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Introduction



What is a tree

A tree is an acyclic graph.

In this talk, trees are unlabelled, rooted, and ordered (plane

trees).
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Galton-Watson trees

A Galton-Watson (gw) tree T gw starts with a single node.

Each node in T gw chooses a random number of child nodes

independently from the same distribution ξ (offspring

distribution).

Introduced by bienayme.
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Note

We will always assume that Eξ = 1 (critical case) and

var ξ ∈ (0,∞).
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Conditional Galton-Watson trees

A conditional/conditioned gw Tree T
gw
n is T gw restricted to

∣T gw ∣ = n.

So P{T gw
n = T} = P{T gw = T ∣ ∣T gw ∣ = n} .

It covers many uniform random tree models (Janson, 2012) –

• full binary trees

• binary trees

• d-ary trees

• Motzkin trees

• Plane trees

• Cayley trees
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Simply generated trees

In many cases, T
gw
n is equivalent to simply generated trees

introduced by Meir and Moon (1978).

Let (wi)i≥0 be a sequence of non-negative numbers.

Let weight(T) = ∏v∈T wdeg(v).

Let T
sg
n be a random tree of size n such that P{T sg

n = T} is

proportional to weight(T).
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Example of conditional Galton-Watson trees

Let P{ξ = i} = 1/2i+1. In other words, ξ
L
= Ge(1/2).

T
gw
n is uniformly distributed among all trees of size n.

P{T gw = T} = 2−7 for T ∈

⎧⎪⎪
⎨
⎪⎪⎩

⎫⎪⎪
⎬
⎪⎪⎭
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Fringe subtrees

For a node v of a tree T , the fringe subtree Tv contains v and all

its decedents.

It is what normally called a “subtree”.

6

Reviwer


Reviwer




Fringe and non-fringe subtrees

fringe subtrees

non-fringe subtrees

Fringe subtree—a node and every descendant of it.

Non-fringe subtree—a fringe subtree with some (or none) of its

subtrees “trimmed”—replaced by leaves.
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Fringe subtree count

Let NT(T
gw
n ) be the number of fringe subtrees of shape T in

T
gw
n .
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Fringe subtree count: bigger example

In the next example,

NT(T
gw
n )

n
=

15

120
=
1

8
= π(T) ≡ P{T gw

= T} .

Is this just a coincidence?
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What is known

For large n, fringe subtrees in T
gw
n behave like independent

copies of T gw .

Take a uniform random fringe subtree of T
gw
n , the probability

to get T is about π(T) ≡ P{T gw = T}.

So NT(T
gw
n ) ≈ Bi(n, π(T)).
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What is known

Law of Large Number (Aldous, 1991)

As n→∞,
NT(T

gw
n )

n

p
→π(T).

Central Limit Theorem (Janson, 2016)

As n→∞,
NT(T

gw
n ) − nπ(T)

γ
√
n

d
→N(0, 1),

where γ is a constant.
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What do we want to know

• What if the T in NT(T
gw
n ) changes with n?

• The height of the largest complete r-ary fringe subtree.

• The largest k such that T
gw
n contains all trees of size ≤ k as

fringe subtree.

• What about non-fringe subtrees?
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Large Fringe Subtrees



Large fringe subtrees

If ∣Tn∣ → ∞, then π(Tn) ≡ P{T gw = Tn} → 0.

Then we should have

NTn(T
gw
n ) ≈ Bi(n, π(Tn)) ≈ Po(nπ(Tn)).

Theorem 1.2 (Cai, 2016)

Let kn = o(n) and kn →∞. Then

lim
n→∞

sup
T∶∣T∣=kn

dTV (NT(T
gw
n ),Po(nπ(T))) = 0.
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Large fringe subtrees cont.

Theorem 1.2 (Cai, 2016)

So letting (Tn)n≥1 be a sequence of trees with ∣Tn∣ = kn,

1. If nπ(Tn) → 0, then NTn(T
gw
n ) = 0 whp.

2. If nπ(Tn) → µ ∈ (0,∞), then NTn(T
gw
n )

d
→ Po(µ).

3. If nπ(Tn) → ∞, then

NTn(T
gw
n ) − nπ(Tn)
√
nπ(Tn)

d
→N(0, 1).
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The degree sequence

The degree of a node is the number of its children.

The degree sequence of a tree, is the list of degrees of its

nodes in depth-first search (dfs) order.

We can count fringe subtree through degree sequence.

1

2

3

4

5 6 7

1

2

Degree sequence: (2, 1,0, 3,0,0,0) (1,0)
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Count fringe subtrees through the degree sequence

Let (ξn1 , . . . , ξ
n
n) be the degree sequence of T

gw
n .

Let (d1, . . . ,d∣T∣) be the degree sequence of T .

Then NT(T
gw
n ) can be write as

NT(T
gw
n ) =

n

∑
i=1

Ii

≡
n

∑
i=1

1
[(ξn

i
,...,ξn

i+∣T∣−1)=(d1,...,d∣T∣)]
.
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Why fringe subtrees are like unconditional gw trees

When n is large, ξn1 , . . . , ξ
n
n are close to ξ1, . . . , ξn (n independent

copies of ξ).

Thus

P{Ij = 1} = P{∩∣T∣
i=1
[ξnj+i−1 = di]}

≈

∣T∣

∏
i=1

P{ξi = di} = P{T gw
= T} ≡ π(T).

So I1, . . . , In are close to iid Bernoulli π(T).

This is why NT(T
gw
n ) = ∑

n
j=1 Ij ≈ Bi(n, π(T)) ≈ Po(nπ(T)).
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The exchangeable pair method

The proof uses the exchangeable pair method (Ross, 2011,

thm. 4.37) – a variation of Stein’s method for Poisson

distribution.

Example

• Let X1, . . . ,Xn and Y1, . . . ,Yn be iid Be(p).

• Let W = X1 +⋯ + Xn.

• Let W′ = W − XZ + YZ where Z
L
= Unif({1, . . . ,n}).

• We have an exchange pair – (W,W′)
L
= (W′,W).

• Compute

P{W′ = W − 1 ∣ X1, . . . ,Xn} , P{W′ = W + 1 ∣ X1, . . . ,Xn} .

• Then the method says dTV (W,Po(EW)) ≤ p.
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Subtree replacing – the naive way

Recall NT(T
gw
n ) = ∑

n
i=1 Ii.

What if we do the same thing for NT(T
gw
n )?

Let N̄ = NT(T
gw
n ) − IZ + I

′
Z with I′Z

L
= IZ .

Is (N̄,NT(T
gw
n )) an exchangeable pair?
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Subtree replacing – the proper way

Choose a fringe subtree of T
gw
n uniformly at random.

• If its size is not the same as T , do nothing.

• Otherwise, replace it with T
gw

∣T∣
.

Let N̄ be the number of T in the new tree.

Then (NT(T
gw
n ), N̄) is an exchangeable pair.

T
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A generalization

Let Tk be the set of all trees of size k.

Let NS(T
gw
n ) be the number of fringe subtrees that belongs to

S .

Let π(S) ≡ P{T gw ∈ S}. So NT(T
gw
n ) = N{T}(T

gw
n ).

Theorem 4.1

Let k = kn = o(n) and k→∞. We have

sup
S⊆Tk

dTV (NS(T
gw
n ),Po(nπ(S)))

π(S)/π(Tk) +
√
π(S)/π(Tk)

≤ 1 + o (k−3/2) +O(
k1/4
√
n
).
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Idea of proof

There are roughly nπ(Tk) fringe subtrees of size k.

Each of them is itself a conditional gw tree of size k.

So NS(T
gw
n ) ≈ Bi(nπ(Tk), π(S)/π(Tk)).

We know that

dTV (Bi(m,p),Po(mp)) ≤ p.

Then we should have

dTV (NS(T
gw
n ),Po(nπ(S))) ≤ π(S)

π(Tk)
.
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Large fringe subtrees count—set version

Theorem 1.3 (Cai, 2016)

Let Tk be the set of trees of size k. Let kn = o(n) and kn →∞.

Let (Sn)n≥1 be a sequence with Sn ⊆ Tkn . We have:

1. If nπ(Sn) → 0, then NSn(T
gw
n ) = 0 whp.

2. If nπ(Sn) → µ ∈ (0,∞), then NSn(T
gw
n )

d
→ Po(µ).

3. If nπ(Sn) → ∞, then

NSn(T
gw
n ) − nπ(Sn)
√
nπ(Sn)

d
→N(0, 1).

4. If π(Sn)/π(Tkn) → 0, then

lim
n→∞

dTV (NSn(T
gw
n ),Po(nπ(Sn))) = 0.
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Large Fringe Subtrees—Applications



Application 1—largest complete r-ary fringe subtree

Let T
r-ary

h
be a complete r-ary tree of height h.
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Application 1—largest complete r-ary fringe subtree

Theorem 5.2 & 5.3 (Cai, 2016)

Let Hn,r be the height of the largest complete r-ary fringe

subtree in T
gw
n . Then for r ≥ 2,

Hn,r − logr logn
p
→ − αr,

where αr is a constant. And

Hn,1 log(1/P{ξ = 1})

logn

p
→ 1.

Method:

• Find the maximum h such that nπ(Tr-ary
h
) → ∞.

• Then apply Theorem 1.2.
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Application 2—existence of all possible subtrees

Let Kn be the maximum k such that T
gw
n contains all trees of

size ≤ k as fringe subtree.
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The coupon collector problem

Original version

There are n different types of coupons. Each time we draw

one type of coupon uniformly at random. How many draws

do we need to collect all types of coupon?

Generalized version

There are n different types of coupons. Each time we draw a

coupon, we get type i with probability pi. How many draws do

we need to collect all types of coupon?
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The coupon collector problem: the answer

Theorem 5.1 (Generalized coupon collector) (Cai, 2016)

Assume X takes values in {1, . . . ,n}. Let pi ≡ P{X = i}. Let

X1,X2, . . . be i.i.d. copies of X. Let

N ≡ inf{i ≥ 1 ∶ ∣{X1,X2, . . . ,Xi}∣ = n}.

Let m be a positive integers. We have

1 −
n

∑
i=1

(1 − pi)
m
≤ P{N ≤m} ≤

1

∑
n
i=1(1 − pi)

m
.

If pi = 1/n, then N = n log(n) + op(1).
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Connection to our problem

• Draw independent copies T
gw

k
until every tree of size k

has appeared.

• Let Mk be the number of draws.

• NTk
(T

gw
n ) ≈ nπ(Tk).

• So if nπ(Tk) > Mk, then Kn ≥ k, otherwise Kn < k.

• This is a coupon collector problem!
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Large Non-Fringe Subtrees



Non-fringe subtrees

Take a fringe subtree Tv .

Replace some (or none) of Tv ’s own fringe subtrees with leaves.

The result is a called a non-fringe subtree at v.

Tv is also a non-fringe subtree.

Not a non-fringe 
subtree !
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Non-fringe subtree count

Let N
nf
T (T

gw
n ) be the number of non-fringe subtrees of shape T

in T
gw
n .
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Large Non-fringe subtree Count

Let πnf (T) be the prob. that T gw has T as a non-fringe subtree

at its root.

We should have N
nf
T (T

gw
n ) ≈ Bi(n, πnf (T)).

Theorem 1.4 (Cai, 2016)

Let Tn be a sequence of trees with ∣Tn∣ = o(n). We have

1. If nπnf (Tn) → 0, then N
nf
Tn
(T

gw
n ) = 0 whp.

2. If nπnf (Tn) → ∞, then

N
nf
Tn
(T

gw
n )

nπnf (Tn)

p
→ 1.
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Proof by computing first and second moments

Theorem 6.9 & 6.10 (Cai, 2016)

Assume that ∣Tn∣ = o(n) and nπnf (Tn) → ∞. We have

1. E [Nnf
Tn
(T

gw
n )] = (1 + o(1))nπ

nf (Tn).

2. varNnf
Tn
(T

gw
n ) = o(nπ

nf (Tn))
2.

So Theorem 1.4 follows by Chebyshev’s inequality.
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