (1, z∗F ) for some z∗F > 0. In such an equilibrium, it must be that p∗0 ≥ ρ but,

since p0(1, zF ) is strictly decreasing in zF (Lemma 2), producers’ best response results

in news veracity less than p̃0, a contradiction. Second, consider any symmetric BNE in

which consumers use a sharing rule of the form (z∗T , 0) for some z∗T ∈ (0, 1). In such an

equilibrium, it must be that news veracity p∗0 = 1− ρ, so that consumers are indifferent

whether to share after a good private signal. But since p0(1, 0) > 1 − ρ and p0(1, zF )

46



is strictly increasing over zF ∈ [zT , 1], it must be that z∗F < zT . Any such equilibrium

must therefore be dynamically unstable (Lemma A1(iii)) and hence not a functional

equilibrium.

Proof of part (c). Suppose that γ ∈ [γ2, γ3) so that p̃0(γ) ≤ 1 − ρ < p0(γ). No BNE

exists with news veracity p∗0 > 1− ρ since, if it did, consumers who find it optimal to use

a sharing rule of the form (1, z∗F ) for some z∗F ∈ [0, 1] and best-response news veracity

p0(1, z∗F ) ≤ p̃0 ≤ 1 − ρ, a contradiction. However, symmetric BNE do exist with news

veracity p∗0 = 1− ρ, and one of these is a functional equilibrium.

Recall that p0(zT , 0) is strictly increasing in zT over the range [0, zT ], rising from

p0(0, 0) = 0 to p0(zT , 0) = p0 > 1 − ρ, and then strictly decreasing in zT over the range

[zT , 1], falling from p0 to p0(1, 0) = p̃0 ≤ 1 − ρ. Thus, there exist exactly two levels

z1
T ∈ (0, zT ) and z2

T ∈ (zT , 1] such that p0(z1
T , 0) = p0(z2

T , 0) = 1 − ρ, and hence two

symmetric BNE with news veracity equal to 1 − ρ. Of these two equilibria, Lemma

A1(iii) implies that the one with more sharing is dynamically stable, while the one with

less sharing is dynamically unstable. We conclude that there is a unique functional

equilibrium, in which consumers use sharing rule (z1
T , 0) and news veracity equals 1− ρ.

Proof of part (d). When γ > γ3, p0(γ) < 1− ρ and news veracity must be less than 1− ρ

in any BNE. But then consumers must never share, implying that producers must never

invest; so, the dysfunctional equilibrium is the unique BNE. When γ = γ3, p0(γ) = 1−ρ,

meaning that the best-response news veracity is strictly less than 1− ρ unless consumers

use the sharing rule (zT , 0), in which case producers will invest just often enough to

support news veracity equal to 1− ρ. We conclude that no symmetric BNE exists with

news veracity greater than 1−ρ but that a symmetric BNE does exist in which consumers

use sharing rule z∗ = (zT , 0) and news veracity p∗0 = 1− ρ. However, this equilibrium is

dynamically unstable by Lemma A1(iii); so, no functional equilibrium exists.
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B.1.3 Proof of Proposition 1

Equilibrium outcomes in a market with quantity m of misinformation and c.d.f. H(cR)

for bona fide reporters’ cost are identical to those in a market without misinformation

and c.d.f. H(cR;m) ≡ H(cR)
1+m

. Consequently, the maximal news veracity p0(m) = p0
1+m

and filtering news veracity p̃0(m) = p̃0
1+m

. Under this interpretation, Proposition 1 follows

fairly immediately from Theorem 1.

Proof of (i). If m ≥ m, then p0(m) ≤ 1 − ρ. By the proof of Theorem 1(d), the

dysfunctional equilibrium is the unique BNE. On the other hand, if m < m, then p0(m) >

1− ρ and a unique functional equilibrium exists by Theorem 1(a-c).

Proof of (ii-iii). When m ∈ [0,m1], p̃0(m) ≥ ρ and so news veracity p∗0(m) = ρ by

Theorem 1(a); over this range, news veracity p∗0(m) is constant while true-news volume

(1+m)p∗0(m) = (1+m)ρ is strictly increasing in m. When m ∈ [m1,m2], p̃0(m) ∈ [1−ρ, ρ]

and so news veracity p∗0(m) = p̃0(m) = p̃0
1+m

by Theorem 1(b); over this range, news

veracity p∗0(m) is strictly decreasing in m while true-news volume (1 + m)p∗0(m) = p̃0 is

constant. When m ∈ [m2,m), p̃0(m) ≤ 1−ρMp0(m) and so news veracity p∗0(m) = 1−ρ

by Theorem 1(c); over this range, news veracity p∗0(m) is constant in m while true-news

volume (1 +m)p∗0(m) = (1 +m)(1− ρ) is constant.

Putting this all together, news veracity p∗0(m) is non-increasing over the range m < m

and strictly decreasing for m ∈ [m1,m2], while true-news volume (1 + m)p∗0(m) is non-

decreasing over the range m < m and strictly increasing for m ∈ [0,m1] ∪ [m2,m), as

desired.
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B.1.4 Proof of Proposition 2

Let VT (z; ρ) and VF (z; ρ) denote the visibility of true and false stories, respectively, given

sharing rule z and signal precision ρ. By equations (1-2), VT (z; 1/2) = VF (z; 1/2) and

dVT (z)

dρ
= db(1− b)(zT − zF ) (1− b(ρzT + (1− ρ)zF ))d−1 (A5)

dVF (z)

dρ
= −db(1− b)(zT − zF ) (1− b((1− ρ)zT + ρzF ))d−1 (A6)

Note that, so long as consumers are more likely to share after a good private signal

(zT > zF ), VT (z; ρ) is strictly increasing in ρ while VF (z; ρ) is strictly decreasing; thus,

best-response news veracity p0(zT , zF ; ρ) = H (M(VT (z; ρ)− VF (z; ρ))) is also strictly

increasing in ρ for all such sharing rules. In particular, p̃0(ρ) ≡ p0(1, 0; ρ) and p0(ρ) ≡

maxzT∈(0,1] p0(zT , 0; ρ) are each strictly increasing in ρ.

Define signal-precision threshold ρ implicitly by p̃0(ρ) = 1−ρ, or ρ = 1 if p̃0(1) ≤ 1−ρ.

Similarly, define ρ implicitly by p0(ρ) = 1− ρ, or ρ = 1 if p0(1) ≤ 1− ρ.

Proposition 2 now follows directly from Thm 1. Part (i): If ρ ≤ ρ, then p0(ρ) ≤ 1−ρ

and hence p∗0(ρ) = 0 by Thm 1(iv). Part (ii): If ρ < ρ ≤ ρ, then p0(ρ) > 1 − ρ ≥ p̃0(ρ)

and hence p∗0(ρ) = 1−ρ by Thm 1(iii). Note that p∗0(ρ) is strictly decreasing in ρ over this

range. Part (iii): If ρ > ρ, then p̃0(ρ) > 1− ρ and hence p∗0(ρ) = min{p̃0(ρ), ρ} > 1− ρ

by Thm 1(i-ii). Note that p∗0(ρ) is strictly increasing in ρ over this range, since both p̃0(ρ)

and ρ are strictly increasing in ρ.

B.1.5 Proof of Proposition 3

It suffices to show that the filtering news veracity p̃0(d) is single-peaked in d. To see

why, recall by Thm 1 that p∗0(d) > 1− ρ if and only if p̃0(d) > 1− ρ and that, when this

is the case, p∗0(d) = min{p̃0(d), ρ}. p̃0(d) being single-peaked means that p̃0(d) > 1 − ρ
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if and only if d < d < d; thus, p∗0(d) > 1 − ρ if and only if d < d < d, establishing

Proposition 3(i). Moreover, p∗0(d) = min{p̃0(d), ρ} when d ∈
(
d, d
)

means that p∗0(d)

is also single-peaked over this range and maximized at d = d̃, establishing Proposition

3(ii-iii).34

By equation (3), p̃0(d) = H(M∆V (z̃; d)). Note that p̃0(d) depends on d only through

∆V (z̃; d) and that p̃0(d) is strictly increasing in ∆V (z̃; d). Thus, it suffices to show that

∆V (z̃; d), the extra visibility of true stories when consumers filter the news, is itself

single-peaked. By equations (1,2), ∆V (z̃; d) = (1− b)
(
(1− b(1− ρ))d − (1− bρ)d

)
; so,

d∆V (z̃; d)

dd
= (1− b)

(
ln(1− b(1− ρ))(1− b(1− ρ))d − ln(1− bρ)(1− bρ)d

)
. (A7)

Re-arranging terms, we conclude that d∆V (z̃;d)
dd

≷ 0 if and only if

(
1− bρ

1− b(1− ρ)

)d
≷

ln(1− b(1− ρ))

ln(1− bρ)
∈ (0, 1). (A8)

Since ρ > 1
2
, 1−bρ

1−b(1−ρ)
< 1 and the left-hand-side of (A8) is exponentially decreasing in

d, while the right-hand-side of (A8) does not depend on d. We conclude that ∆V (z̃; d)

is strictly increasing in d up to some critical level and strictly decreasing thereafter; so,

∆V (z̃; d) is single-peaked in d, as desired.

B.1.6 Proof of Proposition 4

Let ρ∞ = limd→∞ ρ(d) where, as in Proposition 2, ρ(d) is defined implicitly by the

condition p0(d, ρ(d)) = 1−ρ(d) and p0(d, ρ) = H (M∆V (zT (d, ρ), 0; d, ρ)) is the maximal

best-response news veracity given social connectedness d and signal precision ρ.

34The minimum of any two single-peaked functions is single-peaked; so, p̃0(d) being single-peaked
implies that p∗0(d) = min{p̃0(d), ρ} is single-peaked. Similarly, because maxd min{p̃0(d), ρ} =
min{maxd p̃0(d), ρ}, p̃0(d) being maximized at d̃ implies that p∗0(d) is maximized at d̃.
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Proof of part (i): Suppose that ρ < ρ∞. For all sufficiently large d, p0(d, ρ) < 1−ρ (since

ρ < ρ(d)) and hence p∗0(d, ρ) = 0 (by Thm 1(iv)); so, p∗∞0 = 0 and the limit-market is

dysfunctional.

Proof of part (ii): Suppose now that ρ > ρ∞, so that p0(d, ρ) > 1− ρ for all sufficiently

large d. Since p̃0(d, ρ) is less than 1 − ρ for all sufficiently large d (by Proposition 3),

p∗0(d, ρ) = 1− ρ (by Thm 1(iii)) for all sufficiently large d; so, p∗∞0 = 1− ρ.

To complete the proof, it remains to show that consumers cannot perfectly discern

which stories are true from others’ equilibrium sharing behavior in the d → ∞ limit.

For each large d, let (z∗T (d, ρ), 0) denote consumers’ sharing rule in the dynamically-

stable symmetric BNE with news veracity 1− ρ. Define shorthand V ∗T (d, ρ) and V ∗F (d, ρ)

for the equilibrium visibility of true and false stories, respectively, and ∆V ∗(d, ρ) =

V ∗T (d, ρ) − V ∗F (d, ρ) for the extra visibility of true stories. Similarly, define V ∗∞T (ρ) =

limd→∞ V
∗
T (d, ρ), V ∗∞F (ρ) = limd→∞ V

∗
F (d, ρ), and ∆V ∗∞(ρ) = limd→∞∆V ∗(d, ρ).

It suffices to show that b < V ∗∞F (ρ) < V ∗∞T (ρ) < 1. Why? If this is the case, then each

consumer i in the limit-market who sees the broadcast will have zero sharing neighbors

with probability
1−V ∗∞T (ρ)

1−b for true stories or
1−V ∗∞F (ρ)

1−b for false stories. In this positive

probability event, consumer i will update her belief by Bayes’ Rules, from prior p0 to

updated belief p̂0, where p̂0
1−p̂0 = p0

1−p0 ×
1−V ∗∞T (ρ)

1−V ∗∞F (ρ)
∈ (0, 1). So, in the limit when following

infinitely-many others, consumers learn from others’ sharing behavior but not perfectly;

they continue to face uncertainty about which stories are true.

Next, we compute V ∗∞T (ρ) and V ∗∞F (ρ). Consider any large d. By equations (1,2),

true stories have extra visibility

∆V ∗(d, ρ) = (1− b)
(

(1− b(1− ρ)z∗T (d))d − (1− bρz∗T (d))d
)

(A9)
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Using the basic mathematical fact that limd→∞(1−X/d)d = e−X ,

∆V ∗∞(ρ) = (1− b)
(
e−b(1−ρ) limd→∞ dz∗T (d) − e−bρ limd→∞ dz∗T (d)

)
. (A10)

Because p∗0(d, ρ) = 1 − ρ, it must be that ∆V ∗(d, ρ) = H−1(1 − ρ)/M and hence that

∆V ∗∞(ρ) = H−1(1− ρ)/M > 0. Considering equation (A10), we conclude that dz∗T (d, ρ)

must converge to a positive finite number C∗(ρ) such that e−b(1−ρ)C∗(ρ) − e−bρC
∗(ρ) =

H−1(1−ρ)
M(1−b) .35 So, V ∗∞T (ρ) = 1 − (1 − b)e−bρC

∗(ρ) and V ∗∞F (ρ) = 1 − (1 − b)e−b(1−ρ)C∗(ρ),

implying as desired that b < V ∗∞F (ρ) < V ∗∞T (ρ) < 1.

B.2 Extensions and supplementary analysis

In this section, we extend the revenue-from-views analysis of Section 2 to richer settings

in which the social network is an arbitrary directed graph G and consumers may differ

in their likelihood of seeing the broadcast (bi), the precision of their private signals (ρi),

and their belief-thresholds for sharing (pSi ). In this enhanced model, it is assumed that

all these individual parameters are common knowledge.

B.2.1 Characterization of all Bayesian Nash equilibria

Much as in the baseline model, the set of Bayesian Nash equilibria (BNE) can be easily

characterized in terms of (i) how optimal consumer sharing varies with news veracity and

(ii) how the relative visibility of true and false stories (which drives optimal producer

investment) varies with consumer sharing.

35Note that
d(e−b(1−ρ)C−e−bρC)

dC = −b(1 − ρ)e−b(1−ρ)C + bρe−bρC ≷ if and only if C ≶ log(ρ/(1−ρ))
b(2ρ−1) .

Thus, the function e−b(1−ρ)C − e−bρC is single-peaked and there are two solutions to the equation

e−b(1−ρ)C
∗ − e−bρC∗

= H−1(1−ρ)
M(1−b) when ρ > ρ∞ (and zero solutions when ρ < ρ∞). The higher solution

corresponds to the dynamically-stable symmetric BNE with news veracity 1−ρ, which is our focus here;
the lower solution corresponds to the dynamically-unstable symmetric BNE.
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Optimal consumer sharing. Consumer i’s sharing incentives depend on news veracity

(p0 ∈ [0, 1]), the precision of her own private signal (ρi ∈ (1/2, 1)), and her own belief

threshold for sharing (pSi ∈ [0, 1]).36 Given news veracity p0 and private signal si ∈

{T, F}, consumer i updates her belief to pi1(si; p0) where, by Bayes’ Rule,

pi1(T ; p0)

1− pi1(T ; p0)
=

ρi
1− ρi

× p0

1− p0

and
pi1(F ; p0)

1− pi1(F ; p0)
=

1− ρi
ρi
× p0

1− p0

(A11)

If p0 > pASi ≡ (1−ρi)(1−pSi )+ρip
S
i

ρip
S
i

, then consumer i strictly prefers to share even after

a negative private signal; pASi is consumer i’s “always-share threshold.” Similarly, if

p0 < pNSi ≡ ρi(1−pSi )+(1−ρi)pSi
(1−ρi)pSi

, then consumer i strictly prefers not to share even after

a positive private signal; pNSi is consumer i’s “never-share threshold.” (In the baseline

model in the main text, pSi = 1
2
, pASi = ρ, and pNSi = 1 − ρ for all i.) Note that, in

general, pASi > pSi > pNSi , with pASi increasing in ρi and pNSi decreasing in ρi.

Extra visibility of true news. Let N be the set of all consumers and let Ni ⊂ N be the

subset that consumer i follows. When others use sharing rules ~z−i, each consumer j ∈ Ni

shares with ex ante probability b(ρzjT + (1 − ρ)zjF ) or b((1 − ρ)zjT + ρzjF ) when the

story is true or false, respectively. Consumer i’s overall likelihood of viewing a true or

false story is therefore

ViT (~z−i) = 1− (1− b)Πj∈Ni(1− b(ρzjT + (1− ρ)zjF )) (A12)

ViF (~z−i) = 1− (1− b)Πj∈Ni(1− b((1− ρ)zjT + ρzjF )) (A13)

36Consumer i’s belief threshold for sharing depends on how her benefit when sharing true stories, πSiT ,

compares to her cost when sharing false stories, −πSiF , namely: pSi =
πSiF

πSiT+π
S
iF

∈ (0, 1) when consumer i

prefers to share only true stories (πSiT > 0 and πSiF < 0); pSi = 0 when consumer i prefers to share all
stories (πSiT ≥ 0 and πSiF ≤ 0); or pSi = 1 when consumer i never benefits from sharing (πSiT ≤ 0 and
πSiF ≥ 0).
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and true stories enjoy extra visibility

∆Vi(~z−i) = (1− b) (Πj∈Ni(1− b((1− ρ)zjT + ρzjF ))− Πj∈Ni(1− b(ρzjT + (1− ρ)zjF )))

(A14)

Best-response news veracity. LetM⊆ N be the set of all revenue-generating consumers.

Given sharing-rule profile ~z, true stories earn additional expected revenue ∆R(~z) ≡∑
i∈M∆Vi(~z−i), inducing best-response news veracity H (∆R(~z)).

Equilibrium characterization. A BNE exists with news veracity p0 and sharing-rule profile

~z if and only if (i) p0 = H (∆R(~z)) and (ii) zi ∈ Zi(p0) for all i ∈ N .

Numerical example with differing private-signal precisions. Consider a simple

example with just two consumers, where N = M = 2, each of whom follows one another

(d = 1), but consumer 1 has a less precise signal than consumer 2, with ρ1 = 4
7

and

ρ2 = 6
7
. Moreover, suppose that broadcast reach b = 1

2
and reporting cost cR is uniformly

distributed on
[
0, 3

7

]
.

Visibility for consumer 1. When p0 >
6
7
, consumer 2 always shares; so, consumer 1 views

a story as long as anyone sees the broadcast: V1T (p0) = V1F (p0) = 1− (1− b)2 = 3
4

and

∆V1(p0) = 0. When 1
7
< p0 <

6
7
, consumer 2 shares only after a good signal; so, consumer

1 views a story when seeing the broadcast or when consumer 2 sees the broadcast and

receives signal s2 = T : V1T (p0) = 1 − (1 − b)(1 − bρ2) = 5
7
, V1F (p0) = 1 − (1 − b)(1 −

b(1 − ρ2)) = 15
28

, and ∆V1(p0) = 5
28

. Finally, when p0 <
1
7
, consumer 2 never shares and

consumer 1 views a story only when seeing the broadcast: V1T (p0) = V1F (p0) = b = 1
2

and ∆V1(p0) = 0.

Visibility for consumer 2. When p0 > 4
7
, consumer 1 always shares; so, V2T (p0) =

V2F (p0) = 1− (1− b)2 = 3
4

and ∆V2(p0) = 0. When 3
7
< p0 <

4
7
, consumer 1 shares only
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after a good signal; so, V2T (p0) = 1 − (1 − b)(1 − bρ1) = 9
14

, V1F (p0) = 1 − (1 − b)(1 −

b(1 − ρ1)) = 17
28

, and ∆V1(p0) = 1
28

. Finally, when p0 <
3
7
, consumer 1 never shares; so,

V2T (p0) = V2F (p0) = b = 1
2

and ∆V2(p0) = 0.

Best-response news veracity. True stories enjoy extra expected revenue ∆R(p0) = ∆V1(p0)+

∆V2(p0). By the previous analysis: ∆R(p0) = 0 for all p0 >
6
7

and p0 <
1
7
; ∆R(p0) = 5

28

for all p0 ∈
(

1
7
, 3

7

)
and p0 ∈

(
4
7
, 6

7

)
; and ∆R(p0) = 3

14
for all p0 ∈

(
3
7
, 4

7

)
.

Maximal equilibrium news veracity. As shown in Figure A1, three news-veracity levels can

be sustained in a dynamically-stable BNE: p∗0 = 1
2
, the maximal one, with both consumers

filtering the news; p0 = 5
12

, in which consumer 1 never shares and consumer 2 filters the

news; and p0 = 0, in the dysfunctional equilibrium in which both consumers never share.

(In addition, news-veracity levels p0 = 3
7

and p0 = 1
7

can arise in dynamically-unstable

BNE.)

Figure B1: Illustration of equilibrium news-veracity levels in a simple numerical example

with asymmetric consumers.

Discussion: impact of less-dispersed signal precisions. Consider changing consumers’

precision-signal precisions from (ρ1, ρ2) =
(

4
7
, 6

7

)
to (ρ1, ρ2) =

(
5
7
, 5

7

)
, making them less

dispersed but with the same mean. Because of a special features of this numerical example
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(that each consumer only follows one other person), true stories’ extra expected revenue

when both filter the news does not change. In particular, ∆R
(

1
2

)
= M(1−b)b(2ρ−1) = 3

14

in either case and, given that cR ∼ U
[
0, 3

7

]
, the maximal equilibrium news veracity in

this example remains p∗0 = 1
2
. Although ∆R(p0) remains unchanged at 3

14
for p0 ∈

(
3
7
, 4

7

)
,

it increases from 5
28

to 3
14

for p0 ∈
(

2
7
, 3

7

)
∪
(

4
7
, 5

7

)
and decreases from 5

28
to 0 for p0 ∈(

1
7
, 2

7

)
∪
(

5
7
, 6

7

)
. Consequently, depending on the specific cost distribution H(·), the effect

of this change could be to increase or to decrease the maximal equilibrium news veracity.
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C Proofs and extensions: revenue from actions

This appendix provides all omitted proofs for Section 4 and generalizes the model to

a setting where producers’ revenues derive from both consumers’ views of news stories

and their actions based on news stories. The appendix first, in section C.1, characterizes

equilibrium outcomes in the most general case, allowing for asymmetric consumers, an

arbitrary finite social network, and a mix of revenue from both views and actions. Section

C.2 then specializes that analysis to the case of symmetric consumers and revenue only

from actions, and provides proofs for results in Section 4).

C.1 Extensions and supplementary analysis

This section builds on and generalizes the analysis in Appendix B.2, in two ways. First,

producers may be paid for views and/or actions. In particular, each producer receives

αV ∈ [0, 1] units of revenue for each view and αA ∈ [0, 1] from each action by a revenue-

generating consumer, where αV + αA = 1. Second, consumers may have arbitrary (and

asymmetric) sharing and action payoffs, parametrized by πSiT , πSiF , πAiT , and πAiF . Conse-

quently, consumers may have different belief-thresholds for sharing, pSi =
πSiF

πSiT+πSiF
∈ (0, 1),

and for action, pAi =
πAiF

πAiT+πAiF
∈ (0, 1). All individual parameters are common knowledge.37

Consumer strategies. Each consumer’s strategy consists of a (i) a sharing rule zi =

(zisi : si ∈ {T, F}) and (i) an action rule ai =
(
aioi : oi = (si, Si) ∈ {T, F} × 2Ni

)
, where

si is consumer i’s private signal and Si ⊆ Ni is the subset of i’s neighbors who shared at

time t = 1. (2X denotes the set of all subsets of X.)

37Some consumers may always (or never) prefer to share or act, no matter whether the news is true,
corresponding to belief thresholds pSi = 0 and pAi = 0 (or pSi = 1 and pAi = 1), respectively. Such
consumers’ behavior is trivial to describe and lacks information content; we therefore focus on the more
interesting case in which πSiT , π

S
iF , π

A
iT , π

A
iF > 0, so that each consumer prefers to share and act on true

stories but not on false ones.
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Optimal sharing. Let pi1(si; p0) denote consumer i’s time-1 belief about the likelihood of

news truth, depending on private signal si ∈ {T, F}. By Bayes’ Rule,

pi1(T ; p0)

1− pi1(T ; p0)
=

ρi
1− ρi

× p0

1− p0

and
pi1(F ; p0)

1− pi1(F ; p0)
=

1− ρi
ρi
× p0

1− p0

(A15)

Define consumer i’s “never-share threshold” pNSi and “always-share threshold” pASi by

the conditions pi1(T ; pNSi ) = pSi and pi1(F ; pASi ) = pSi . (When pSi = 1
2
, as in the main

text, pNSi = 1− ρi and pASi = ρi; more generally, 0 < pNSi < pSi < pASi < 1.) We can now

characterize consumer i’s set of optimal sharing rules, denoted Zi(p0), much as in Lemma

1: Zi(p0) = (0, 0) for all p0 < pNSi ; Zi(p
NS
i ) = {(ziT , 0) : ziT ∈ [0, 1]}; Zi(p0) = (1, 0)

for all pNSi < p0 < pASi ; Zi(p
AS
i ) = {(1, ziF ) : ziF ∈ [0, 1]}; and Zi(p0) = (1, 1) for all

p0 > pASi .

Optimal action. Let pi2(oi;~z−i, p0) denote consumer i’s time-2 belief conditional on “ob-

servation” oi = (si, Si), given ex ante belief p0 and others’ sharing-rule profile ~z−i. Let

O>i (~z−i, p0) = {oi : pi2(oi;~z−i, p0) > pA} and O=
i (~z−i, p0) = {oi : pi2(oi;~z−i, p0) = pA}

denote the subsets of observations given which, respectively, consumer i strictly prefers

to act and is indifferent whether to act. Let Ai(~z−i, p0) denote the set of “best-response

action rules:” ai ∈ Ai(~z−i, p0) if and only if aioi = 1 for all oi ∈ O>i (~z−i, p0), aioi ∈ [0, 1]

for all oi ∈ O=
i (~z−i, p0), and aioi = 0 for all oi 6∈ O>i (~z−i, p0) ∪ O=

i (~z−i, p0).

Equilibrium characterization. An equilibrium exists with news veracity p0, sharing-rule

profile ~z, and action-rule profile ~a if and only if (i) zi is an optimal sharing rule for all i, i.e.,

zi ∈ Zi(p0); (ii) ai is an optimal action rule for all i, i.e., ai ∈ Ai(~z−i, p0); and (iii) optimal

producer investment generates news veracity p0, i.e., p0 = H
(∑

i∈M∆Ri(~z−i, ~a)
)
, where

∆Ri(~z−i, ~a) is the extra expected revenue generated by true stories due to consumer i.

Note that an equilibrium always exists in which all stories are false (p0 = 0), consumers
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never share (~z = 0), and consumers never act (~a = 0). Zi(p0) and Ai(~z−i, p0) were

characterized previously; in order to characterize all Nash equilibria, it remains for us to

characterize ∆Ri(~z−i, ~a) for each i.

Expected revenue of true and false stories. True and false stories earn expected revenue

RiT = αVi ViT + αAi AiT and RF = αVi ViF + αAi AiF , respectively, where (αVi , α
A
i ) are the

revenue weights on views and actions for consumer i and (ViT , AiT ) and (ViF , AiF ) are

the ex ante likelihoods that consumer i will view and act conditional on a story being

true or false, respectively.

ViT , ViF depend on others’ sharing behavior but not directly on news veracity, and

hence are functions (only) of ~z−i. We characterized ViT (~z−i) and ViF (~z−i) earlier, in

equations (A12, A13).

AiT , AiF also depend on others’ sharing behavior, but now for two reasons, as shar-

ing impacts both (i) the likelihood that consumers view the story and hence have the

opportunity to act and (ii) how much consumers update their beliefs about whether the

story is true based on neighbors’ sharing behavior. Since consumers only act when their

updated belief meets or exceeds the action threshold pA, the ex ante likelihood p0 that

stories are true also impacts each consumer’s likelihood of acting. Consequently, AiT , AiF

are functions of both ~z−i and p0, as well as consumer i’s action rule ai. It remains for us

to characterize AiT (ai,~z−i, p0) and AiT (ai,~z−i, p0) for any (ai,~z−i, p0).

Action likelihoods. Conditional on the story being true or false, the likelihood of any

given observation oi = (si, Si) depends (only) on others’ sharing rules. Let LiT (oi;~z−i)

and LiF (oi;~z−i) denote the ex ante likelihoods that consumer i views a story and observes

oi conditional on the story being true or false, respectively. Upon observing oi, consumer
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i updates her belief to pi2(oi;~z−i, p0) where, by Bayes’ Rule,

pi2(oi;~z−i, p0)

1− pi2(oi;~z−i, p0)
=

p0

1− p0

× LiT (oi;~z−i)

LiF (oi;~z−i)
(A16)

We can now characterize the set of action-inducing observations in terms of their relative

likelihood of arising when a story is true versus false. In particular: oi ∈ O>i (~z−i, p0) if

and only if LiT (oi;~z−i)
LiF (oi;~z−i)

> pA(1−p0)
(1−pA)p0

and oi ∈ O=
i (~z−i, p0) if and only if LiT (oi;~z−i)

LiF (oi;~z−i)
= pA(1−p0)

(1−pA)p0
.

Since consumer i chooses to act after observations in O>i (~z−i, p0) and may randomize

after observations in O=
i (~z−i, p0), any optimal action rule ai ∈ Ai(~z−i, p0) induces action

likelihoods of the form:

AiT (ai,~z−i, p0) =
∑

oi∈Oi(~z−i,p0)

LiT (oi;~z−i) +
∑

oi∈O=
i (~z−i,p0)

aioiLiT (oi;~z−i) (A17)

AiF (ai,~z−i, p0) =
∑

oi∈Oi(~z−i,p0)

LiF (oi;~z−i) +
∑

oi∈O=
i (~z−i,p0)

aioiLiF (oi;~z−i) (A18)

The extra likelihood that consumer i acts based on true stories is then simply

∆Ai(ai,~z−i, p0) =
∑

oi∈Oi(~z−i,p0)

∆Li(oi;~z−i) +
∑

oi∈O=
i (~z−i,p0)

aioi∆Li(oi;~z−i) (A19)

where ∆Li(oi;~z−i) = LiT (oi;~z−i) − LiF (oi;~z−i). It remains to characterize LiT (oi;~z−i)

and LiF (oi;~z−i) for all (oi;~z−i).

Observation likelihoods. Consider any consumer j ∈ Ni followed by consumer i. Con-

sumer j’s ex ante likelihood of sharing is bj(ρjzjT + (1− ρj)zjF ) when a story is true or

bj((1−ρj)zjT +ρjzjF ) when it is false. So long as at least one neighbor shares, consumer i

is sure to view the story and hence receive a private signal si; alternatively, if no neighbor

shares, consumer i will only view the story with probability bi (by seeing the broadcast).
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Overall, then, conditional on the story being true or false, any observation oi = (si, Si)

with Si 6= ∅ has likelihood

LiT (si, Si;~z−i) = Pr(si|true)
∏
j∈Si

(
bj(ρjzjT + (1− ρj)zjF )

) ∏
j∈Ni\Si

(
1− bj(ρjzjT + (1− ρj)zjF )

)
LiF (si, Si;~z−i) = Pr(si|false)

∏
j∈Si

(
bj((1− ρj)zjT + ρjzjF )

) ∏
j∈Ni\Si

(
1− bj((1− ρj)zjT + ρjzjF )

)

Similarly, any observation oi = (si, ∅) has conditional likelihoods

LiT (si, ∅;~z−i) = bi Pr(si|true)
∏
j∈Ni

(
1− bj(ρjzjT + (1− ρj)zjF )

)
LiF (si, ∅;~z−i) = bi Pr(si|true)

∏
j∈Ni

(
1− bj((1− ρj)zjT + ρjzjF )

)
This completes our implicit characterization of all Nash equilibrium in the general case,

allowing for an arbitrary social network and arbitrary belief thresholds for sharing and

action, among other extensions of the baseline revenue-for-views and revenue-for-actions

models analyzed in the main text.

C.2 Special case considered in Section 4

Here we specialize the previous analysis to the case examined in Section 4 of the text: (i)

consumers are symmetric, i.e., bi = b, ρi = ρ, and #(Ni) = d for all i, (ii) producers earn

revenue from actions only, i.e., αA = 1 and αV = 0, and (iii) consumers have the same

belief-threshold for action as for sharing, i.e., pA = pS = 1
2
, and consumers follow the same

strategy. Consumers’ belief updating then depends only on how many neighbors share,

not their particular identities. We can therefore simplify each consumer’s “observation”

oi to consist of only her private signal si ∈ {T, F} and the number of sharing neighbors

σi ∈ {0, 1, ..., d}. For further simplicity, we focus on equilibria in which all consumers use
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the same action rule a.

Figure 8: Illustration of extra-action-likelihood correspondence ∆A(p0) in a finite network
(Lemma A2).

Let ∆A(p0) = {∆A(a, z, p0) : z ∈ Z(p0) and a ∈ A(z, p0)} be the range of possible

values that the extra likelihood of true-story action (∆A) can take when consumers share

and act optimally given news veracity p0 ∈ [0, 1], and let P(p0) denote the resulting news

veracity when producers invest optimally. A (symmetric) equilibrium exists with news

veracity p0 if and only if p0 ∈ P(p0).

Never-share region (p0 < 1− ρ). In any equilibrium with news veracity p0 < 1− ρ,

consumers must never share (z = 0) and, because no stories are ever shared, consumers

must learn nothing from others’ decisions not to share. Since by assumption consumers’

action threshold pA = 1
2
, consumers must therefore never act (a = 0); so, ∆A(p0) = 0

and hence P(p0) = 0 for all p0 < 1 − ρ. We conclude that a dysfunctional equilibrium

exists with zero news veracity, but no equilibria exist with news veracity p0 ∈ (0, 1− ρ).

Always-share region (p0 > ρ). In any equilibrium with news veracity p0 > ρ, con-

sumers must always share (z = 1) and, because all stories are shared, consumers learn

nothing from others’ sharing behavior. Since consumers’ action threshold pA = 1
2
, con-

sumers must always act (a = 1), inducing equal action for true and false stories; so,
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∆A(p0) = 0 and hence P(p0) = 0 for all p0 > ρ. We conclude that no equilibrium exists

with news veracity greater than ρ.

Filtering region (1 − ρ < p0 < ρ). When consumers filter the news, seeing someone

share (or not share) is a positive (or negative) signal about news truth, and consumers

find it optimal to act whenever enough of their neighbors share. In particular, there exist

real-valued functions (σ̃T (p0), σ̃F (p0)), referred to as “neighbor-sharing thresholds,” such

that consumer i strictly prefers to act after observing oi = (si, σ) for any σ > σ̃si(p0)

and strictly prefers not to act after observing oi = (si, σ) for any σ < σ̃si(p0). These

neighbor-sharing thresholds, and the resulting action likelihoods for true and false stories,

are explicitly derived in the proof of Lemma A2 below.

Lemma A2. (i) For all p0 < 1−ρ and all p0 > ρ, ∆A(p0) = 0. (ii) For all p0 ∈ (1−ρ, ρ),

∆A(p0) is a continuous and interval-valued correspondence, with

min ∆A(p0) =
∑

σ>σ̃T (p0)

∆L(T, σ; z) +
∑

σ>σ̃F (p0)

∆L(F, σ; z) (A20)

max ∆A(p0) =
∑

σ≥σ̃T (p0)

∆L(T, σ; z) +
∑

σ≥σ̃F (p0)

∆L(F, σ; z) (A21)

where σ̃T (p0) and σ̃F (p0) are continuous and strictly decreasing. Moreover, over this do-

main, ∆A(p0) is single peaked and maximized at p0 = 1
2
, i.e., max ∆A(p0) ≤ min ∆A(p′0)

for all 1− ρ < p0 < p′0 ≤ 1
2

and for all 1
2
≤ p′0 < p0 < ρ.

Proof. Part (i) is proven in the paragraphs preceding the lemma, so we focus here on part

(ii). In any equilibrium with news veracity p0 ∈ (1 − ρ, ρ), consumers must use sharing

rule z̃ = (1, 0). The ex ante likelihood that each consumer shares is bρ when a story is

true or b(1− ρ) when it is false. Thus, the relative likelihood of observation oi = (si, σi)
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when a story is true versus false takes the form

LT (si, σi; z̃)

LF (si, σi; z̃)
=

Pr(si|true)

Pr(si|false)
×
(

ρ

1− ρ

)σi
×
(

1− bρ
1− b(1− ρ)

)d−σi

causing consumers to update their time-2 belief to p2(si, σi; z̃, p0) where, by Bayes’ Rule,

p2(si,σi;z̃,p0)
1−p2(T,σi;z̃,p0)

= p0
1−p0 ×

LT (si,σi;z̃)
LF (si,σi;z̃)

. In particular:

p2(T, σi; z̃, p0)

1− p2(T, σi; z̃, p0)
=

p0

1− p0

×
(

ρ

1− ρ

)σi+1

×
(

1− bρ
1− b(1− ρ)

)d−σi
(A22)

p2(F, σi; z̃, p0)

1− p2(F, σi; z̃, p0)
=

p0

1− p0

×
(

ρ

1− ρ

)σi−1

×
(

1− bρ
1− b(1− ρ)

)d−σi
(A23)

Since the action threshold pA = 1
2
, consumer i strictly prefers to act whenever p2(si,σi;z̃,p0)

1−p2(T,σi;z̃,p0)
>

1. Let σ̃T (p0) and σ̃F (p0) be the (possibly negative) levels of σi given which, respectively,

the right-hand sides of (A22) and (A23) are equal to one. Since these expressions are

exponentially increasing in σi, increasing in p0, and continuous in (p0, σ), σ̃T (p0) and

σ̃F (p0) are well-defined, continuous, and strictly decreasing in p0.38 We conclude that

consumer i strictly prefers to act after any observation oi ∈ Õ>(p0) ≡ {(T, σi) : σi >

σ̃T (p0)} ∪ {(F, σi) : σi > σ̃F (p0)} and is indifferent whether to act after any observa-

tion oi ∈ Õ=(p0) ≡ {(T, σ̃T (p0)), (F, σ̃F (p0))}. Because σT (p0)) and σF (p0) are each

continuous and strictly decreasing in p0, Õ=(p0) = ∅ for all but finitely-many p0-levels.

Let ã(p0) denote an action rule consistent with optimal action, i.e., aoi(p0) = 1 for all

oi ∈ Õ>(p0) and aoi(p0) = 0 for all oi 6∈ Õ>(p0) ∪ Õ=(p0). Note that, except for finitely

38One can also show that (i) σ̃F (p0) > σ̃T (p0) + 1, (ii) σ̃T (p0) < d, and (iii) σ̃F (p0) > 1 (details
omitted), i.e., (i) consumers need to see more neighbors share after a negative private signal, (ii) they
act after a positive signal and seeing all of their neighbors share, and (iii) they do not act after a negative
signal and seeing no one share.
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many p0 ∈ (1− ρ, ρ), there is a unique optimal action rule, inducing action likelihoods

AT (p0) =
∑

oi∈Õ(p0)

LT (oi; z̃) and AF (p0) =
∑

oi∈Õ(p0)

LF (oi; z̃)

Since Õ>(p0) = {(si, σi) : si ∈ {T, F}, σi > σsi(p0)}, this verifies equations (A20-A21)

for these news-veracity levels, with max ∆A(p0) = min ∆A(p0) =
∑

oi∈Õ>(p0) ∆L(oi; z̃).

Let X ⊂ (1−ρ, ρ) denote the finite set of news-veracity levels given which consumers

are sometimes indifferent whether to act, i.e., p0 ∈ X if and only if Õ=(p0) 6= ∅. Without

loss, label the elements ofX in order: X = {x1, x2, ..., xK} with 1−ρ < x1 ≤ x2 ≤ xK < ρ.

Note that, given any news-veracity level p0 ∈ (xk, xk+1), consumers will act after the same

set of observations; thus, AT (p0) and AF (p0) are constant over each of these subintervals.

In particular, AT (p0), AF (p0), and hence ∆A(p0) are each step functions over (1−ρ, ρ)\X,

with discontinuities at the news-veracity levels in X.

Now, consider any news-veracity level p0 ∈ X. The extra likelihood of true-story

action takes the form

∆A(a, z̃, p0) =
∑

oi∈Õ(p0)

∆Li(oi; z̃) +
∑

oi∈Õ=(p0)

aoi∆L(oi; z̃), (A24)

a special case of equation (A19). By definition, each observation oi ∈ Õ=(p0) must

leave consumers indifferent whether to act, meaning that consumers must update their

belief about the likelihood of news truth from p0 to exactly pA = 1
2
. For p0 ∈ X

less than 1
2
, observation oi must therefore be more likely to occur when the news is

true than when it is false; so, LT (oi; z̃) > LF (oi; z̃) and hence ∆Li(oi; z̃) > 0 for all

oi ∈ Õ=(p0). Consequently, as the action-mixing probabilities (aoi : oi ∈ Õ=(p0))

range over the unit cube [0, 1]#(Õ=(p0)), ∆A(a, z̃, p0) varies from a minimum equal to

limε→0 ∆A(p0 − ε) =
∑

oi∈Õ(p0) ∆L(oi; z̃) to a maximum equal to limε→0 ∆A(p0 + ε) =
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∑
oi∈Õ(p0)∪Õ=(p0) ∆L(oi; z̃). This proves that (i) for all p0 <

1
2
, ∆A(p0) is interval-valued

with minimal and maximal values given by equations (A20-A21), and (ii) for all p0 ∈ X

less than 1
2
, the discontinuity in ∆A(p0) at p0 is an upward discontinuity.

On the other hand, for p0 ∈ X greater than 1
2
, observation oi must be less likely to

occur when the news is true; so, LT (oi; z̃) < LF (oi; z̃) and hence ∆Li(oi; z̃) < 0 for all

oi ∈ Õ=(p0). But then, by the same argument as before, it must be that ∆A(a, z̃, p0)

varies from a minimum equal to limε→0 ∆A(p0 + ε) =
∑

oi∈Õ>(p0)∪Õ=(p0) ∆L(oi; z̃) to a

maximum equal to limε→0 ∆A(p0 − ε) =
∑

oi∈Õ>(p0) ∆L(oi; z̃). This again proves that

∆A(p0) is interval-valued with minimal and maximal values given by equations (A20-

A21), but now the discontinuities in ∆A(p0) at p0 ∈ X are downward discontinuity.

Combining these observations, we conclude that ∆A(p0) is single-peaked in p0 over

the filtering region and maximized at the action threshold p0 = 1
2
, as desired.

Because producer cost cR is drawn from an atomless distribution having support

on (0,∞), induced news veracity p0 = H(M∆A) is a continuous, strictly increasing

function of ∆A. We conclude that P(p0), like ∆A(p0) is a continuous, interval-valued,

single-peaked function over the filtering region, maximized over this domain at p0 = 1/2.

Some immediate consequences: (i) an equilibrium exists with news veracity p0 > 1/2 if

and only if H(M max ∆A(1/2)) > 1/2; and (ii) an equilibrium exists with news veracity

p0 ∈ (1− ρ, ρ) if limε→0H(M∆A(1− ρ+ ε)) > 1− ρ and limε→0H(M∆A(ρ− ε)) < ρ.

Always-share threshold (p0 = ρ) and never-share threshold (p0 = 1−ρ). If news

veracity p0 = ρ or p0 = 1 − ρ, consumers must use a sharing rule of the form (1, zF ) or

(zT , 0), respectively. Each such sharing rule generates different observation likelihoods,

affecting which observations are sufficiently “good news” to prompt consumers to act

and thereby inducing a different extra likelihood of true-story action (∆A). Computing

∆A(ρ) and ∆(1 − ρ), the range of values that ∆A can potentially take, is complex but
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ultimately straightforward given the analytical machinery introduced in Appendix C.1.

Lemma A3 below collects key facts about ∆A(ρ) and ∆(1 − ρ), useful later in other

proofs.

Lemma A3. (i) ∆A(ρ) =
[
0,∆A(ρ)

]
, where ∆A(ρ) ≥ limε→0 ∆A(ρ − ε). (ii) ∆A(1 −

ρ) =
[
0,∆A(1− ρ)

]
, where ∆A(1− ρ) ≥ limε→0 ∆A(1− ρ+ ε).

Proof. First, we show that min ∆A(ρ) = 0. Suppose that consumers use the always-

share rule z = (1, 1), which is optimal given news veracity p0 = ρ. Consumers then learn

nothing from others’ sharing behavior and hence find it optimal to use the always-share

rule. (Consumers are indifferent whether to act after receiving a bad private signal; so,

all sharing rules of the form (1, zF ) are optimal, including the always-share rule.) Under

such optimal sharing and optimal action behavior, true and false stories are equally acted

upon, resulting in ∆A = 0; so, 0 ∈ ∆A(ρ). Next, observe that optimizing consumers

never act on false stories more often than true stories, since to do so would result in a

negative expected action payoff, worse than never acting at all; so, min ∆A(ρ) ≥ 0.

Next, we show that max ∆A(ρ) ≥ ∆̃A ≡ limε→0 ∆A(ρ− ε). Suppose that consumers

use the filtering rule z = z̃ = (1, 0). Consumers’ updated beliefs after any given obser-

vation, and resulting action behavior, are characterized in the proof of Lemma A2. Let

∆̃A(ρ) denote the resulting extra likelihood of true-story action—potentially an interval,

if p0 = ρ is one of the finitely-many news-veracity levels at which consumers are indiffer-

ent whether to act after some observation. Since the filtering rule is optimal given news

veracity p0 = ρ, ∆̃A(ρ) ⊂ ∆A(ρ). And by the continuity argument of Lemma A2, it

must be that ∆̃A ∈ ∆̃A(ρ). All together, we conclude that ∆̃A ≤ max ∆A(ρ).

Finally, we show that ∆A(ρ) is an interval. For each optimal sharing rule (1, zF ),

let A(ρ; zF ) denote the set of optimal action rules. An optimal action rule must specify

action probability aoi = 1 (or = 0) if consumers strictly prefer to act (or not to act) after
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observation oi, or anything from the interval [0, 1] if consumers are indifferent. The set

A(ρ; zF ) is therefore equivalent to a k-dimensional unit square, where k is the number of

observations after which consumers are indifferent, or a singleton if consumers are never

indifferent.

By definition, ∆A(ρ) = ∪zF∈[0,1] ∪a∈A(ρ;zF ) ∆A(a, z). The extra likelihood that true

stories are acted upon, ∆A(a, z), is obviously continuous in a and, because the likelihood

of any given observation is continuous in z, must also be continuous in z. Since A(ρ; zF )

is a product of intervals, we conclude that ∪a∈A(ρ;zF )∆A(a, z) is an interval for each zF ,

and that the union of these intervals is also an interval.

This completes the proof of part (i). The proof of part (ii) is essentially identical and

omitted to save space.

C.3 Proof of Thm 2

Preliminaries. For any finite social connectedness d, let P(p0; d) = H(M∆A(p0; d)) be

the continuous correspondence mapping any consumer belief p0 to the interval of news

veracities that can potentially arise given that belief when consumers share and act

optimally and producers invest optimally. (The fact that P(p0; d) is a continuous and

interval-valued follows from the fact that ∆A(p0; d) is a continuous and interval-valued

(Lemmas A2-A3) and that H(·) is continuous, due to producer cost cR being atomless.)

Given any news veracity p0 ∈ (1−ρ, ρ), consumers optimally filter the news, allowing

consumers in the d→∞ limit to discern perfectly which stories are true; so, true stories

are always acted upon while false stories are never acted upon in the limit, making true

stories’ extra likelihood of action as large as possible: limd→∞∆A(p0; d) = 1. Of course,

for any finite d, any observation that induces consumers to act will sometimes occur for

false stories as well as true ones; so, ∆A(p0; d) < 1 for any finite d.
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We conclude that, for all p0 ∈ (1−ρ, ρ), maxP(p0; d) < H(M) for all finite d but that

limd→∞minP(p0; d) = limd→∞maxP(p0; d) = H(M) (or, more simply, “limd→∞P(p0; d) =

H(M)”. By Lemma A3, we conclude further that limd→∞P(ρ; d) = limd→∞P(1−ρ; d) =

[0, H(M)]. And by Lemma A2, P(p0; d) = 0 for all p0 < 1− ρ and all p0 > ρ.

Proof of part (i). Suppose that H(M) ≤ 1 − ρ and consider any finite d. For any

p0 ≥ 1 − ρ, maxP(p0; d) < H(M) ≤ p0; and for any 0 < p0 < 1 − ρ, P(p0; d) = 0 < p0.

Thus, no equilibrium exists with positive news veracity and the dysfunctional equilibrium

is the unique equilibrium, i.e., p∗A0 (d) = 0 for all d. Clearly, then, p∗A∞0 = 0.

Proof of part (ii). Suppose that 1− ρ < H(M) ≤ ρ and consider any large finite d. Be-

cause news veracity cannot possibly exceed H(M) when producers invest optimally, equi-

librium news veracity must be less than ρ; so, p∗A∞0 < ρ. Because P(p0; d) < H(M) but

limd→∞P(p0; d) = H(M) for all p0 ∈ (1−ρ, ρ), minP(1−ρ+) > 1−ρ and maxP(ρ−) < ρ

for all sufficiently large d. By continuity, there exists some p0(d) ∈ (1 − ρ, ρ) such that

p0(d) ∈ P(p0; d). Again because limd→∞P(p0; d) = H(M), the maximal such crossing-

point converges to H(M) ∈ (1−ρ, ρ) as d→∞; so, p∗A∞0 = H(M). (As discussed earlier,

the fact that all consumers filter the news in equilibrium allows consumers to perfectly

discern which stories are true, based on others’ sharing behavior.)

Proof of part (iii). Suppose that H(M) > ρ and consider any large finite d. Because

limd→∞P(ρ; d) = [0, H(M)], ρ ∈ P(ρ; d) for all sufficiently large d; so, an equilibrium

exists with news veracity equal to ρ. And because P(p0; d) = 0 for all p0 > ρ, no

equilibrium exists with news veracity higher than ρ.39 We conclude that the maximal

equilibrium news veracity p∗A0 (d) = ρ for all sufficiently large d, and hence that p∗A∞0 = ρ.

It remains to show that, in the limit-market equilibrium for this case, i.e., the d→∞
39Because P(p0; d) is single-peaked over the filtering region (Lemma A2) and limε→0 P(ρ − ε; d) =

limε→0 P(1 − ρ + ε; d) = H(M), no equilibrium exists with news veracity in the filtering region. Thus,
when H(M) > ρ and d is large, all equilibria have news veracity equal to ρ, equal to 1−ρ, or equal to 0.

69



limit of these equilibria with news veracity equal to ρ, consumers cannot perfectly discern

which stories are true. But this follows immediately from the fact that, if consumers could

perfectly discern the truth in the limit, then they would act on all true stories and no

false stories and true stories would generate M units of additional revenue. Optimal

investment would then induce news veracity p0 = H(M) > ρ, a contradiction.

C.4 Proof of Proposition 5

By Proposition 4, either p∗V∞0 = 0 or p∗V∞0 = 1 − ρ. We need to show that, if p∗V∞0 =

1 − ρ, then p∗A∞0 > 1 − ρ. Because all stories are seen with probability at least b, true

stories’ extra visibility is at most 1 − b. Consequently, when producers are paid for

views, true stories generate extra revenue of at most M(1 − b) and optimal producer

investment can never result in news veracity greater than H(M(1 − b)). We conclude

that, if p∗V∞0 = 1−ρ, then it must be that H(M(1−b)) ≥ 1−ρ. But then H(M) > 1−ρ

and p∗A∞0 = min{H(M), ρ} by Thm 2(ii-iii).
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