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Recall that the generating function for integer partitions p(n) is

+oo +oo
=> )" =] - ",
n=0 n=1

In 1954 G. Meinardus considered the asymptotics of generating
functions of the form

“+o00

fo=T[0-q¢" “—1+Z

n=1

where ¢ = e¢™7 and ReT > 0, and the a,, are nonnegative real numbers.
He proved a general result, known as Meinardus’ first theorem, which
includes asymtpotic formulas for many partition functions.
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Definitions and assumptions

Consider the generating function

+oo +o0
fo=T[a-¢) " =1+ rn)g",
n=1 n=1

where ¢ = e™7 and Re (7) > 0, and the a,, are nonnegative real
numbers.
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Define the auxiliary Dirichlet series:

—+o00
D(s) = %” (s =0 +it),
n=1

which it is assumed
(i) to be convergent for o > «, for some positive real number «;

(ii) to posses an analytic continuation in the region o > —Cj, where
0 < Cp < 1. In this region D(s) is analytic except for a simple pole
at s = a, with residue A;

(iii) D(s) = O(|t|°") uniformly in o > —Cp as |t| — +oo, where C} is a
fixed positive real number.
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Meinardus’ First Theorem

Theorem 6.2 As n — 400,

r(n) = Cn"exp [nl%a (1 + i) (AT (a+ 1) {(a + 1))1% (14+0(n"))

where

C = e”Ofn(1 + )] V2AT(a + DI (o + D] I72PON @42,

D0)—1-1/(2
.- PO [(20) g .y —
14+« a+1

0 is an arbitrary real number.
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Additional assumptions

The proof will use the function
“+oo

g(r) = and",  q=e".
n=1

If 7 = y + 2miz, we shall assume that for |arg 7| > 7/4 and |z| < 1/2

R(g(7)) —g(y) < —Cay™*

for sufficiently small y, where € is an arbitrary but fixed positive
number, and C is a positive real number depending on e.
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Proof of Theorem 6.2

By the Cauchy integral formula

To+27e

r(n) = / f(r)e" dr

0
1/2

= f(y + 2miz)e™ 2T dy
~1/2

The proof is based on applying the saddle point method. In order to
apply this method one needs information of the behavior of f(7) in the
half plane Re(7) > 0, and near 7 = 0.

Italo Simonelli October 29, 2021 7/26



Lemma 1. Under our assumptions on f(7), D(s), and ¢(7), with
T=1y+ 2mx,

f(1) = exp |AT (@) (o + 1)77% — D(0) log 7 4+ D'(0) + O(y°°)

uniformly in =z as y — 0, provided |arg 7| < w/4, |z| < 1/2.
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Proof of Lemma 1. Let ¢ = e~ 7. Then

Recall that

oo+i00
1

e = —
2mi 00—100

Using (2) in (1) we get

Italo Simonelli

7T (s)ds

+oo
H (1- e_m)_a"
n=1

oo
- Zan log(1 —e™"7)

n=1
[o.¢] 1 o
Z % Z ane—nk‘r
k=1 n=1

(Re(1) >0, 09 > 0)
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14+a+i00
log f(7) = L /1 7°T'(s)((s + 1)D(s)ds. (3)

2mi +a—100

Now we make the shift of the line of integration from Re(s) = 1+ « to
Re(s) = —Cp. The integrand has two poles:

(i) a pole of order one at a, with residue 77T'(a)((av + 1) A4;

(ii) a pole of order two at s = 0.
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The residue at s = 0 can be obtained by first expanding the integrand
near s = 0:

7T (s){(s + 1)D(s)

:(1—310g7’—|—-~)(§—’y-l-'”)(%-i—”y—i-'--)(D(O)+D’(O)8+-~

- 512 +(D'(0) + D(0) logT)é

and hence the residue at s = 0 is D'(0) — D(0) log 7.
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From this shift we obtain

log f(r) = A7 °T(a){(a+1)— D(0)log T+ D'(0) +

1 —Cp+ioco
7T (s)((s + 1)D(s)ds. (4)

2mi —Co—ioo
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The shift of the line of integration is permissible since for
arg(T)| < 7/4,

770 = || exp(targ(T)) < [7]"7exp(n|t|/4)

and by assumption, for o > Cp, D(s) = O([t|“"), while classical results
give

Cs+1)=0()  and  T(s) = Ofexp(~ %)
as t — +o0.

We next show that as 7 — 0 the integral in (4) tends to 0.
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‘i / o T T(s)C(s + I)D(s)ds‘
27

—Cp—1i00
+o00
— O(|’7’|CO/ e—ﬂ\t|/4|t|C’1+C4+Csdt)
—0o0

= O(Ir|) = O(s).

This and (4) now prove Lemma 1.
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Let’s go back to the integral representation of r(n),

To+27e
r(n) = / f(r)e"" dr

0

1/2 .
= f(y + 2miz)e™2mine dy.
~1/2

The maximum value of the integrand occurs at = 0, and for such x
Lemma 6.1 implies f is well approximated by

exp {AF(a)((a + Dy~ + ny|.

The saddle point method suggests we should choose y that minimizes
the expression above.
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That is, choose y such that
d —
&y (exp {AF(a)C(a + 1)y @+ ny]) =0
This gives
y=n" YO AD (@ + 1)¢(a+ D]V
For convenience, we define

m =ny = n® OV AT (a + 1)¢(a + 1)@

With this value of y we split the integral into three parts:
—yB .
r(n) = " / f(y + 2miz)e*™ ™ dy 4
-1/2

B
Y .
+e™ f(y + 2miz)e*™™® da +
—yh
1/2 '
+e™ [y + 2miz) ™ da,
yﬂ
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where

2 2 3

W are going to show that under our assumption the contribution of the
sum of the first and last integrals are small. Define

5:1+a<1—5) with 0<5<2_

—yf ) 1/2 A
Ry = / f(y + 2miz)e*™™ e dg + f(y + 2miz)e®™ e dy.,
—1/2 yb
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Lemma 2. There exists a positive €1 such that
f(y + 2miz) = O exp[AT(a)¢(a + 1)y~ = Cay™])

uniformly on x with y? < |z| < 1/2, as y — 0, where

) 2
-1 1-2 ith z
8 —|—2< 2) wit 0<(5<3

and (5 is a fixed real number.
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Sketch of Proof of Lemma 2. The proof consists of considering two
cases

(i) y* < o] < L
2w
.. y
— <
(i) 5- <ol < 3.

Case (i) is proven by proceeding as in the beginning of the proof of
Lemma 1, and then by showing that under the assumptions of Lemma
2 in the region considered in case (i)

log | f(y + 2miz)| < AT(a)((a+ 1)y~ — Csy™“".
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Case (ii) relies on te condition Re(g(7)) — g(y) < —Chy~¢. Since

log f(T) = - i A, log(l — @*m') — i % ianeink‘r,
n=1

1

£
Il
—
3
I

one has
o 1 o]
log | f(y + 2miz)| — Re(g(T)) = Z % Z ane” ™™ cos(2rknz).
Since all the a,’s are nonnegative,

log £y + 2miz) |~ Re(g() < 3 7 D ane™ = log(£(s) - g(y).
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Hence in case (ii),

log | f(y + 2miz)]

thus proving the lemma.
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log f(y) + Re(g(7))

ATl (a)((a+ 1)y — Cgy™©

9(y)

AT (a)C(a+ 1)y * — C3y™,
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We are now go back to considering Rj,

1/2

—yP . |
R = / f(y + 27T’L':E)627mnm dz + / f(y + 271'7;56)627”"33 dz.

-1/2 yPB

By Lemma 2,
Ry = O(eXp [(%)_“Af(a)g‘(a +1)— 03(%)—61} )

as n — +oo (i.e,, y =m/n — 0).
Hence

exp(m) s = Oexp | (1+ Ly — Come|

as n — +o0.
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Recall
B

r(n) =em fly+ 27Tix)e2mm dr +em R,
_yb

and we just found bounds for e™R;. Now applying Lemma 1 and
making the change of variable 27z = (m/n)w we obtain

r(n) = exp { <1 + ;) m — (D(0) — 1) log % + D'(0) — log 277][—}— e" Ry,

where
Crom(t=8)/e
=/ exp((c) .
7010m<1*f3)/a
where
¢(UJ) = m[# _ l + iw] — D(O) log(l + iw) + O(m—Co/a)
a(l+iw)®  «
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The final step of the proof consists in showing that

2m 1/2
S P —p3
g [m(a—}-l)} (1+0(m™2))
where o 51
ps = min (2 = 5.5 - 9)

Putting all together one now has that

rn) = exp[(14 )m— (D(O) 1) log ™ + D/(0)] (2mm(ar + 1))~/

(L+0(m™"))

as m — 400. The proof is now completed by replacing m by a function
of n.
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Application of Theorem 2.

Theorem 6.3

p(n) ~ 4n1\/§ exp <7r<§>1/2n1/2> .
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Theorem 6.4. Let Hy , denote all positive integers congruent to a
modulo k. Then for 1 < a <k,

where

and

2n\ 1/2
p("Hgq”,n) ~ Cn”exp <W<3k> )

C = F(%)ﬂ_—l—&-a/k 9—3/2~a/(2k) 3—a/(2k) j.~1/2+a/(2k)
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