
Ken Kalin
Wrote Controller
Setup Model, View
History Class
Tests
(Changes) UI Preset Buttons
Documentation (README.md)

Sophie Williams
Model (Instruction Objects, Parsing, Variable Manager, Command Manager, Model Turtle, Model
Canvas, Argument Objects)
Instruction Bundles and communication with frontend
SceneController
Turtle animation and drawing
Color selection
Instruction tests

David Liu
Emily Shao
Jim Huang

The purpose of this project is to implement a version of "SLOGO" to animate the movement of a turtle via text
commands inputted by a user. The commands control the movement of the turtle on the screen which can draw
a line of varying colors (like an etchesketch). The project will showcase our understanding of encapsulation,

DESIGN Document for SLOGO

Ken Kalin (kdk33), Jim Huang (zh120), David Liu (ql139), Emily Shao (eys9),
Sophie Williams (smw92)

Team 8

Role(s)

Design Goals

abstraction, and higher level design concepts like Model View Separation and Controller classes.

Features implemented:

Enter commands to the turtle interactively by entering text commands
Commands can be nested, include variables, and include user-defined commands
Enter commands to the turtle interactively by clicking on buttons
See the results of the turtle executing commands displayed visually
The turtle starts in the center of the display which is considered (0, 0)
See errors that result from entered commands in a user friendly way (i.e., not just printed to the
console)
See history of successful commands run previously
See user-defined variables
See user-defined commands
Set an image to use for the turtle (instead of the CSS style's default)
Set a background color for the turtle's display area (instead of the CSS style's default)
Set a color to use for the pen (instead of the CSS style's default)
Set the speed to animate the turtles' movement and turning (where the max speed does no
animation, just displaying the final result)
Can save the current history of the program as a .slogo file (through Settings window)
Can load a .slogo file into the program and run the commands in the file (through Settings window)

When you start main, the start() method is called which creates a sceneController and passes it a Stage.
The Scene controller creates a new "splash" scene. On this splash scene, the user can choose to load a
language file and then start the SLogo program by clicking Begin. This triggers a callback to the Scene
controller to generate the MainScene . The MainScene is created and the controller for the Main class
(MVController) is created.

The Main Scene initializes the following classes which make up the UI

CanvasView which displays the turtle and the path that it draws.

ToolButtonPane has the ComonpentStyleButton which opens the settings window (which
configures light/dark modes). It can also set the background color and and has a button to open the help
window.

High-Level Design

Frontend

ControlButtonPanel contains the play and pause animation buttons and the update Animation rate
slider and frame skipper It also contains dialogs to change the pen width and select a pen color.

UserInputPane Contains the command bar for text input, the submit button, and the GUI controlls
that triggger preset commands such as Forward and Left and the ability to draw premade shapes
such as Square and Triangle and to turn on and off the pen.

The History Pane contains the history of commands that have been executed.

The UserVariablePane contains the variables that have been created by the user.

HelpView is a separate scene that is created when the user clicks the help button on the
ToolButtonPanel . It contains a list of all the commands that can be used in the program. As defined by

XML files that are loaded in the beginning of the program. It includes definitions, examples, code segments,
and expected return values for each command.

The MVController is the controller for the entire program. It is created when the MainScene is created.
It is passed a reference to the MainScene and creates a Model obejet. The controller sets up a listener
within the view that will call sendSignal() to notify the backend when the user submits a new command.
MVController also sets up a JavaFX timeline object which starts the animations.

At each step of the timeline, if the listener has been notified that a command has been submited, the Controller
will call the models handleInstructionInput() method. This method will parse the command and then
call the appropriate method in the model.

The listner has variables to store the instruction and has a boolean flag that shows when a new
instruction is ready to be read and exectued. It has method sendSignal() that will store the instruction and
set the flag to true . It has a clearSignal() method that will set the flag to false and clear the
instruction.

If there is a bundle available from the model and the view is not currently playing an animation. The controller
will call the .getBundle() method from the model to get the newest instruction bundle and it will call the
view's updateView() and pass in that bundle for the view to be updated.

XML Reader

The XMLReader class is used to read in the XML files that contain the information for the commands. It
stores the command information in an XMLData object which contains a list of commandInfo bundle
objects. Each commandInfo bundle contains the following information: * name : the name of the
command * Name Variants of the command * Description of command * Example of command *

Controller

Num of Args : number of arguments the command takes * Class : the class that executes the command

The XML Data object is passed into the HelpView to display the information to the user.

The Model class is the backend of the program. It is created by the MVController and given the
language which is used to setup the parser to run in the correct language.

The Backend Contains:

Parser : The parser is created when the model is created and is passed the language. The parser is used to
parse the user input and create the InstructionBundle objects.

When an instruction is sent to the model through the handleInstructionInput() method, the
parser parses the instruction into an InstructionList object. The parser uses the following
algorithm to decomose each line of instructions into executable Instruction objects.

1. It will split the instruction by spaces into a linked list of ListNode objects.
2. For each ListNode it will determine if it is a:

Command

Variable

Constant

3. If it is a command, it will check if it is a valid command. If it is not a valid command, it will throw an error. It
will create an Instruction object of the correct name using reflection. (It will convert alternate names
of the command into the original form before doing this) By getting the number of expected arguments
from the instruction object, it will scan ahead in the list the correct number of arguments.

If any of the next arguments are parsed as another command the parser will recursively populate that
commamnd object and pass it as an argument to the original command.
This is handled by the Arguments interface which allows commands to accept any type of
argument (constants, insturctions, varaibles). Each command exepts Arguments and doesn't try
to access them until runtime (after everything has been parsed).

Once the entire line is parsed the handleInstructionInput() method will call the instuction list
execute() method. This will call the execute() method on each Instruction object in the list.

After executing, InstructionBundle objects are created and placed onto the
InstrucitonBundleQueue . The InstructionBundleQueue is a queue of InstructionBundle *

Executing the instruction updates the corresponding ModelTurtle object's state which is used in the
backend for calculations about the turtle's movement. * InstructionBundle object contain information for
the frontend to update the view.

Backend

Any errors generated by the parser are added to a DataStorage object called myError which keeps
track of the error messages until prompted by the frontent when it generates an error popup.

VariableManager : The variable manager is used to store the variables that are created by the user. It
contains two HashMaps. One for UserVariables and one for UserCommands . The UserVariables

are stored as Strings mapped to Doubles. The UserCommands are stored as Strings mapped to
CommandTemplateObjects which store a list of commands that need to be executed based on how the

user defines the structure of the command Macro (using the TO command).

Assumptions or Simplifications:

The Turtle was placed at the center of the screen by translating it by 250 in each direction. To
compensate, the getTurtleX() and getTurtleY() methods in the ModelTurtle class return
the turtle's x and y coordinates after subtracting 250 to correct.

The Help Window is only setup to display predefined commands based on XML files supplied before
runtimie and will not show user defined commmands that were created as the program was running.

The user is also required to select a language at the start of the program and cannot change it during
runtime.

Known Bugs:

When the turtle travels past the edge of the canvas, it does not stop,
The pen will not draw outside the canvas, but the turtle will keep moving
There is no error checking for turtle out of bounds

If a resource fails to load, the program will crash and only the Help Window will appear
The turtle image is not centered on the turtle (this means that tests are off by +/- turtle width)
When putting the pen back down, it will automatically still draw a line from where it picked the pen up

Originally, the program was going to execute the commands as they were parsed. This would allow all
arguments to be evaluated into constants before being inputted into a command. While this technique would
work well for simpler instructions like "fd fd 100", this would not work as cleanly for control instructions such as
repeats and if statements. Realizing this, we decided to rework the backend of the program so instructions
would be able to take a number of different types of arguments such as constant, variables, and even

Assumptions or Simplifications

Changes from the Plan

instructions. This way parsing and execution of the instructions could be separated.

Features unimplemented:

Change the language of the program during runtime
Speech to Text input

Icons

The Icons folder in the resources folder contains all the icons used in the program. They are all in the .png

format.

Stylesheets

The Stylesheets folder contains the .css files that are used to style the program. There are seperate file
sheets for Light Dark Duke UNC and Original themes.

XML Files XML Files are the descriptions of each command (within their own langauge) used to popualte the
helpview and the parser and instruction objects.

Language Files

The language files are used to store the names of buttons and labels in the front end of the program in their
respective langauge.

Properties Files

The properties files are used to store the default values for the program. They are used to set the default
values for the program when it is first started.

Text.properties

Screen width
Screen height
Default shapeSize

Syntax File (Syntax.properties)

Syntax for valid command, constant (regex)
Syntax for valid variable (regex)
Syntax for valid comment (regex)

How to Add New Features

Turtle Images There are three included turtle images that can be used in the program. They are stored in the
TurtleImages folder in the resources folder. These can be selected by clicking on the turtle once the game

has started.

Key/Mouse inputs:

Arrow keys: Move the turtle in the direction of the arrow key (up, down, left turn, right turn)

After a command is run, the UI focus will jump back to CanvasView so that the user can continue to
use the arrow keys to move the turtle.

The user can move the turtle by typing commands into the text input box. The commands are case
insensitive and are documented in the HelpView

The user can also move the turtle using the provided GUI buttons which can move the turtle in predefined
directions and shapes.

They can also click on the turtle to change the image on the turtle

There are also dialogs to change the state of the pen including the color and thickness of the pen and
whether it is currently set to draw.

