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Linearlity if Expectation: Basics

THM. Let X1, · · · ,Xn be random variables, X = c1X1 + · · ·+ cnXn.

Linearity of expectation states that E (X ) = c1E (X1) + · · ·+ cnE (Xn)

Remark: The power of this principle comes from there being no

restrictions on the dependence or independence of Xi . In many instances,

E (X ) can easily be calculated by a judicious decomposition into simple

(often indicator) random variables Xi .



Linearity of Expectation: A Simple Example

Let σ be a random permutation on {1, · · · , n}, uniformly chosen. Let
X (σ) be the number of fixed points of σ. To find E (X ), we decompose
X = X1 + · · ·+ Xn, where Xi is the indicator random variable of the event
σ(i) = i . Then

E (Xi ) = Pr(σ(i) = i) =
1

n

, so that

E (X ) =
1

n
+ · · ·+ 1

n
=

1

n
n = 1



Splitting Graphs

THM. Let G (V ,E ) be a graph with n vertices and e edges. Then G

contains a bipartite subgraph with at least e
2 edges.



Splitting Graphs

Proof.

Let T ⊆ V be a random subset given by Pr(X ∈ T ) = 1
2 , these choices

being mutually independent. Set B = V − T , call an edge {x , y} crossing
if exactly one of x , y is in T . Let X be the number of crossing edges. We
decompose

X =
∑

{x ,y}∈E

Xxy

, where Xxy is the indicator random variable for {x , y} being crossing.
Then E (Xxy ) =

1
2 , as two fair coin flips have probability 1

2 of being
different. Then

E (X ) =
∑

{x ,y}∈E

E (Xxy ) =
e

2

Thus X ≥ e
2 for some choice of T, and the set of those crossing edges

forms a bipartite graph.



Splitting Graphs

THM. If G has 2n vertices and e edges, then it contains a bipartite

subgraph with at least en
2n−1 edges. If G has 2n + 1 vertices and e edges,

then it contains a bipartite subgraph with at least e(n+1)
2n+1 edges.



Proof.

When G has 2n vertices, let T be chosen uniformly from among all n−

element subsets of V , Any edge {x , y} now has probability n
2n−1 of being

crossing, and the proof concludes as before. When G has 2n + 1 vertices,

choose T uniformly from among all n− element subsets of V , and the

proof is similar.



Example: Balancing Vectors

THM. Let v1, · · · , vn ∈ Rn, all |vi | = 1. Then there exist ϵ1, · · · , ϵn = ±1
so that

|ϵ1v1 + · · ·+ ϵnvn| ≤
√
n

and there also exist ϵ1, · · · , ϵn = ±1 so that

|ϵ1v1 + · · ·+ ϵnvn| ≥
√
n

.



Example: Balancing Vectors

Proof.

Let ϵ1, · · · , ϵn be selected uniformly and independently from {−1.+1}, set

X = |ϵ1v1 + · · ·+ ϵnvn|2

. Then

X =
n∑

i=1

n∑
j=1

ϵiϵjvivj

Thus

E (X ) =
n∑

i=1

n∑
j=1

vivjE (ϵiϵj)

When i ̸= j , E (ϵiϵj) = 0. When i = j , ϵi
2 = 1 so E (ϵi

2) = 1. Thus
E (X ) =

∑n
i=1 vi · vi = n. Hence there exists specific ϵ1, · · · , ϵn = ±1 with

X ≥ n and X ≤ n. Taking square root gives the theorem.



Example: Balancing Vectors

The next result includes part of the above theorem as a linear translation
of the p1 = · · · = pn = 1

2 case.

THM. Let v1, · · · , vn in Rn, all |vi | ≤ 1. Let p1, · · · , pn ∈ [0, 1] be
arbitrary, and set w = p1v1 + · · ·+ pnvn. Then there exist
ϵ1, · · · , ϵn ∈ {0, 1} so that, setting v = ϵ1v1 + · · ·+ ϵnvn,

|w − v | ≤
√
n

2



Example: Unbalancing Lights

THM. Let aij = ±1 for 1 ≤ i , j ≤ n. Then there exists
xi , yj = ±1, 1 ≤ i , j ≤ n, so that

n∑
i=1

n∑
j=1

aijxiyj ≥ (

√
2

π
+ o(1))n

3
2

.
Remark: This result has an amusing interpretation. Let an n × n array of
lights be given, each either on (aij = +1) or off (aij = −1). Suppose for
each row and each column there is a switch so that if the switch is pulled
(xi = −1 for row i and yj = −1 for column j) all of the lights in that line
will be “switched” on to off or off to on. Then for any initial configuration
it is possible to perform switchings so that the number of lights on minus

the number of lights off is at least (
√

2
π + o(1))n

3
2 .


