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Introduction



What is a tree

A tree is an acyclic graph.

In this talk, trees are unlabelled, rooted, and ordered (plane
trees).
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Galton-Watson trees

A Galton-Watson (Gw) tree 79" starts with a single node.

Each node in 79% chooses a random number of child nodes
independently from the same distribution & (

).

Introduced by bienayme.

Y N N N

Note

We will always assume that E€ =1 ( ) and
varé € (0, 00).



Conditional Galton-Watson trees

A conditional/conditioned 6w Tree 79 is T9% restricted to
|79 = n.
So P{T" =T} =P{T%" =T||T"|=n}.

It covers many uniform random tree models (Janson, 2012) -

- full binary trees
- binary trees

- d-ary trees

- Motzkin trees

- Plane trees

- Cayley trees



Simply generated trees

In many cases, 77" is equivalent to simply generated trees
introduced by Meir and Moon (1978).

Let (w;)jso be a sequence of non-negative numbers.
Let Weight(T) = (]l Wdeg(v)-

Let 7,;® be a random tree of size n such that P{7;% =T} is
proportional to weight(T).



Example of conditional Galton-Watson trees

Let P{&=i} = 1/2"*". In other words, £ £ Ge(1/2).

7% is uniformly distributed among all trees of size n.
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Fringe subtrees

For a node v of a tree T, the fringe subtree T, contains v and all
its decedents.

It is what normally called a “subtree”.

T

W


Reviwer


Reviwer



Fringe and non-fringe subtrees

YR
/I\/\

non- frmge subtrees

Fringe subtree—a node and every descendant of it.

Non-fringe subtree—a fringe subtree with some (or none) of its
subtrees “trimmed”—replaced by leaves.
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Fringe subtree count

Let N7 (77") be the number of fringe subtrees of shape T in
T
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Fringe subtree count: bigger example

In the next example,

N7 (77") ( o j
T(n 1120 m(T) P {79 =T}

Is this just a coincidence?

O

&~ Ge(1/2)
N (T89) =15
n(T)=1/8
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What is known

For large n, fringe subtrees in 77" behave like independent
copies of 79,
Take a uniform random fringe subtree of 77", the probability

to get@is about 7(T) = P R
so iiGEED)~ Bi (@ am)-

10


Reviwer


Reviwer


Reviwer


Reviwer


Reviwer



What is known

Law of Large Number (Aldous, 1991)
AS n — oo,

Nr(T2") p
T—MT(T).

Central Limit Theorem (Janson, 2016)

AS n — oo,
Nr(T2") = nn(T) @

e N(0,1),

where « is a constant.

n



What do we want to know

- What if the T in Ng§7’") changes with n?
- The height of thejlargesticompleten=anyf inge subtree.

- The largest k such that 77" contains all trees of size < k as
fringe subtree.

- What about non-fringe subtrees?
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Large Fringe Subtrees




Large fringe subtrees

If algh— o0, then m(T,) = P {T9 = T,} > 0.

Then we should have
Ngy(7+") ~ Bi(n QU ~ Po(n7(Ty)).

Theorem 1.2 (Cai, 2016)
Let Ry =0(n) and Ry - oo. Then

nlim sup drv (NT(THQW),PO(I')TF(T))) =0.
T T T|=kn
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Large fringe subtrees cont.

Theorem 1.2 (Cai, 2016)

So letting (Ty)n>1 be a sequence of trees with |T,| = kp,
1. If nm(Ty) - 0, then N7, (T2") = 0 whp.
2. If n(Ty) = € (0, 00), then N, (79%) & Po(p).
3. If nm(Tp) — oo, then

N (T2") = (T,
nm(Tp)

N(0,1).



The degree sequence

The degree of a node is the number of its children.

The degree sequence of a tree, is the list of degrees of its
nodes in depth-first search (prs) order.

We can count fringe subtree through degree sequence.

Degree sequence: (2,1,0,3,0,0,0) (1,0)
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Count fringe subtrees through the degree sequence

Let (&7,...,€M) be the degree sequence of 77".
Let (dy,...,dr) be the degree sequence of T.

Then N7 (77") can be write as

M=

N7 (T7") = X i

I

1]
aiy

1

M-

1]
i



Why fringe subtrees are like unconditional Gw trees

When n is large, &7, ...,&0 are close to &, ..., &, (n independent

copies of &).
Thus
P{;=1} Al [ s = d]
|7l
~ [[P{&=di} =P{T9" =T} == (7).
i=1
So Iy,..., I, are close to iid Bernoulli (7).

This is why N7 (T2") = zf:. Bi(n,n(T)) ~ Po(nm(T)).
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The exchangeable pair method

The proof uses the exchangeable pair method (Ross, 2011,
thm. 4.37) — a variation of Stein’s method for Poisson
distribution.
Example

- Let Xi,...,Xnand Yq,..., Y, be iid Be(p).

s Let W=Xq+ -+ X

- Let W' =W - Xz +Y; where Z£ Unif({1,...,n}).

- We have an exchange pair - (W, W') £ (W', W).

- Compute

P{W =W-1|X,....%}, P{W=W+1]X,....X}.

- Then the method says drv (W,Po(EW)) < p.



Subtree replacing - the naive way

Recall Nr(T7%) = £, 1.

What if we do the same thing for Nr(ﬁ,gw)?
Let N = Nr(T7") - Iz + 15 with 1},

Is (N, N7(77")) an exchangeable pair?

Replcace
_
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Subtree replacing - the proper way

Choose a fringe subtree of 77" uniformly at random.

- If its size is not the same as T, do nothing.
- Otherwise, replace it with 7|‘T|

Let N be the number of T in the new tree.

Then (N+(77"),N) is an exchangeable pair.

No change
R ——

T
Replcace
—
by 79
20



A generalization

Let T;, be the set of all trees of size k.

Let Ns(7;") be the number of fringe subtrees that belongs to
S.

Let 7(S) =P {79 € S}. So Np(T2") = N{T}(’ng).

Theorem 4.1
Let k=R, =0(n) and kR - co. We have

drv (NS(TQW) PO(I’WT(S))) =3/ (ﬂ)
Yy Ty S U A b
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Idea of proof

There are roughly nw (%) fringe subtrees of size k.
Each of them is itself a conditional Gw tree of size k.
S0 Ns(T2") = Bi(nm(Th), m(S)/m(Tp))-

We know that

drv (Bi(m,p),Po(mp)) < p.

Then we should have

m(S)
m(%k)

drv (Ns(T7"), Po(nm(S))) <
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Large fringe subtrees count—set version

Theorem 1.3 (Cai, 2016)
Let Ty be the set of trees of size k. Let k, = 0(n) and ky — oo.
Let (Sh)ns1 be a sequence with S, ¢ T, . We have:

1. If nm(Sy) = 0, then N, (T2") = 0 whp.
2. If n(Sn) = € (0, 00), then Ns, (T2¥) % Po(u).
3. If nw(Sp) — o0, then

N5, (T9") = nm(Sn) o

/N (Sp)

b 1F 7(Sy)/m(y,) = 0, then

N(0,1).

lim dry (Ns,(T7"), Po(n7(85))) = 0.
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Large Fringe Subtrees—Applications




Application 1—largest complete r-ary fringe subtree

Let T,°Y be a complete r-ary tree of height h.

1 ary 2 ary 2 ary
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Application 1—largest complete r-ary fringe subtree

Theorem 5.2 & 5.3 (Cai, 2016)
Let Hy  be the height of the largest complete r-ary fringe
subtree in 72", Then for r > 2,

p
Hnr —log,logn = — ay,

where «, is a constant. And

Ho log(1/P (€ =1} »
log n '

Method:

* Find the maximum h such that nr (T, "
- Then apply Theorem 1.2.

) = oo.
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Application 2—existence of all possible subtrees

Let K, be the maximum k such that 77" contains all trees of
size < k as fringe subtree.

gw
(‘TlO

K10:3
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The coupon collector problem

Original version

There are n different types of coupons. Each time we draw
one type of coupon uniformly at random. How many draws
do we need to collect all types of coupon?

Generalized version

There are n different types of coupons. Each time we draw a
coupon, we get type i with probability p;. How many draws do
we need to collect all types of coupon?

27



The coupon collector problem: the answer

Theorem 5.1 (Generalized coupon collector) (Cai, 2016)
Assume X takes values in {1,...,n}. Let p; =P {X =1i}. Let
X1,X5,... be iid. copies of X. Let

N = mf{l >1: |{X17X27' c '7Xi}| = n}'

Let m be a positive integers. We have

d 1
1->=-p)"<P{N<m}< ———.
2( pi)" <P{N<m} ST =P

If p; =1/n, then N = nlog(n) + 0p(1).

28



Connection to our problem

- Draw independent copies 7;9‘” until every tree of size k
has appeared.

- Let Mj, be the number of draws.
: N‘Ik(’ﬁlgw) = I’)T[‘(Sk).
- So if nw(%g) > Mg, then K, > R, otherwise K, < k.

- This is a coupon collector problem!

29



Large Non-Fringe Subtrees




Non-fringe subtrees

Take a fringe subtree T,.

Replace some (or none) of T,’s own fringe subtrees with leaves.
The result is a called a non-fringe subtree at v.

T, is also a non-fringe subtree.

T Non-fringe subtrees at v

aTarevey

v { )

Not a non-fringe
subtree !
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Non-fringe subtree count

Let N (7,9") be the number of non-fringe subtrees of shape T
in 797

Tio U

AN

N7 (T35") =2
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Large Non-fringe subtree Count

Let 7 (T) be the prob. that 79" has T as a non-fringe subtree
at its root.

We should have N (7.2¥) ~ Bi(n, =" (T)).

Theorem 1.4 (Cai, 2016)

Let T, be a sequence of trees with |T,| = o(n). We have
1. 1f nz (T,) - 0, then N (7.2") = 0 whp.
2. If n@™(T,) - oo, then

NT(TE) b
ﬂﬂ'”f(Tn)

32



Proof by computing first and second moments

Theorem 6.9 & 6.10 (Cai, 2016)
Assume that |T,| = o(n) and nz" (T,) - co. We have

1 E[NZ(TIM) ] = 1+ 0))na (T).
2. var NY/ (T2) = o(n" (To))2.

So Theorem 1.4 follows by Chebyshev's inequality.
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