

Large fringe and non-fringe subtrees in conditional Galton-Watson trees

The Discrete Math Seminar

Xing Shi Cai, Luc Devroye

Feb 25, 2022

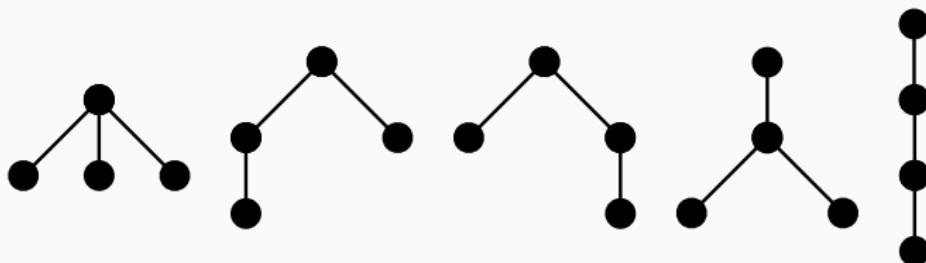
Duke Kunshan University

Introduction

What is a tree

A tree is an acyclic graph.

In this talk, trees are *unlabelled*, *rooted*, and *ordered* (plane trees).

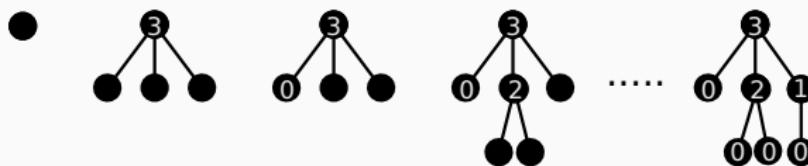


Galton-Watson trees

A Galton-Watson (gw) tree \mathcal{T}^{gw} starts with a single node.

Each node in \mathcal{T}^{gw} chooses a random number of child nodes independently from the same distribution ξ (offspring distribution).

Introduced by bienayme.



Note

We will always assume that $\mathbb{E}\xi = 1$ (critical case) and $\text{var } \xi \in (0, \infty)$.

Conditional Galton-Watson trees

A **conditional/conditioned gw** Tree \mathcal{T}_n^{gw} is \mathcal{T}^{gw} restricted to $|\mathcal{T}^{gw}| = n$.

So $\mathbb{P}\{\mathcal{T}_n^{gw} = T\} = \mathbb{P}\{\mathcal{T}^{gw} = T \mid |\mathcal{T}^{gw}| = n\}$.

It covers many uniform random tree models (Janson, 2012) –

- full binary trees
- binary trees
- d -ary trees
- Motzkin trees
- Plane trees
- Cayley trees

Simply generated trees

In many cases, \mathcal{T}_n^{gw} is equivalent to **simply generated trees** introduced by Meir and Moon (1978).

Let $(w_i)_{i \geq 0}$ be a sequence of non-negative numbers.

Let $\text{weight}(T) = \prod_{v \in T} w_{\deg(v)}$.

Let $\mathcal{T}_n^{\text{sg}}$ be a random tree of size n such that $\mathbb{P}\{\mathcal{T}_n^{\text{sg}} = T\}$ is proportional to $\text{weight}(T)$.

Example of conditional Galton-Watson trees

Let $\mathbb{P}[\xi = i] = 1/2^{i+1}$. In other words, $\xi \stackrel{d}{=} \text{Ge}(1/2)$.

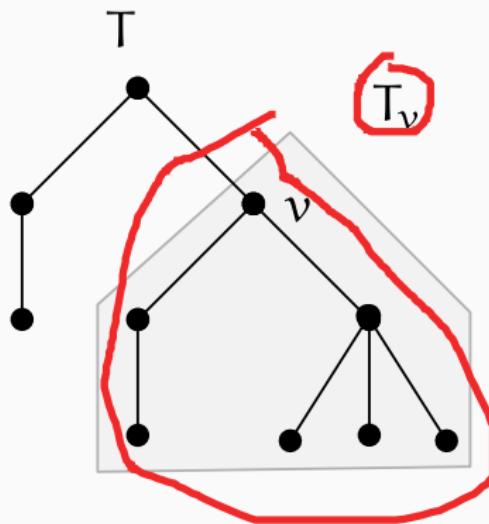
\mathcal{T}_n^{gw} is uniformly distributed among all trees of size n .

trees of size $n = 4$

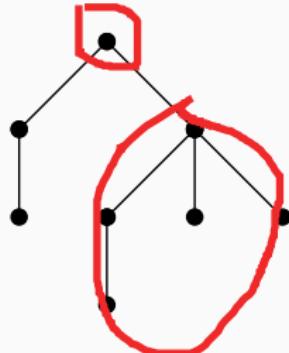
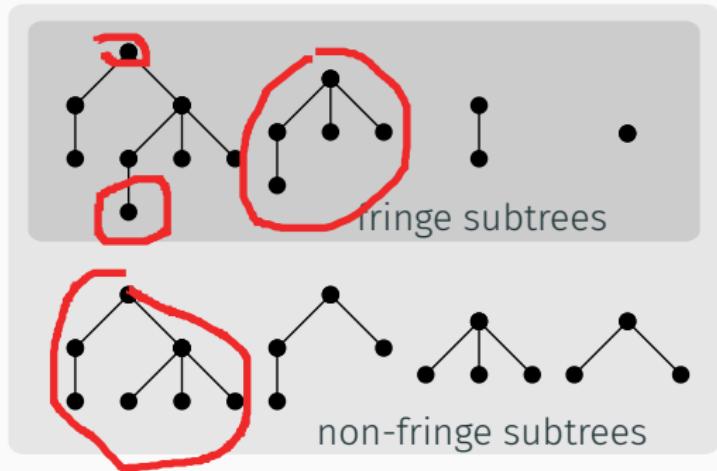
Fringe subtrees

For a node v of a tree T , the *fringe subtree* T_v contains v and all its descendants.

It is what normally called a “subtree”.



Fringe and non-fringe subtrees

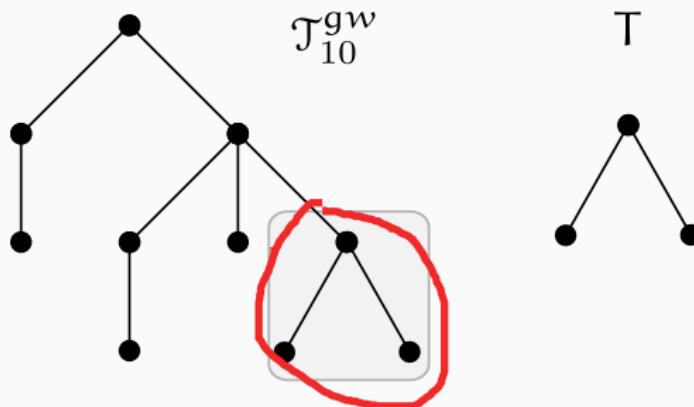


Fringe subtree—a node and every descendant of it.

Non-fringe subtree—a fringe subtree with some (or none) of its subtrees “trimmed”—replaced by leaves.

Fringe subtree count

Let $N_T(\mathcal{T}_n^{gw})$ be the number of fringe subtrees of shape T in \mathcal{T}_n^{gw} .



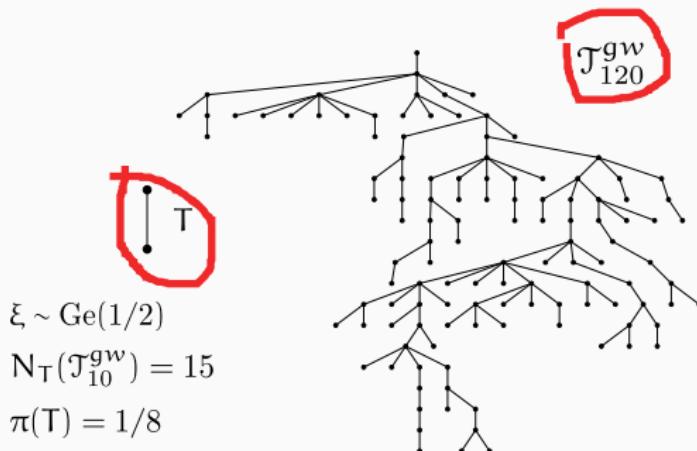
$$N_T(\mathcal{T}_{10}^{gw}) = 1$$

Fringe subtree count: bigger example

In the next example,

$$\frac{N_T(\mathcal{T}_n^{gw})}{n} = \frac{15}{120} = \frac{1}{8} = \pi(T) \equiv \mathbb{P}\{\mathcal{T}^{gw} = T\}.$$

Is this just a coincidence?



What is known

For large n , fringe subtrees in \mathcal{T}_n^{gw} behave like independent copies of \mathcal{T}^{gw} .

Take a uniform random fringe subtree of \mathcal{T}_n^{gw} , the probability to get T is about $\pi(T) \equiv \mathbb{P}\{\mathcal{T}^{gw} = T\}$.

So $N_T(\mathcal{T}_n^{gw}) \approx \text{Bi}(n, \pi(T))$.

What is known

Law of Large Number (Aldous, 1991)

As $n \rightarrow \infty$,

$$\frac{N_T(\mathcal{T}_n^{gw})}{n} \xrightarrow{p} \pi(T).$$

Central Limit Theorem (Janson, 2016)

As $n \rightarrow \infty$,

$$\frac{N_T(\mathcal{T}_n^{gw}) - n\pi(T)}{\gamma\sqrt{n}} \xrightarrow{d} N(0, 1),$$

where γ is a constant.

What do we want to know

- What if the T in $N_T(\mathcal{T}_n^{gw})$ changes with n ?
- The height of the largest complete r -ary fringe subtree.
- The largest k such that \mathcal{T}_n^{gw} contains all trees of size $\leq k$ as fringe subtree.
- What about non-fringe subtrees?

Large Fringe Subtrees

Large fringe subtrees

If $|T_n| \rightarrow \infty$, then $\pi(T_n) \equiv \mathbb{P}\{\mathcal{T}^{gw} = T_n\} \rightarrow 0$.

Then we should have

$$N_{T_n}(\mathcal{T}_n^{gw}) \approx \text{Bi}(n, \pi(T_n)) \approx \text{Po}(n\pi(T_n)).$$

Theorem 1.2 (Cai, 2016)

Let $k_n = o(n)$ and $k_n \rightarrow \infty$. Then

$$\lim_{n \rightarrow \infty} \sup_{T: |T|=k_n} d_{\text{TV}}(N_T(\mathcal{T}_n^{gw}), \text{Po}(n\pi(T))) = 0.$$

Theorem 1.2 (Cai, 2016)

So letting $(T_n)_{n \geq 1}$ be a sequence of trees with $|T_n| = k_n$,

1. If $n\pi(T_n) \rightarrow 0$, then $N_{T_n}(\mathcal{T}_n^{gw}) = 0$ whp.
2. If $n\pi(T_n) \rightarrow \mu \in (0, \infty)$, then $N_{T_n}(\mathcal{T}_n^{gw}) \xrightarrow{d} \text{Po}(\mu)$.
3. If $n\pi(T_n) \rightarrow \infty$, then

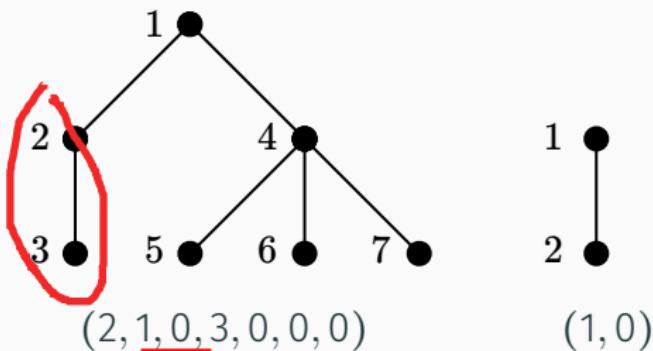
$$\frac{N_{T_n}(\mathcal{T}_n^{gw}) - n\pi(T_n)}{\sqrt{n\pi(T_n)}} \xrightarrow{d} N(0, 1).$$

The degree sequence

The *degree* of a node is the number of its children.

The *degree sequence* of a tree, is the list of degrees of its nodes in depth-first search (DFS) order.

We can count fringe subtree through degree sequence.



Count fringe subtrees through the degree sequence

Let $(\xi_1^n, \dots, \xi_n^n)$ be the degree sequence of \mathcal{T}_n^{gw} .

Let $(d_1, \dots, d_{|T|})$ be the degree sequence of T .

Then $N_T(\mathcal{T}_n^{gw})$ can be write as

$$\begin{aligned} N_T(\mathcal{T}_n^{gw}) &= \sum_{i=1}^n l_i \\ &\equiv \sum_{i=1}^n \mathbb{1}_{[(\xi_i^n, \dots, \xi_{i+|T|-1}^n) = (d_1, \dots, d_{|T|})]} \end{aligned}$$

Why fringe subtrees are like unconditional gw trees

When n is large, ξ_1^n, \dots, ξ_n^n are close to ξ_1, \dots, ξ_n (n independent copies of ξ).

Thus

$$\begin{aligned}\mathbb{P}\{I_j = 1\} &= \mathbb{P}\left\{\cap_{i=1}^{|T|} [\xi_{j+i-1}^n = d_i]\right\} \\ &\approx \prod_{i=1}^{|T|} \mathbb{P}\{\xi_i = d_i\} = \mathbb{P}\{\mathcal{T}^{gw} = T\} \equiv \boxed{\pi(T)}.\end{aligned}$$

So I_1, \dots, I_n are close to iid Bernoulli $\pi(T)$.

This is why $N_T(\mathcal{T}_n^{gw}) = \sum_{j=1}^n I_j \approx \text{Bi}(n, \pi(T)) \approx \text{Po}(n\pi(T))$.

The exchangeable pair method

The proof uses the exchangeable pair method (Ross, 2011, thm. 4.37) – a variation of Stein’s method for Poisson distribution.

Example

- Let X_1, \dots, X_n and Y_1, \dots, Y_n be iid $\text{Be}(p)$.
- Let $W = X_1 + \dots + X_n$.
- Let $W' = W - X_Z + Y_Z$ where $Z \stackrel{d}{=} \text{Unif}(\{1, \dots, n\})$.
- We have an exchange pair – $(W, W') \stackrel{d}{=} (W', W)$.
- Compute

$$\mathbb{P}\{W' = W - 1 \mid X_1, \dots, X_n\}, \quad \mathbb{P}\{W' = W + 1 \mid X_1, \dots, X_n\}.$$

- Then the method says $d_{\text{TV}}(W, \text{Po}(\mathbb{E}W)) \leq p$.

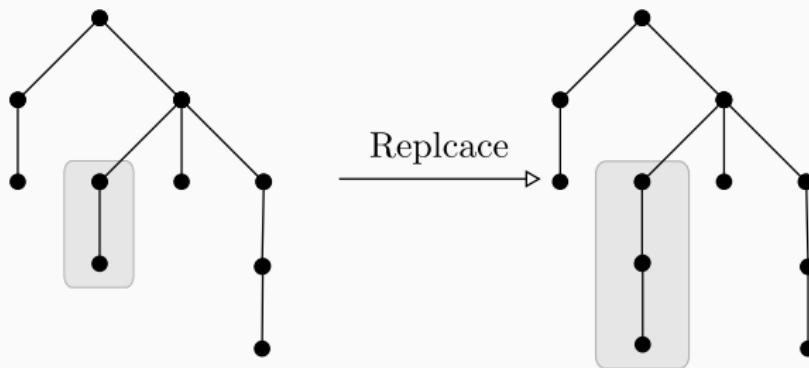
Subtree replacing – the naive way

Recall $N_T(\mathcal{T}_n^{gw}) = \sum_{i=1}^n I_i$.

What if we do the same thing for $N_T(\mathcal{T}_n^{gw})$?

Let $\bar{N} = N_T(\mathcal{T}_n^{gw}) - I_Z + I'_Z$ with $I'_Z \stackrel{\mathcal{L}}{=} I_Z$.

Is $(\bar{N}, N_T(\mathcal{T}_n^{gw}))$ an exchangeable pair?



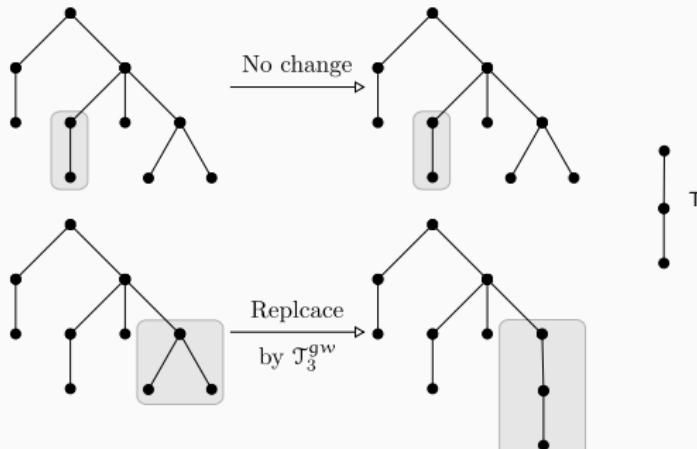
Subtree replacing – the proper way

Choose a fringe subtree of \mathcal{T}_n^{gw} uniformly at random.

- If its size is not the same as T , do nothing.
- Otherwise, replace it with $\mathcal{T}_{|T|}^{gw}$.

Let \bar{N} be the number of T in the new tree.

Then $(N_T(\mathcal{T}_n^{gw}), \bar{N})$ is an exchangeable pair.



A generalization

Let \mathfrak{T}_k be the set of all trees of size k .

Let $N_{\mathcal{S}}(\mathcal{T}_n^{gw})$ be the number of fringe subtrees that belongs to \mathcal{S} .

Let $\pi(\mathcal{S}) \equiv \mathbb{P}\{\mathcal{T}^{gw} \in \mathcal{S}\}$. So $N_{\mathcal{T}}(\mathcal{T}_n^{gw}) = N_{\{\mathcal{T}\}}(\mathcal{T}_n^{gw})$.

Theorem 4.1

Let $k = k_n = o(n)$ and $k \rightarrow \infty$. We have

$$\sup_{\mathcal{S} \subseteq \mathfrak{T}_k} \frac{d_{\text{TV}}(N_{\mathcal{S}}(\mathcal{T}_n^{gw}), \text{Po}(n\pi(\mathcal{S})))}{\pi(\mathcal{S})/\pi(\mathfrak{T}_k) + \sqrt{\pi(\mathcal{S})/\pi(\mathfrak{T}_k)}} \leq 1 + o\left(k^{-3/2}\right) + O\left(\frac{k^{1/4}}{\sqrt{n}}\right).$$

Idea of proof

There are roughly $n\pi(\mathfrak{T}_k)$ fringe subtrees of size k .

Each of them is itself a conditional gw tree of size k .

So $N_{\mathcal{S}}(\mathcal{T}_n^{gw}) \approx \text{Bi}(n\pi(\mathfrak{T}_k), \pi(\mathcal{S})/\pi(\mathfrak{T}_k))$.

We know that

$$d_{\text{TV}}(\text{Bi}(m, p), \text{Po}(mp)) \leq p.$$

Then we should have

$$d_{\text{TV}}(N_{\mathcal{S}}(\mathcal{T}_n^{gw}), \text{Po}(n\pi(\mathcal{S}))) \leq \frac{\pi(\mathcal{S})}{\pi(\mathfrak{T}_k)}.$$

Large fringe subtrees count—set version

Theorem 1.3 (Cai, 2016)

Let \mathfrak{T}_k be the set of trees of size k . Let $k_n = o(n)$ and $k_n \rightarrow \infty$.

Let $(\mathcal{S}_n)_{n \geq 1}$ be a sequence with $\mathcal{S}_n \subseteq \mathfrak{T}_{k_n}$. We have:

1. If $n\pi(\mathcal{S}_n) \rightarrow 0$, then $N_{\mathcal{S}_n}(\mathcal{T}_n^{gw}) = 0$ whp.
2. If $n\pi(\mathcal{S}_n) \rightarrow \mu \in (0, \infty)$, then $N_{\mathcal{S}_n}(\mathcal{T}_n^{gw}) \xrightarrow{d} \text{Po}(\mu)$.
3. If $n\pi(\mathcal{S}_n) \rightarrow \infty$, then

$$\frac{N_{\mathcal{S}_n}(\mathcal{T}_n^{gw}) - n\pi(\mathcal{S}_n)}{\sqrt{n\pi(\mathcal{S}_n)}} \xrightarrow{d} N(0, 1).$$

4. If $\pi(\mathcal{S}_n)/\pi(\mathfrak{T}_{k_n}) \rightarrow 0$, then

$$\lim_{n \rightarrow \infty} d_{\text{TV}}(N_{\mathcal{S}_n}(\mathcal{T}_n^{gw}), \text{Po}(n\pi(\mathcal{S}_n))) = 0.$$

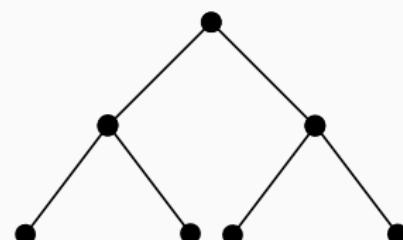
Large Fringe Subtrees—Applications

Application 1—largest complete r -ary fringe subtree

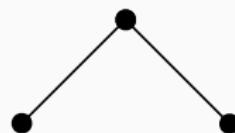
Let $T_h^{r\text{-ary}}$ be a complete r -ary tree of height h .

$T_4^{1\text{-ary}}$

$T_2^{2\text{-ary}}$



$T_1^{2\text{-ary}}$



Application 1—largest complete r -ary fringe subtree

Theorem 5.2 & 5.3 (Cai, 2016)

Let $H_{n,r}$ be the height of the largest complete r -ary fringe subtree in \mathcal{T}_n^{gw} . Then for $r \geq 2$,

$$H_{n,r} - \log_r \log n \xrightarrow{P} -\alpha_r,$$

where α_r is a constant. And

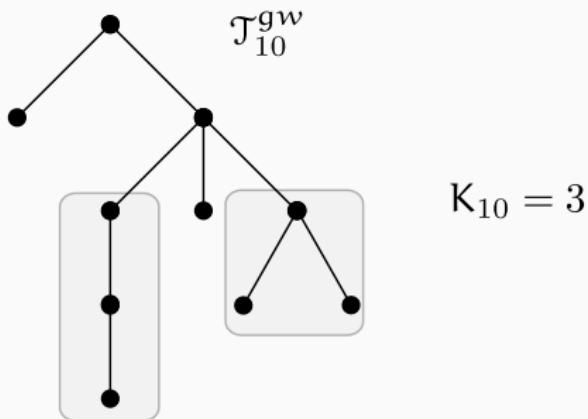
$$\frac{H_{n,1} \log(1/\mathbb{P}\{\xi = 1\})}{\log n} \xrightarrow{P} 1.$$

Method:

- Find the maximum h such that $n\pi(T_h^{r\text{-ary}}) \rightarrow \infty$.
- Then apply Theorem 1.2.

Application 2—existence of all possible subtrees

Let K_n be the maximum k such that \mathcal{T}_n^{gw} contains all trees of size $\leq k$ as fringe subtree.



The coupon collector problem

Original version

There are n different types of coupons. Each time we draw one type of coupon *uniformly at random*. How many draws do we need to collect all types of coupon?

Generalized version

There are n different types of coupons. Each time we draw a coupon, we get type i with probability p_i . How many draws do we need to collect all types of coupon?

The coupon collector problem: the answer

Theorem 5.1 (Generalized coupon collector) (Cai, 2016)

Assume X takes values in $\{1, \dots, n\}$. Let $p_i \equiv \mathbb{P}\{X = i\}$. Let X_1, X_2, \dots be i.i.d. copies of X . Let

$$N \equiv \inf\{i \geq 1 : |\{X_1, X_2, \dots, X_i\}| = n\}.$$

Let m be a positive integers. We have

$$1 - \sum_{i=1}^n (1 - p_i)^m \leq \mathbb{P}\{N \leq m\} \leq \frac{1}{\sum_{i=1}^n (1 - p_i)^m}.$$

If $p_i = 1/n$, then $N = n \log(n) + o_p(1)$.

Connection to our problem

- Draw independent copies \mathcal{T}_k^{gw} until every tree of size k has appeared.
- Let M_k be the number of draws.
- $N_{\mathfrak{T}_k}(\mathcal{T}_n^{gw}) \approx n\pi(\mathfrak{T}_k)$.
- So if $n\pi(\mathfrak{T}_k) > M_k$, then $K_n \geq k$, otherwise $K_n < k$.
- This is a coupon collector problem!

Large Non-Fringe Subtrees

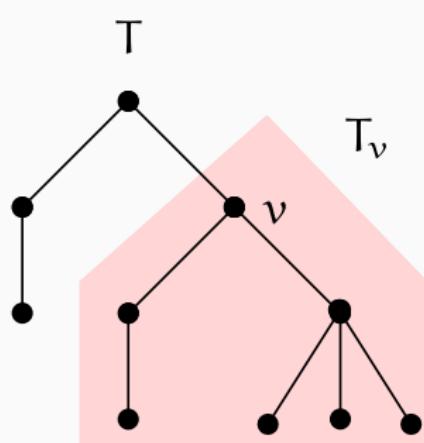
Non-fringe subtrees

Take a fringe subtree T_v .

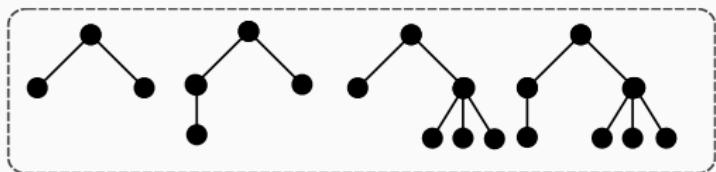
Replace some (or none) of T_v 's own fringe subtrees with leaves.

The result is called a non-fringe subtree at v .

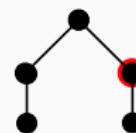
T_v is also a non-fringe subtree.



Non-fringe subtrees at v

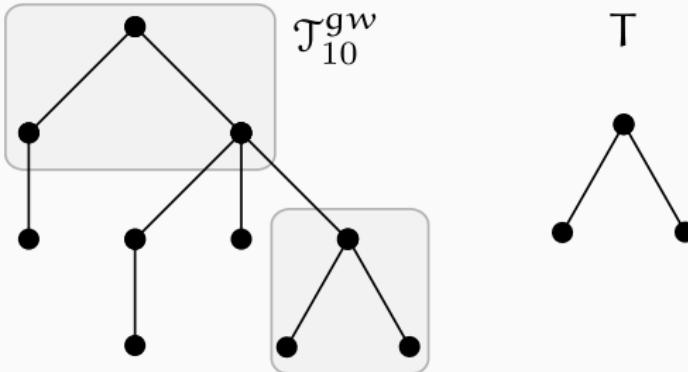


Not a non-fringe
subtree !



Non-fringe subtree count

Let $N_T^{nf}(\mathcal{T}_n^{gw})$ be the number of non-fringe subtrees of shape T in \mathcal{T}_n^{gw} .



$$N_T^{nf}(\mathcal{T}_{10}^{gw}) = 2$$

Large Non-fringe subtree Count

Let $\pi^{nf}(T)$ be the prob. that \mathcal{T}^{gw} has T as a non-fringe subtree at its root.

We should have $N_T^{nf}(\mathcal{T}_n^{gw}) \approx \text{Bi}(n, \pi^{nf}(T))$.

Theorem 1.4 (Cai, 2016)

Let T_n be a sequence of trees with $|T_n| = o(n)$. We have

1. If $n\pi^{nf}(T_n) \rightarrow 0$, then $N_{T_n}^{nf}(\mathcal{T}_n^{gw}) = 0$ whp.
2. If $n\pi^{nf}(T_n) \rightarrow \infty$, then

$$\frac{N_{T_n}^{nf}(\mathcal{T}_n^{gw})}{n\pi^{nf}(T_n)} \xrightarrow{p} 1.$$

Theorem 6.9 & 6.10 (Cai, 2016)

Assume that $|T_n| = o(n)$ and $n\pi^{nf}(T_n) \rightarrow \infty$. We have

1. $\mathbb{E}\left[N_{T_n}^{nf}(\mathcal{T}_n^{gw})\right] = (1 + o(1))n\pi^{nf}(T_n).$
2. $\text{var } N_{T_n}^{nf}(\mathcal{T}_n^{gw}) = o(n\pi^{nf}(T_n))^2.$

So Theorem 1.4 follows by Chebyshev's inequality.

References i

- [1] D. Aldous, “Asymptotic Fringe Distributions for General Families of Random Trees,” *The Annals of Applied Probability*, vol. 1, no. 2, pp. 228–266, 1991.
- [2] X. S. Cai, “A study of large fringe and non-fringe subtrees in conditional galton-watson trees,” Ph.D. dissertation, 2016.
- [3] X. S. Cai and L. Devroye, “A study of large fringe and non-fringe subtrees in conditional Galton-Watson trees,” *ALEA Lat. Am. J. Probab. Math. Stat.*, vol. 14, no. 1, pp. 579–611, 2017.

References ii

- [4] S. Janson, “Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation,” *Probab. Surv.*, vol. 9, pp. 103–252, 2012.
- [5] S. Janson, “Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton–Watson trees,” *Random Structures & Algorithms*, vol. 48, no. 1, pp. 57–101, 2016.
- [6] A. Meir and J. W. Moon, “On the altitude of nodes in random trees,” *Canad. J. Math.*, vol. 30, no. 5, pp. 997–1015, 1978.
- [7] N. Ross, “Fundamentals of Stein’s method,” *Probability Surveys*, vol. 8, no. none, pp. 210–293, 2011.