
DP Range Query on Shortest Paths
Discrete Math Seminar

Jesse Campbell

Duke Kunshan University

November 5, 2024

Motivation

You are a doctor, and you have a patient who
needs to be transferred to another facility.

You know the shortest paths between hospitals,
but you don’t know how many patients are en
route along each path.

How can we release an private, accurate estimate
of the number of patients en route on the shortest
paths to have a successful transfer?

You are a doctor, and you have a patient who
needs to be transferred to another facility.

You know the shortest paths between hospitals,
but you don’t know how many patients are en
route along each path.

How can we release an private, accurate estimate
of the number of patients en route on the shortest
paths to have a successful transfer?

You are a doctor, and you have a patient who
needs to be transferred to another facility.

You know the shortest paths between hospitals,
but you don’t know how many patients are en
route along each path.

How can we release an private, accurate estimate
of the number of patients en route on the shortest
paths to have a successful transfer?

G = (V,E, ω) with private edge attribute f : E → R+.

Background

Two isomorphic graphs G1, G2 = (V,E, ω) with
edge attribute functions f1, f2 : E → R+ are said
to be neighboring if∑

e∈E

|f1(e)− f2(e)| ≤ 1

The l1 sensitivity of A : X → RD is defined as

∆1(A) := max
X,X ′

‖A(X)−A(X ′)‖1

where X,X ′ are neighboring datasets.

An algorithm M : X → RD is said to be
(ε, δ)-differentially private if, for all outcomes
S ⊆ RD and neighboring datasets X,X ′,

P[M(X) ∈ S] ≤ eε · P[M(X ′) ∈ S] + δ

We call the case where δ = 0 pure differential
privacy and the case where δ > 0 approximate
differential privacy.

An algorithm M : X → RD is said to be
(ε, δ)-differentially private if, for all outcomes
S ⊆ RD and neighboring datasets X,X ′,

P[M(X) ∈ S] ≤ eε · P[M(X ′) ∈ S] + δ

We call the case where δ = 0 pure differential
privacy and the case where δ > 0 approximate
differential privacy.

(Basic composition) Let ε, δ ∈ [0, 1] and
k ∈ N. If we run k mechanisms where each
mechanism is (ε/k, δ/k)-DP, then the entire
algorithm is (ε, δ)-DP.

Given any function f : X → Rk, the Laplace
mechanism on input X ∈ X independently
samples Y1, ..., Yk according to Lap(∆1(f)/ε) and
outputs,

Mf,ε(X) = f (X) + (Y1, ..., Yk)

The Laplace mechanism is ε-differentially private.

Concrete Example

Let X ⊂ N. We say that X ′ ∼ X (neighboring) if
|avg(X)− avg(X ′)| ≤ 1 and |X | = |X ′| = n.

Let A : 2N → R be an algorithm given by
A(X) = avg(X) for any X ∈ 2N.

A has sensitivity 1.

Let X ⊂ N. We say that X ′ ∼ X (neighboring) if
|avg(X)− avg(X ′)| ≤ 1 and |X | = |X ′| = n.

Let A : 2N → R be an algorithm given by
A(X) = avg(X) for any X ∈ 2N.

A has sensitivity 1.

Let X ⊂ N. We say that X ′ ∼ X (neighboring) if
|avg(X)− avg(X ′)| ≤ 1 and |X | = |X ′| = n.

Let A : 2N → R be an algorithm given by
A(X) = avg(X) for any X ∈ 2N.

A has sensitivity 1.

Let Y1, Y2, ..., Yn ∼ Lap(1/ε). Suppose that
X = {x1, x2, ..., xn}.

We define X̃ = {x1 + Y1, x2 + Y2, ..., xn + Yn}.

A(X̃) =
x1 + x2 + ... + xn

n
+

Y1 + ... + Yn

n

Let Y1, Y2, ..., Yn ∼ Lap(1/ε). Suppose that
X = {x1, x2, ..., xn}.

We define X̃ = {x1 + Y1, x2 + Y2, ..., xn + Yn}.

A(X̃) =
x1 + x2 + ... + xn

n
+

Y1 + ... + Yn

n

Let Y1, Y2, ..., Yn ∼ Lap(1/ε). Suppose that
X = {x1, x2, ..., xn}.

We define X̃ = {x1 + Y1, x2 + Y2, ..., xn + Yn}.

A(X̃) =
x1 + x2 + ... + xn

n
+

Y1 + ... + Yn

n

By a concentration inequality for i.i.d. Laplace
random variables, with probability at least 1− γ,
we have

|Y1 + ... + Yn| < O(
√
n log (1/γ)/ε)

Hence, our ε-DP algorithm A is

O(log (1/γ)/(ε ·
√
n))-accurate

with probability 1− γ.

By a concentration inequality for i.i.d. Laplace
random variables, with probability at least 1− γ,
we have

|Y1 + ... + Yn| < O(
√
n log (1/γ)/ε)

Hence, our ε-DP algorithm A is

O(log (1/γ)/(ε ·
√
n))-accurate

with probability 1− γ.

Main Algorithm

Lemma 5. Let T = (V,E, ω) be a rooted tree
with root z and private edge attribute
φ : E → R+.

We can release an ε-DP estimate of the counting
queries from z to every other vertex in T with
O(log1.5 (n) · log (n/γ)/ε) error w.p. 1− γ.

Lemma 5. Let T = (V,E, ω) be a rooted tree
with root z and private edge attribute
φ : E → R+.

We can release an ε-DP estimate of the counting
queries from z to every other vertex in T with
O(log1.5 (n) · log (n/γ)/ε) error w.p. 1− γ.

Let T = (V,E, ω) be a rooted tree with root z.
(1) Locate the unique centroid z∗ that is closest
to z

(2) Let zi be the children of z∗, and Ti = (Vi, Ei)

their corresponding subtrees, i ∈ {1, 2, ..., t}
(3) Release the counting queries between z and
z∗, as well as between z∗ and its children zi by
adding Laplace noise from Lap(log (n)/ε).
(4) Recursively repeat on each subtree Ti.

Let T = (V,E, ω) be a rooted tree with root z.
(1) Locate the unique centroid z∗ that is closest
to z

(2) Let zi be the children of z∗, and Ti = (Vi, Ei)

their corresponding subtrees, i ∈ {1, 2, ..., t}

(3) Release the counting queries between z and
z∗, as well as between z∗ and its children zi by
adding Laplace noise from Lap(log (n)/ε).
(4) Recursively repeat on each subtree Ti.

Let T = (V,E, ω) be a rooted tree with root z.
(1) Locate the unique centroid z∗ that is closest
to z

(2) Let zi be the children of z∗, and Ti = (Vi, Ei)

their corresponding subtrees, i ∈ {1, 2, ..., t}
(3) Release the counting queries between z and
z∗, as well as between z∗ and its children zi by
adding Laplace noise from Lap(log (n)/ε).

(4) Recursively repeat on each subtree Ti.

Let T = (V,E, ω) be a rooted tree with root z.
(1) Locate the unique centroid z∗ that is closest
to z

(2) Let zi be the children of z∗, and Ti = (Vi, Ei)

their corresponding subtrees, i ∈ {1, 2, ..., t}
(3) Release the counting queries between z and
z∗, as well as between z∗ and its children zi by
adding Laplace noise from Lap(log (n)/ε).
(4) Recursively repeat on each subtree Ti.

Key points
(1) Since each subtree Ti contains at most n/2
vertices, the recusion depth is bounded by
log2 (n). By basic composition of DP
algorithms, the composition of log (n),
(ε/ log (n))-DP mechanisms is ε-DP.

(2) Let u ∈ V , the number of estimates used to
calculate ω(z, u) is bounded above by 2 log (n).

Key points
(1) Since each subtree Ti contains at most n/2
vertices, the recusion depth is bounded by
log2 (n). By basic composition of DP
algorithms, the composition of log (n),
(ε/ log (n))-DP mechanisms is ε-DP.
(2) Let u ∈ V , the number of estimates used to
calculate ω(z, u) is bounded above by 2 log (n).

Lemma 2. Let X1, ..., Xt be independent
random variables distributed according to Lap(b),
and let X = X1 + ... +Xt. Then for all
γ ∈ (0, 1), with probability at least 1−γ we have,

|X| < O(b
√
t log (1/γ))

By a union bound, with probability at least 1− γ,
the error for the estimate from z to all vertices
u ∈ V is bounded above by
O(log1.5 (n) · log (n/γ)/ε).

Lemma 2. Let X1, ..., Xt be independent
random variables distributed according to Lap(b),
and let X = X1 + ... +Xt. Then for all
γ ∈ (0, 1), with probability at least 1−γ we have,

|X| < O(b
√
t log (1/γ))

By a union bound, with probability at least 1− γ,
the error for the estimate from z to all vertices
u ∈ V is bounded above by
O(log1.5 (n) · log (n/γ)/ε).

Lemma 6. We can release an ε-DP
approximation of the counting queries between all
pairs of vertices in T with
O(log1.5 (n) · log (n/γ)/ε).

(1) Randomly sample a hitting set S ⊂ V of
vertices with size n1/3.

(2) Release ε/(2 · n1/3) counting queries along
each shortest path tree rooted at a vertex v ∈ S

(Lemma 6).
(3) Release the t-hop shortest paths from each
vertex where t := d10 · n2/3 log (n)e by adding
noise from Lap(2/ε) to each edge.
(4) Let ω̃(u, v) be the minimum of the estimates
from (2) and (3).

(1) Randomly sample a hitting set S ⊂ V of
vertices with size n1/3.
(2) Release ε/(2 · n1/3) counting queries along
each shortest path tree rooted at a vertex v ∈ S

(Lemma 6).

(3) Release the t-hop shortest paths from each
vertex where t := d10 · n2/3 log (n)e by adding
noise from Lap(2/ε) to each edge.
(4) Let ω̃(u, v) be the minimum of the estimates
from (2) and (3).

(1) Randomly sample a hitting set S ⊂ V of
vertices with size n1/3.
(2) Release ε/(2 · n1/3) counting queries along
each shortest path tree rooted at a vertex v ∈ S

(Lemma 6).
(3) Release the t-hop shortest paths from each
vertex where t := d10 · n2/3 log (n)e by adding
noise from Lap(2/ε) to each edge.

(4) Let ω̃(u, v) be the minimum of the estimates
from (2) and (3).

(1) Randomly sample a hitting set S ⊂ V of
vertices with size n1/3.
(2) Release ε/(2 · n1/3) counting queries along
each shortest path tree rooted at a vertex v ∈ S

(Lemma 6).
(3) Release the t-hop shortest paths from each
vertex where t := d10 · n2/3 log (n)e by adding
noise from Lap(2/ε) to each edge.
(4) Let ω̃(u, v) be the minimum of the estimates
from (2) and (3).

For shortest paths that have fewer than t edges,
we can directly release the approximation with
O(n1/3 · log1.5 (n) · log (1/γ)/ε) error.

For shortest paths that have more than t edges,
we can release their approximation via a shortest
path tree that contains them with
O(n1/3 log2.5(n) · log (1/γ)/ε)

For shortest paths that have fewer than t edges,
we can directly release the approximation with
O(n1/3 · log1.5 (n) · log (1/γ)/ε) error.
For shortest paths that have more than t edges,
we can release their approximation via a shortest
path tree that contains them with
O(n1/3 log2.5(n) · log (1/γ)/ε)

Question: How do we know that long shortest
paths are contained in a shortest path tree?

Answer: Let u = p0, p1, ..., p` = v be the shortest
path between u and v and assume that ` ≥ t.
Each vertex has probability n−2/3 of being
included in S. Hence, the probability that none of
pi are included is (1− n−2/3)t ≤ 1/n4.
We condition on this event for all n2 shortest
paths with probability at least 1− 1/n2, by a
union bound.

Question: How do we know that long shortest
paths are contained in a shortest path tree?
Answer: Let u = p0, p1, ..., p` = v be the shortest
path between u and v and assume that ` ≥ t.

Each vertex has probability n−2/3 of being
included in S. Hence, the probability that none of
pi are included is (1− n−2/3)t ≤ 1/n4.
We condition on this event for all n2 shortest
paths with probability at least 1− 1/n2, by a
union bound.

Question: How do we know that long shortest
paths are contained in a shortest path tree?
Answer: Let u = p0, p1, ..., p` = v be the shortest
path between u and v and assume that ` ≥ t.
Each vertex has probability n−2/3 of being
included in S. Hence, the probability that none of
pi are included is (1− n−2/3)t ≤ 1/n4.

We condition on this event for all n2 shortest
paths with probability at least 1− 1/n2, by a
union bound.

Question: How do we know that long shortest
paths are contained in a shortest path tree?
Answer: Let u = p0, p1, ..., p` = v be the shortest
path between u and v and assume that ` ≥ t.
Each vertex has probability n−2/3 of being
included in S. Hence, the probability that none of
pi are included is (1− n−2/3)t ≤ 1/n4.
We condition on this event for all n2 shortest
paths with probability at least 1− 1/n2, by a
union bound.

Question: Why can’t we use the same algorithm
to release shortest distances, where edge weights
are private?

Answer: Because calculation the shortest path
trees relies on the private edge weights.

Question: Why can’t we use the same algorithm
to release shortest distances, where edge weights
are private?
Answer: Because calculation the shortest path
trees relies on the private edge weights.

Collective Tree Spanners

Given a graph G = (V,E, ω), a graph t-spanner
H = (V,EH , ωH) is subgraph such that for any
u, v ∈ V ,

dH(u, v) ≤ t · dG(u, v)

That is, H approximately preserves pairwise
distances.

Given a graph G = (V,E, ω), a graph t-spanner
H = (V,EH , ωH) is subgraph such that for any
u, v ∈ V ,

dH(u, v) ≤ t · dG(u, v)

That is, H approximately preserves pairwise
distances.

A collective tree t-spanner is a collection of tree
{Ti} such that Ti is a spanning subtree of G and,
if T = ∪iTi, then,

dT(u, v) ≤ t · dG(u, v)

By first constructing a collective tree spanner of
G, we can run Lemma 6 on each tree to release
a private estimate of counting queries over
t-approximate shortest paths in G.

This allows us to achieve a tradeoff between
accuracy and distance.

By first constructing a collective tree spanner of
G, we can run Lemma 6 on each tree to release
a private estimate of counting queries over
t-approximate shortest paths in G.

This allows us to achieve a tradeoff between
accuracy and distance.

Lemma 1. Let T be a t-collective tree spanner of
G such that |T| = ηt. There is an ε-DP algorithm
for releasing the counting query between u, v ∈ V

on a t-approximate shortest path in G that is
O(ηt · log2.5(n) · log (1/γ)/ε)-accurate w.p. 1− γ.

Õ(
√
ηt/ε) in the (ε, δ)-DP case.

Lemma 1. Let T be a t-collective tree spanner of
G such that |T| = ηt. There is an ε-DP algorithm
for releasing the counting query between u, v ∈ V

on a t-approximate shortest path in G that is
O(ηt · log2.5(n) · log (1/γ)/ε)-accurate w.p. 1− γ.

Õ(
√
ηt/ε) in the (ε, δ)-DP case.

Lower bounds for graph spanners: Consider
an undirected, unweighted graph G = (V,E)

whose shortest cycle has more than t + 1 edges
(girth > t + 1).

Then G has no proper subgraph that is a
t-spanner.

Lower bounds for graph spanners: Consider
an undirected, unweighted graph G = (V,E)

whose shortest cycle has more than t + 1 edges
(girth > t + 1).

Then G has no proper subgraph that is a
t-spanner.

Moore bounds. Let γ(n, k) denote the
maximum number of edges in an n-vertex graph
with girth > k, then,

γ(n, k) = O

(
n
1+ 1

bk/2c

)
Erdös girth conjecture (open): The Moore
bounds are tight.

In the context of multiplicative spanners, any
(2k − 1)-spanner must have at least Ω(n1+(1/k))

edges.

We give a framework to construct a collective tree
(2k − 1)-spanner with O(kn1/k) trees, which is
optimal up to a factor of k.

In the context of multiplicative spanners, any
(2k − 1)-spanner must have at least Ω(n1+(1/k))

edges.

We give a framework to construct a collective tree
(2k − 1)-spanner with O(kn1/k) trees, which is
optimal up to a factor of k.

References

Sealfon, Adam. (2016). Shortest Paths and Distances
with Differential Privacy. 29-41.
10.1145/2902251.2902291.
Chen, Justin et al. (2023). Differentially Private All-Pairs
Shortest Path Distances: Improved Algorithms and Lower
Bounds, Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 5040-5067,
10.1137/1.9781611977554.ch184.
Chengyuan, Deng et al. (2022). Differentially Private
Range Query on Shortest Paths. arXiv preprint.
https://arxiv.org/abs/2212.07997

	Motivation
	Background
	Concrete Example
	Main Algorithm
	Collective Tree Spanners
	References

