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> the sum is over p: (p,q) =1, p < g;
> wp 4 is a certain 24qth root of unity;

> 2 0(y/) .
2. poln) =& (e {22 (- ) })

We can take v = 5.
Five terms of the series (1) predict the correct value of p(200).
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hh' = —1 (mod k).
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The Legendre symbol (%) is defined for an odd prime p and a € Z,
as

p

<a> )L if a is a quadratic residue modulo p;
—1, if ais not a quadratic residue modulo p.

Let (P,Q) =1, Q =q1q2- - g:, where the g;'s are odd primes ,
not necessarily distinct . Then the Jacobi symbo is defined by

(7).
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for the circle C of radius p < 1. The problem is, P(z) is not
analytic on |z| = 1.

> First, we truncate the infinite produce as

N
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n=1

> At x = 1, there is a pole of order N.
> At x = —1, there is a pole of order | ¥ |.

> At x = e>™/3 there is a pole of order |[N/3]. (And also
e47ri/3).
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» Define the set

h
Fn = {k:ke{172a---7N}70<h<k’(h’k):1}

11
Fs=140,-,,
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» There rational points h/k € Fy actually stands for the poles
at eZﬂ'ih/k.

» If h/k, h'/k’ € Fy are consecutive, , the mediant is defined by

h+ H
k + k'’

which has the smallest denominator.
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