
Ken Kalin (kdk33):

Cell Subclasses for various simulations including

Conway's Game of Life

Spreading of Fire

Schelling's Model of Segregation

Wa-Tor (Predator Prey Model)

Percolation

Falling Water/Sand

Foraging Ant Simulation

Documentation

Ethan Horowitz (ejh55):

UI Design

Simulation Controls (Pause, Play, Speed, Step Fwd)

Histogram viewer of simulation progress

Support for separate windows for UI controls and Grid

Tim Geissler (tdg24):

BasicCell Society Design Final

TEAM 1

Ken Kalin (kdk33), Ethan Horowitz (ejh55), Tim Geissler (tdg24)

Team Roles and Responsibilities

Grid Class

Supports simulation and initializes various simulation types based on XML data

XML Loader

Parses XML file that contains

Initial states and positions of cells

General simulation paramters (e.g. probabilty of tree catching fire)

XML Generator Tool

Additional support program that enables team to generate XML files for testing/verification of project.

In our implementation of the simulation, a Grid class is responsible for supporting a simulation in which
cells each understand the rules of their simulation and change states based on internal and external factors
such as the number of neighbors surronding them. The Grid class is responsible for creating the simulation
based on paramters defined in an XML file and then instanciating the correct types of Cell objects. The
UI controls the speed at which the simulation progresses and allows a user to load different XML files with

various simulation paramters. ## High-level Design

The Cell() class contains the overarching information upon which different subclasses can be created for
each simulation type. In our implementaiton, the rules for a given simulation are primarily contained within a
Cell (the Grid is responsible for instantiating the correct cells and assigning them the correct neighbors based
on the paramters).

Cell objects are constructed from the Grid class by assigning them an x and y position as well as
a list of COLORS and possible STATES that the cell can take on.

At each time slice througout the simulation, the grid interacts with each cell by calling calcNextState()

on every cell in the simualtion. Calculating the next state of a cell before updating it on the grid prevents

Design goals

What Features are Easy to Add

Core Classes

Cell

undefined behaviors such as some cells updating first therby changing the results for their neighbors.

Once every cell has had a chance to calculate its next state, the Grid calls update() which sets
state = nextState and then calls setColor() which displays the new states color on the grid.

Each cell maintains a list of its neighbors which can be used as part of the simulation to calcualte a cell's next
state. The neighbor class provides a container for this information since the number of neighbors a cell has
depends on the rules of the simulation as well as the size/shape of the grid itself. Subclasses of the
Neighbor class allow for different configurations of neighbors such as SurroundNeighbors which has 8

neighbors (all adjacent grid cells in a rectangular grid) or CrossNeighbors which is only the left,right, top,
and bottom adjacent square. (This is used in the Fire simuation for example). Adding neighbors on the other
side of the grid allows the simulation to wrap around and become periodic.

In keeping with Model View Seperation the Grid is actually broken up into two parts. CellGrid contains the
simualtion logic and Grid contains the UI functionality.

CellGrid contains methods which setup and run the simulation. populateGrid() populates the grid
with cells, given the cell class and cellsize. This method constructs new cell objects at each location in the grid
that is occupied based on the XML file.

getCellParams() take in the Cell class and the XML loader and reads the params field from the Cell

class

linkCells() takes in a class of cells and gets the Neighbotype which is a string that determines the
configuraiton of neighbors for a simulation. For each cell in the grid, it gets the neighbor and passes them to
each cell in the form of a Neighbor object.

The simulation runs in a two part cycle for each "frame". First the future states of cells are calculated by calling
` calcNextState() which calls the corresponding method (of the same name) in each cell. Then on the
next part of the cyle, the cells are updated to match their next state by running update() which runs the
method on each cell.

The UI consists of three main components each with their own window. The ControlBar contains buttons

Neighbor

Grid

Cell Grid

UI

that trigger the simulation to execute different tasks such as play, pause, step, speed, info card, loading file and
making a new simualtion window. (Closing the control bar closes the entire simluation).

The Main class has an arrayList of simluations (Sim class objects) and 60 times a second it runs the update
method of each object using a Java FX animation. The sim class updates each of the three windows for its
simluation independently allowing for multiple simultaneous simulations to run at the same time.

Grid is a part of the Model View Separation which isolations the Java FX functionality from the logic of the
simulation. It loads a window and displays the cells and can also display the info card.

InfoCard shows the title, author, cell states, and description for each type of simluation.

The Historgram class displays cell counts over time as the simulation elapeses.

The XML loader scans in fields from an XML file and then it stores the data in its own local variables which are
accessible by the grid through getter methods. For example, getTitle() getWidth() getHeight()

which setup the Grid window and getCells() returns an arrayList of cell representations which is a
record class of row , column , and state data which are then instantiated into cells.

The XML Loader includes error checking cababilities to validate the XML file.

Checks that values for each XML field correspond to their aassigned data types.

Checks if there are null values that should be filled

Checks for a valid grid size (600 pixels square or less)

Checks for file integrity

Tim (tdg24) wrote an additional companion program to generate XML files for testing and validation

The XML generator prompts the user for a Grid Size and generates a grid that user can populate with
cells using mouse clicks. There is a control window that allows the user to select the simluation type, as well as
fill simluation parameters to be saved. Selecting a different simulation type automatically updates the interface
and repopulates the grid with different template cell types. Clicking on a cell multiple times cyles through
its possible states.

Grid

XML Loader

XML Generator (Companion Program)

Clickng the Generate button exports an XML file which can then be loaded into the main simulator.

Our design assumes square Cells which each are encoded with the simulation rules and neighbor types. Since
this information is not defined within the XML, adding a new type of simulation to our program requires adding
a correspodning Cell class with the simulation rules the XML file only specifies what kind of cell to load based
on the existing library in the program.

The grid can be a maximum of 600x600 cells because that is the number of pixel in the window. Any few cells
and the cells will automatically increase their cellSize to fill the screen. Scrolling was not implemnted so a
greater number will result in some cells not being visible.

All cells start with the same paramters. So for simluations that operate based on probabalities, there is no way
to have different settings for each cell, but only to specificy the rules for ALL cells of a given type.

Grid squares are not indpendant from their cell. For example, when cells move in a simluation they call
swapStates() swaps the states of the cells rather than the cell objects themselves. This makes implenting

certain simulations more complicated such as the Ant problem which assumes that grid squares can have data
about them independant from the cell occupying then.

All colors and states are predefined and hard coded for each cell. Colors, States, Params, and Neighbor
type must all be public static final fields in each cell so that the Grid can instantiate them correctly

The original plan had no Model View Separation (MVC)

Everything was designed in one window

In addition, there was no encapsulation for the neighbors of a cell. Each cell was originallty designed with
an array of neighbors, this has been replaced with a seperate object to contain this data

Changed XML format to only include cells with non-zero states decreasing the file size significantly

Assumptions that Affect the Design

Features Affected by Assumptions

Significant differences from Original Plan

New Features HowTo

Easy to Add Features

Scrolling on the grid

Additional simultion types:

Create a new sublass of Cell with the following information

COLORS

STATES

NEIGHBOR_TYPE (Assumes SurrondNeighbors if not defined)

PARAMS (Assumes empty)

Needs to override calcNextState() method and implement a constructor

Modify update() method if cell needs to move in additon to change color to reflect new state

Update XML Generator to be able to create files for new simluation type

Different grid shapes and layouts

Currently the x and y coordinates are passed to each cell. For hexagonal grid this would be the
same but there would be extra math involved to calculate neighbiors and positions.

Would also need to implement MVC for cells since currently the Java Rectangle class is used in
each cell to display on the screen.

Multithreading to allow each simulation to run on a parallel thread. Drastically increasing efficiency

Step back function in addition to step forward

Would need to cache last n frames as XML state files (stripped down to eliminate simulation
informaton like title/initial config)

Other Features not yet Done

