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Let p(N, M, n) denote the number of partitions of n into at most

M parts, each part < .

Clearly ,

p(N,M,;n) =0 if n> MN,
p(N, M, NM) = 1.

So the generating function

G(N,M; q) = Zp(N, M, n)q"
n>0

is a polynomial of degree NM.



Generating Function

For M, N > 0,

. N+M)(1 _ qN+M_1) 500

= 1=a
G(N, M; q)— (1_q/\/)(1_qN71)... 1




Generating Function

For M, N > 0,

1— N+M)(1 . N+I\/I—1) .

q q (q)N+M

e Az ) —gm ) (g7
G(N,M; q) = (1—g")(1—q" 1) " (gn(g)m”




Generating Function

For M, N > 0,

1-g"™M)(1 ="M ™) (1=0"") _ (@wim

Q-1 —q" 1) (1—q)  (n(@u

G(N, M; q) = (

Let g(N, M; q) =RHS.




Generating Function

For M, N > 0,

1-g"™M)(1 ="M ™) (1=0"") _ (@wim

Q-1 —q" 1) (1—q)  (n(@u

G(N, M; q) = (

Let g(N, M; q) =RHS.
g(N,0;q) =




Generating Function

For M, N > 0,

1-g"™M)(1 ="M ™) (1=0"") _ (@wim

Q-1 —q" 1) (1—q)  (n(@u

G(N, M; q) = (

Let g(N, M; q) =RHS.
g(N,0;q) =1




Generating Function

For M, N > 0,

1-g"™M)(1 ="M ™) (1=0"") _ (@wim

Q-1 —q" 1) (1—q)  (n(@u

G(N, M; q) = (

Let g(N, M; q) =RHS.
g(N,0;q) = 1 = g(0,M; q).




Generating Function

For M, N > 0,

G(N, M; q) = L= "M@= g™ (1= ¢")  (@Inem

Q-1 —q" 1) (1—q)  (n(@u

Let g(N, M; q) =RHS.

g(N,0;q) =1 = g(0, M; q). (




Generating Function

For M, N > 0,

G(N, M; q) = L= "M@= g™ (1= ¢")  (@Inem

Q-1 —q" 1) (1—q)  (n(@u

Let g(N, M; q) =RHS.

g(N,0;q) = 1 =g(0,M; q). ((E,‘)’L”ZZ;Q”M)
g(N,M; q) — g(N,M —1;q)




Generating Function

For M, N >0,

Y A I N ) T

o=
G(N,M; q) = (I—gV)Y1—q" 1) ---(1-q) " (gn(g)m”

Let g(N, M; q) =RHS.

g(N,0;q) =1 =g(0,M;q). ((qc)’LNW )

g(N, M; q) — g(N, 1q)
(@)n+m (CI)/\/

(@n(@w  (@n(@m-




Generating Function

For M, N > 0,

(1-g"MA—g"™ ). 1-¢"") _ (@nim
(1—gV)(1—g"1)---(1—q) (@@

G(N, M; q) =

Let g(N, M; q) =RHS.

g(N,0;q) =1 = g(0, M; q).
g(

( (D)nim )
(A)n(@)m
( N? M — 1; q)
(Dnem (@nv+m—1
q

(@n(@m (@n(a)m-1

(@i (070 =)

g(N,M;q) —




Generating Function

For M, N > 0,

(1-g"MA—g"™ ). 1-¢"") _ (@nim
(1—gV)(1—g"1)---(1—q) (@@

G(N, M; q) =

Let g(N, M; q) =RHS.

g(N,0;q) = 1 = g(0,M; q). ((E,‘)’L”ZZ;Q”M)
g(N,M:;q) —g(N,M —1;q)
(Onim (@M1

(@n(am  (Dn(g)m-1

DL (1 gMeM) — (1 g))
(@)n+m-1 M

(a9 —d)

q



Generating Function

For M, N >0,

(L=g"™M)1 "M ). (1" _ (@Jwim
(1—qV)(1—g"-1)---(1—q) (@@

G(N,M;q) =

Let g(N, M; g) =RHS.

g(N,0;q) = 1 = g(0, M;q). (e )
g(N, M; q) — g(N,M —1; q)
(Dnem— (Dnim—

(@n(anv  (g)n(a)m-1
i‘é))”?”) 1 (<1qu+M>f<1*qM>)

q



Proof (Contd) [p(N, M, n): at most M parts, each < N]



Proof (Contd) [p(N, M, n): at most M parts, each < N]

1, N=M=n=0;

N.0,n) = p(0, M, n) =
pl )= Pl ) {O, otherwise.



Proof (Contd) [p(N, M, n): at most M parts, each < N]

1, N=M=n=0;

N.0,n) = p(0, M, n) =
pl )= Pl ) {O, otherwise.

Hence, G(N,0;q) = G(0,M; q) = 1.



Proof (Contd) [p(N, M, n): at most M parts, each < N]

1, N=M=n=0;
p(N,0,n) = p(0, M, n) =4 n

0, otherwise.
Hence, G(N,0;q) = G(0,M; q) = 1.

> p(N7 M?”) _P(N,M— 17”)



Proof (Contd) [p(N, M, n): at most M parts, each < N]

1, N=M=n=0;
p(N,0,n) = p(0, M, n) =4 n

0, otherwise.
Hence, G(N,0;q) = G(0,M; q) = 1.

» p(N,M,n)— p(N,M — 1, n) “exactly M parts”



Proof (Contd) [p(N, M, n): at most M parts, each < N]

1, N=M=n=0;

N.0,n) = p(0, M, n) =
pl )= Pl ) {0, otherwise.

Hence, G(N,0;q) = G(0,M; q) = 1.
» p(N,M,n)— p(N,M — 1, n) “exactly M parts”
KEY: “subtracting 1 from each part”



Proof (Contd) [p(N, M, n): at most M parts, each < N]

1, N=M=n=0;
p(N,0,n) = p(0, M, n) = { "
0, otherwise.
Hence, G(N,0;q) = G(0,M; q) = 1.
» p(N,M,n)— p(N,M — 1, n) “exactly M parts”
KEY: “subtracting 1 from each part”

p(N,M,n) — p(N,M —1,n)=p(N—-1,M,n— )



Proof (Contd) [p(N, M, n): at most M parts, each < N]

1, N=M=n=0;

N.0,n) = p(0, M, n) =
pl )= Pl ) {0, otherwise.

Hence, G(N,0;q) = G(0,M; q) = 1.
» p(N,M,n)— p(N,M — 1, n) “exactly M parts”
KEY: “subtracting 1 from each part”

p(N,M,n) — p(N,M —1,n)=p(N—-1,M,n— )



Proof (Contd) [p(N, M, n): at most M parts, each < N]

1, N=M=n=0;

N.0,n) = p(0, M, n) =
pl )= Pl ) {0, otherwise.

Hence, G(N,0;q) = G(0,M; q) = 1.

» p(N,M,n)— p(N,M — 1, n) “exactly M parts”
KEY: “subtracting 1 from each part”

p(N,M,n) — p(N,M —1,n)=p(N—-1,M,n— )

G(N, M; q) = g(N, M; q).
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For inductive step, it suffices to show

n
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{1™M ... (r —1)™-1} with n — j inversions.
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Let p(q) and r(q) be reciprocal, unimodal polynomials with
nonnegative coefficients; then p(q)r(q) is also a reciprocal,
unimodal polynomial with nonnegative coefficients.




For all N, M,n >0 p(N, M, n) =

P(N,M,n) =

For all my,mz,...,m,,n>0
ind(mx,...,my;n) = ind(mi,...,mj;n)
= inv(my,...,me;n) = inv(mj, ..., mj;n)
where {i, ..., i} is a permutation of {1,2,...r};
ind(my,...,ms;n) = ind(my,...,m; S — n)

=inv(my,...,me;n) = inv(my,...,m;S — n)
where S = Zl<i<j<, m;myj is the secondary symmetric function of m;;
0<n< g ind(mx,...,my;n)—ind(mi,...,mj;n—1)

= inv(my,...,m;n) — inv(my,...,mi;n—1) > 0.
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P(N,M,n) = p(N, M, NM — n);
p(N,M,;n) —p(N,M,n—1) >0, for 0<n<NM/2.

For all my,mz,...,m,,n>0
ind(mx,...,my;n) = ind(mi,...,mj;n)

= inv(my,...,me;n) = inv(mj, ..., mj;n)

where {i, ..., i} is a permutation of {1,2,...r};




For all N.M.n 20" p(N, M, n) = p(M. N n)
P(N,M,n) = p(N, M, NM — n);
p(N,M,;n) —p(N,M,n—1) >0, for 0<n<NM/2.

For all my,mz,...,m,,n>0
ind(mx,...,my;n) = ind(mi,...,mj;n)

= inv(my,...,me;n) = inv(mj, ..., mj;n)

where {i, ..., i} is a permutation of {1,2,...r};
ind(my,...,my;n) =ind(my,...,m;S — n)

=inv(my,...,me;n) = inv(my,...,m;S — n)

where S = Zl<i<j<, m;myj is the secondary symmetric function of m;;




For all N, M,n >0 p(N, M, n) =

P(N,M,n) =

For all my,mz,...,m,,n>0
ind(mx,...,my;n) = ind(mi,...,mj;n)
= inv(my,...,me;n) = inv(mj, ..., mj;n)
where {i, ..., i} is a permutation of {1,2,...r};
ind(my,...,ms;n) = ind(my,...,m; S — n)

=inv(my,...,me;n) = inv(my,...,m;S — n)
where S = Zl<i<j<, m;myj is the secondary symmetric function of m;;
0<n< g ind(mx,...,my;n) —ind(mi,...,mj;n—1)

= inv(my,...,m;n) — inv(my,...,mj;n—1) > 0.




