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Recall that the generating function for integer partitions p(n) is

F (q) =

+∞∑
n=0

p(n)qn =

+∞∏
n=1

(1− qn)−1 .

In 1954 G. Meinardus considered the asymptotics of generating
functions of the form

f(τ) =

+∞∏
n=1

(1− qn)−an = 1 +

+∞∑
n=1

r(n)qn,

where q = e−τ and Re τ > 0, and the an are nonnegative real numbers.
He proved a general result, known as Meinardus’ first theorem, which
includes asymtpotic formulas for many partition functions.
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Definitions and assumptions

Consider the generating function

f(τ) =

+∞∏
n=1

(1− qn)−an = 1 +

+∞∑
n=1

r(n)qn,

where q = e−τ and Re (τ) > 0, and the an are nonnegative real
numbers.
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Define the auxiliary Dirichlet series:

D(s) =

+∞∑
n=1

an
ns

(s = σ + it),

which it is assumed

(i) to be convergent for σ > α, for some positive real number α;

(ii) to posses an analytic continuation in the region σ ≥ −C0, where
0 < C0 < 1. In this region D(s) is analytic except for a simple pole
at s = α, with residue A;

(iii) D(s) = O(|t|C1) uniformly in σ ≥ −C0 as |t| → +∞, where C1 is a
fixed positive real number.
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Meinardus’ First Theorem

Theorem 6.2 As n→ +∞,

r(n) = C nκ exp
[
n

α
1+α

(
1 +

1

α

)
(AΓ(α+ 1) ζ(α+ 1))

α
1+α

]
(1 +O(n−κ1))

where

C = eD
′(0)[2π(1 + α)]−1/2[AΓ(α+ 1)]ζ(α+ 1)](1−2D(0))/(2+2α),

κ =
D(0)− 1− 1/(2α)

1 + α
and κ1 =

α

α+ 1
min

(C0

α
− δ

4
,
1

2
− δ
)
,

δ is an arbitrary real number.
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Additional assumptions

The proof will use the function

g(τ) =

+∞∑
n=1

anq
n, q = e−τ .

If τ = y + 2πix, we shall assume that for | arg τ | > π/4 and |x| ≤ 1/2,

R(g(τ))− g(y) ≤ −C2 y
−ε

for sufficiently small y, where ε is an arbitrary but fixed positive
number, and C2 is a positive real number depending on ε.
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Proof of Theorem 6.2

By the Cauchy integral formula

r(n) =

∫ τ0+2πi

τ0

f(τ)enτ dτ

=

∫ 1/2

−1/2
f(y + 2πix)eny+2πinx dx

The proof is based on applying the saddle point method. In order to
apply this method one needs information of the behavior of f(τ) in the
half plane Re(τ) > 0, and near τ = 0.
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Lemma 1. Under our assumptions on f(τ), D(s), and g(τ), with
τ = y + 2πix,

f(τ) = exp
[
AΓ(α)ζ(α+ 1)τ−α −D(0) log τ +D′(0) +O(yC0)

]
uniformly in x as y → 0, provided | arg τ | ≤ π/4, |x| ≤ 1/2.
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Proof of Lemma 1. Let q = e−τ . Then

f(τ) =

+∞∏
n=1

(
1− e−nτ

)−an

log f(τ) = −
∞∑
n=1

an log(1− e−nτ )

=
∞∑
k=1

1

k

∞∑
n=1

ane
−nkτ (1)

Recall that

e−τ =
1

2πi

∫ σ0+i∞

σ0−i∞
τ−s Γ(s) ds (Re(τ) > 0, σ0 > 0) (2)

Using (2) in (1) we get
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log f(τ) =
1

2πi

∫ 1+α+i∞

1+α−i∞
τ−sΓ(s)ζ(s+ 1)D(s)ds. (3)

Now we make the shift of the line of integration from Re(s) = 1 + α to
Re(s) = −C0. The integrand has two poles:

(i) a pole of order one at α, with residue τ−αΓ(α)ζ(α+ 1)A;

(ii) a pole of order two at s = 0.

Italo Simonelli October 29, 2021 10 / 26



The residue at s = 0 can be obtained by first expanding the integrand
near s = 0:

τ−sΓ(s)ζ(s+ 1)D(s)

= (1− s log τ + · · · ) (
1

s
− γ + · · · )(1

s
+ γ + · · · )(D(0) +D′(0)s+ · · · )

=
1

s2
+ (D′(0) +D(0) log τ)

1

s
+ · · ·

and hence the residue at s = 0 is D′(0)−D(0) log τ .
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From this shift we obtain

log f(τ) = Aτ−αΓ(α)ζ(α+ 1)−D(0) log τ +D′(0) +

+
1

2πi

∫ −C0+i∞

−C0−i∞
τ−sΓ(s)ζ(s+ 1)D(s)ds. (4)
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The shift of the line of integration is permissible since for
arg(τ)| ≤ π/4,

|τ−s| = |τ |−σexp(t arg(τ)) ≤ |τ |−σexp(π|t|/4)

and by assumption, for σ ≥ C0, D(s) = O(|t|C1), while classical results
give

ζ(s+ 1) = O(|t|C4) and Γ(s) = O(exp(−π
2
|t|C5)

as t→ +∞.

We next show that as τ → 0 the integral in (4) tends to 0.
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∣∣∣ 1

2πi

∫ −C0+i∞

−C0−i∞
τ−sΓ(s)ζ(s+ 1)D(s)ds

∣∣∣
= O

(
|τ |C0

∫ +∞

−∞
e−π|t|/4|t|C1+C4+C5dt

)
= O(|τ |C0) = O(yCo).

This and (4) now prove Lemma 1.
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Let’s go back to the integral representation of r(n),

r(n) =

∫ τ0+2πi

τ0

f(τ)enτ dτ

=

∫ 1/2

−1/2
f(y + 2πix)eny+2πinx dx

The maximum value of the integrand occurs at x = 0, and for such x
Lemma 6.1 implies f is well approximated by

exp
[
AΓ(α)ζ(α+ 1)y−α + ny

]
.

The saddle point method suggests we should choose y that minimizes
the expression above.
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That is, choose y such that

d

dy

(
exp

[
AΓ(α)ζ(α+ 1)y−α + ny

])
= 0

This gives
y = n−1/(α+1) [AΓ(α+ 1)ζ(α+ 1)]1/(α+1) .

For convenience, we define

m = ny = nα/(α+1) [AΓ(α+ 1)ζ(α+ 1)]1/(α+1) .

With this value of y we split the integral into three parts:

r(n) = em
∫ −yβ
−1/2

f(y + 2πix)e2πinx dx+

+em
∫ yβ

−yβ
f(y + 2πix)e2πinx dx+

+em
∫ 1/2

yβ
f(y + 2πix)e2πinx dx,
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where

β = 1 +
α

2

(
1− δ

2

)
with 0 < δ <

2

3
.

W are going to show that under our assumption the contribution of the
sum of the first and last integrals are small. Define

R1 =

∫ −yβ
−1/2

f(y + 2πix)e2πinx dx+

∫ 1/2

yβ
f(y + 2πix)e2πinx dx.
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Lemma 2. There exists a positive ε1 such that

f(y + 2πix) = O
(

exp[AΓ(α)ζ(α+ 1)y−α − C3y
−ε1 ]

)
uniformly on x with yβ ≤ |x| ≤ 1/2, as y → 0, where

β = 1 +
α

2

(
1− δ

2

)
with 0 < δ <

2

3

and C3 is a fixed real number.
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Sketch of Proof of Lemma 2. The proof consists of considering two
cases

(i) yβ ≤ |x| ≤ y

2π

(ii)
y

2π
≤ |x| ≤ 1

2
.

Case (i) is proven by proceeding as in the beginning of the proof of
Lemma 1, and then by showing that under the assumptions of Lemma
2 in the region considered in case (i)

log |f(y + 2πix)| ≤ AΓ(α)ζ(α+ 1)y−α − C3y
−ε1 .
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Case (ii) relies on te condition Re(g(τ))− g(y) ≤ −C2y
−ε. Since

log f(τ) = −
∞∑
n=1

an log(1− e−nτ ) =

∞∑
k=1

1

k

∞∑
n=1

ane
−nkτ ,

one has

log |f(y + 2πix)| −Re(g(τ)) =

∞∑
k=2

1

k

∞∑
n=1

ane
−nky cos(2πknx).

Since all the an’s are nonnegative,

log |f(y + 2πix)| −Re(g(τ)) ≤
∞∑
k=2

1

k

∞∑
n=1

ane
−nky = log(f(y))− g(y).
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Hence in case (ii),

log |f(y + 2πix)| ≤ log f(y) +Re(g(τ))− g(y)

≤ AΓ(α)ζ(α+ 1)y−α − C8y
−ε

≤ AΓ(α)ζ(α+ 1)y−α − C3y
−ε1 ,

thus proving the lemma.
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We are now go back to considering R1,

R1 =

∫ −yβ
−1/2

f(y + 2πix)e2πinx dx+

∫ 1/2

yβ
f(y + 2πix)e2πinx dx.

By Lemma 2,

R1 = O
(

exp
[
(
m

n
)−αAΓ(α)ζ(α+ 1)− C3(

m

n
)−ε1

] )
as n→ +∞ (i.e., y = m/n→ 0).
Hence

exp(m)R1 = O
(

exp

[
(1 +

1

α
)m− C9m

ε2

])
as n→ +∞.
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Recall

r(n) = em
∫ yβ

−yβ
f(y + 2πix)e2πinx dx+ emR1,

and we just found bounds for emR1. Now applying Lemma 1 and
making the change of variable 2πx = (m/n)ω we obtain

r(n) = exp
[(

1 +
1

α

)
m− (D(0)− 1) log

m

n
+D′(0)− log 2π

]
I + emR1,

where

I =

∫ C10m(1−β)/α

−C10m(1−β)/α
exp(φ(ω))dω,

where

φ(ω) = m
[ 1

α(1 + iω)α
− 1

α
+ iω

]
−D(0) log(1 + iω) +O(m−C0/α)

as m→ +∞.
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The final step of the proof consists in showing that

I =
[ 2π

m(α+ 1)

]1/2
(1 +O(m−µ3))

where

µ3 = min
(C0

α
− δ

4
,
1

2
− δ
)
.

Putting all together one now has that

r(n) = exp
[
(1 +

1

α
)m− (D(0)− 1) log

m

n
+D′(0)

]
(2πm(α+ 1))−1/2

·(1 +O(m−µ3))

as m→ +∞. The proof is now completed by replacing m by a function
of n.
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Application of Theorem 2.

Theorem 6.3

p(n) ∼ 1

4n
√

3
exp

(
π
(2

3

)1/2
n1/2

)
.
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Theorem 6.4. Let Hk,a denote all positive integers congruent to a
modulo k. Then for 1 ≤ a ≤ k,

p(”Hk,a”, n) ∼ Cnκ exp

(
π
(2n

3k

)1/2)
where

C = Γ(
a

k
)π−1+a/k 2−3/2−a/(2k) 3−a/(2k) k−1/2+a/(2k)

and

κ = −1

2

(
1 +

a

k

)
.
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