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The Generating Function for Restricted Partitions

Definition
Let p(N,M, n) denote the number of partitions of n into at most
M parts, each part ≤ N.

Clearly ,

p(N,M, n) = 0 if n > MN,

p(N,M,NM) = 1.

So the generating function

G (N,M; q) =
∑
n≥0

p(N,M, n)qn

is a polynomial of degree NM.
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Generating Function
Theorem
For M,N ≥ 0,

G(N,M; q) =
(1− qN+M)(1− qN+M−1) · · · (1− qM+1)

(1− qN)(1− qN−1) · · · (1− q)

=
(q)N+M

(q)N(q)M
.

Proof.
Let g(N,M; q) =RHS.

I g(N, 0; q) = 1 = g(0,M; q).
(

(q)N+M

(q)N(q)M

)
I

g(N,M; q)− g(N,M − 1; q)

=
(q)N+M

(q)N(q)M
− (q)N+M−1

(q)N(q)M−1

=
(q)N+M−1

(q)N(q)M

(
(1− qN+M)− (1− qM)

)
=

(q)N+M−1

(q)N(q)M
qM(1− qN) = qMg(N − 1,M; q).
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Proof (Contd) [p(N ,M , n): at most M parts, each ≤ N ]

I

p(N, 0, n) = p(0,M, n) =

{
1, N = M = n = 0;
0, otherwise.

Hence, G (N, 0; q) = G (0,M; q) = 1.
I p(N,M, n)− p(N,M − 1, n) “exactly M parts”

KEY: “subtracting 1 from each part”

p(N,M, n)− p(N,M − 1, n) = p(N − 1,M, n −M)

G (N,M; q)− G (N,M − 1; q) = qMG (N − 1,M; q).

G (N,M; q) = g(N,M; q).
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Gaussian Polynomials

Recall
G (N,M; q) =

(q)N+M

(q)N(q)M

and (
N +M

N

)
=

(
N +M

M

)
=

(N +M)!

N!M!
.

Definition

The Gaussian polynomial
[
n
m

]
(q)

is defined by

[
n
m

]
=

{
(q)n

(q)m(q)n−m
, 0 ≤ m ≤ n;

0, otherwise.
= G (N −M,M; q).
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Generating Functions
Theorem
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N∑
j=0
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N
j
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(−1)jz jq
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j
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z j
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Recall

Theorem
If |q| < 1 and |t| < 1, then

1+
∞∑
n=1

(1− a)(1− aq) · · ·
(
1− aqn−1) tn

(1− q) (1− q2) · · · (1− qn)
=
∞∏
n=0

(1− atqn)

(1− tqn)
.

∞∑
n=0

(a)n
(q)n

tn =
(atq)∞
(tq)∞

.



Theorem
m∑
j=0

(−1)j
[
m
j

]
=

{
(q; q2)n, if m = 2n;
0, if m is odd;[

n +m + 1
m + 1

]
=

n∑
j=0

qj
[
m + j
m

]
, m, n ≥ 0;

h∑
k=0

[
n
k

] [
m

n − k

]
q(n−k)(h−k) =

[
m + n

h

]
;

∑
r≥0

[
M −m

r

] [
N +m
m + r

] [
m + n + r
M + N

]
q(N−r)(M−r−m) =

[
m + n
M

] [
n
N

]

Remark (
m + n

h

)
=

h∑
k=0

(
m

k

)(
n

r − k

)
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Definition
For m1, . . . ,mr ≥ 0, we define the Gaussian multinomial coefficient
(or q-multinomial coefficient) by[

m1 + · · ·+mr

m1, . . . ,mr

]
=

(q)m1+···+mr

(q)m1 · · · (q)mr

.

Definition
A multiset is a set with possibly repeated elements. A multiset can
be expressed as an ordered pair (M, f ) where M is a set and

f : M → N ∪ {0}
m 7→ f (m) = multiplicity of m

M = {1, 2, 2, 2, 3, 4, 2, 1, 4}

M = {1224342}

Namely, f (1) = f (4) = 2, f (3) = 1, and f (2) = 4.
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Definition
We let inv(m1,m2, . . . ,mr ; n) denote the number of permutations
ξ1ξ2 · · · ξm1+···+mr of {1m12m2 · · · rmr }in which there are exactly n
pairs (ξi , ξj) such that i < j and ξi > ξj .

Theorem
inv(m1,m2; n) = p(m1,m2, n) .

m1 = 11, m2 = 7, λ = (8, 6, 6, 1, 1)

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2.
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Theorem (P. A. MacMahon)

For r ≥ 1,
∑
n≥0

inv(m1, . . . ,mr ; n)q
n =

[
m1 + · · ·+mr

m1, . . . ,mr

]
.

Proof. For r = 2, inv(m1,m2; n) = p(m1,m2, n) implies

∑
n≥0

inv(m1,m2; n)q
n =

∑
n≥0

p(m1,m2, n)q
n =

[
m1 +m2
m1,m2

]
.

For inductive step, it suffices to show

inv(m1, . . . ,mr ; n) =
n∑

j=0

inv(m1 + · · ·+mr−1,mr ; j)inv(m1, . . . ,mr−1; n − j).

I Take a permutation of {1m1+···+mr−12mr } with j inversions.
I Replace each 2 by an r and replace the 1 by a permutation of
{1m1 · · · (r − 1)mr−1} with n − j inversions.
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Greater index
Definition
Let ind(m1, . . . ,mr ; n) be the number of permuations
ξ1 · · · ξm1+···+mr of {1m1 · · · rmr } for which

m1+···+mr−1∑
i=1

χ(ξi ) = n,

where

χ(ξi ) =

{
i ξi > ξi+1;

0, otherwise.

Here this sum is called the greater index of the permutation.

11121122111112212

0+ 0+ 0+ 4+ 0+ 0+ 0+ 8+ 0+ 0+ 0+ 0+ 0+ 0+ 15+ 0 = 27.
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∑
n≥0
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ind(m1, . . . ,mr ; n)q
n

(q)m1+···+mr

=
1

(q)m1 · · · (q)mr
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Corollary

ind(m1, . . . ,mr ; n) = inv(m1, . . . ,mr ; n)
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Unimodality

Definition

1. A polynomial p(q) = a0 + a1q + · · ·+ anq
n is called reciprocal

if for each i , ai = an−i , equivalently qnp(1/q) = p(q).

2. A polynomial p(q) = a0 + a1q + · · ·+ anq
n is called unimodal

if there exists m such that

a0 ≤ a1 ≤ · · · ≤ am ≥ am+1 ≥ · · · ≥ an.

Theorem
Let p(q) and r(q) be reciprocal, unimodal polynomials with
nonnegative coefficients; then p(q)r(q) is also a reciprocal,
unimodal polynomial with nonnegative coefficients.
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Theorem
For all N,M, n ≥ 0 p(N,M, n) = p(M,N, n);

P(N,M, n) = p(N,M,NM − n);

p(N,M, n)− p(N,M, n − 1) ≥ 0, for 0 < n ≤ NM/2.

Theorem
For all m1,m2, . . . ,mr , n ≥ 0
I ind(m1, . . . ,mr ; n) = ind(mi1 , . . . ,mir ; n)

= inv(m1, . . . ,mr ; n) = inv(mi1 , . . . ,mir ; n)

where {i1, . . . , ir} is a permutation of {1, 2, . . . r};
I ind(m1, . . . ,mr ; n) = ind(m1, . . . ,mr ;S − n)

= inv(m1, . . . ,mr ; n) = inv(m1, . . . ,mr ; S − n)

where S =
∑

1≤i<j≤r mimj is the secondary symmetric function of mi ;

I 0 < n ≤ S
2 : ind(m1, . . . ,mr ; n)− ind(mi1 , . . . ,mir ; n − 1)

= inv(m1, . . . ,mr ; n)− inv(mi1 , . . . ,mir ; n − 1) ≥ 0.
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