
Reading Seminar on “The Theory of Partitions” by
George E. Andrews

The Hardy-Ramanujan-Rademacher Expansion of p(n)

Lin Jiu

Oct. 22nd, 2021



Recall
Definition
The partition function p(n) is the number of ways expressing n as
sum of positive integers.

p(4) = 5

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

p(200) = 3972999029388

Theorem (G.H.Hardy and S.Ramanujan)

p(n) is the integer nearest

1
2
√
2

ν∑
q=1

√
qAq(n)ψq(n).
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1
2
√
2

ν∑
q=1

√
qAq(n)ψq(n)

1. Aq(n) =
∑
ωp,qe

− 2πpπi
q

I the sum is over p: (p, q) = 1, p < q;
I ωp,q is a certain 24qth root of unity;
I ν = O(

√
n) .

2. ψq(n) = d
dn

(
exp

{
π
q

√
2
3

(
n − 1

24

)})
n = 200⇒

√
n = 10

√
2 ≈ 14.1421

We can take ν = 5.
I Five terms of the series (1) predict the correct value of p(200).
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Rademacher:
Theorem

p(n) =
1

π
√
2

∞∑
k=1

Ak(n)
√
k

 d

dx

sinh
(
π
k

√
2
3

(
x − 1

24

))√
x − 1

24


x=n

,

where
Ak(n) =

∑
h mod k,(h,k)=1

ωh,ke
− 2πinh

k ,

with ωh,k a certain 24kth root of unity.

More precisely,

ωh,k =


(−k

h

)
exp

{
−πi

(
2−hk−h

4 + (k−k−1)(2h−h′+h2h′)
12

)}
, h odd;(−h

k

)
exp

{
−πi

(
k−1

4 + (k−k−1)(2h−h′+h2h′)
12

)}
, k odd.

hh′ ≡ −1 (mod k).
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Theorem (Cont’d)
Definition
The Legendre symbol

(
a
p

)
is defined for an odd prime p and a ∈ Z,

as (
a

p

)
=

{
1, if a is a quadratic residue modulo p;

−1, if a is not a quadratic residue modulo p.

p = 5
x 0 1 2 3 4
x2 0 1 4 4 1

⇒
(1

5

)
=
(4

5

)
= 1 and

(2
5

)
=
(3

5

)
= −1.

Definition
Let (P,Q) = 1, Q = q1q2 · · · qt , where the qi ’s are odd primes ,
not necessarily distinct . Then the Jacobi symbo is defined by(

P

Q

)
=

t∏
j=1

(
P

qj

)
.
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Jacobi Symbol
Theorem
Let P and Q be odd, with (P,Q) = 1. Then,(

P

Q

)(
Q

P

)
= (−1)

P−1
2 ·

Q−1
2 and

(
−1
Q

)
= (−1)

Q−1
2 .

Remark
Therefore,(
−k
h

)
=

(
−1
h

)(
k

h

)
=

(
−1
h

)(
h

k

)
(−1)

h−1
2 ·

k−1
2 =

(
−h
k

)
.

Also,

2− hk − h

4
− k − 1

4
=

2− hk − k − h + 1
4

=
2− k(h + 1)

4
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Functions
1.

P(q) =
∞∑
n=0

p(n)qn =
∞∏
n=1

1
1− qn

.

2. The Dedekind η-function

η(τ) = q
1
24

∞∏
n=1

(1− qn).

τ ∈ H = {z ∈ C : =z > 0} ⇒ q = e2πiτ .

η(τ) = e
πiτ
12

∞∏
n=1

(
1− e2πinτ) =

e
πiτ
12∑∞

n=0 p(n)e2πinτ

η

(
aτ + b

cτ + d

)
= e

πi

(
a+d
12c +

k−1∑
r=1

r
k ( hr

k
−b hr

k
c− 1

2)

)
η(τ)√
−i(cτ + d)

(
a b
c d

)
∈ SL2(Z)
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p(n) =
1
2πi

˛
C

P(z)

zn+1 dz ,

for the circle C of radius ρ < 1.

The problem is, P(z) is not
analytic on |z | = 1.
I First, we truncate the infinite produce as

N∏
n=1

1
1− xn

.

I At x = 1, there is a pole of order N.
I At x = −1, there is a pole of order bN2 c.
I At x = e2πi/3, there is a pole of order bN/3c. (And also

e4πi/3).
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I There rational points h/k ∈ FN actually stands for the poles
at e2πih/k .

I If h/k , h′/k ′ ∈ FN are consecutive, , the mediant is defined by

h + h′

k + k ′
,

which has the smallest denominator.
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