
Ned IDs:

al510, smw92, xw214, kdk33, tcp90, sc746, eys9, edc39, tdg24

Ken
Co-designer of File Manager package
Bridge between File Manager and Runner subteam

Sophie
Principal Runner View designer

Andy
Principal Runner Controller designer
Co-designer for main and login functionality

Del
Principal Runner Model designer/maintainer
Co-designer of unifying game structure

Shriya
Co-designer for Runner Model
Co-designer for social hub and login screen
Floater to help with different parts of the team

Emily
Principal designer for Builder MVC-loop and flow
Co-designer for login and social hub functionality

Tim
Principal designer for Builder Phase Editor and flow (significant amount of work)
Designed complex custom information entry dialogs
Integrated Parser dynamic validation/entry options API

DESIGN Document for OOGASalad_team01
Ken, Sophie, Andy, Del, Shriya, Emily, Tim, Ted, Alec

Role(s)

Ted
Principal implementer for Runner ChatGPT assistant

Alec
Co-designer/Maintainer of File Manager package
Principal designer of app-wide translation package (i18n) (Is mine)

Make a flexible game maker that can support multiple types card games. The program needs to allow users to
design their own, unique card games in a no-code enviornment. The project is structured to maximize
efficiency and design velocity.

The goal of this application is to design a program that can build a card game which can have rules that are
configurable by a user and can be played by multiple players.

The rules of the game are configurable by the user through a Builder companion program. The user is
able to create conditions to specify requirements for different Stages of each round, turn, and game, such
as checking the number of cards in a players hand at the end of a turn to see if the player has won.

Flexibile Design

This design is very flexible because any number of games can be created and saved as a JSON file.
Builder and Runner are also completely separate from each other and can be run independently of each

other. Allowing games to be previously generated and run at a later time (or saved to the cloud using Firebase
and run on a different computer).

The user can create a large variety of different games by changing the rules and conditions of the game and
which stages are enabled or disabled.

The project is broken into three parts.

Builder

The Builder provides an interface for a user to build and save game files which can be later run. The
interface accomodates multiple language options, a custom casino theme, and dynamic rules,
parameters, and validation schemas.

Parser/File Manager/Translator

Design Goals

High-Level Design

The Parser/File Manager loads and saves games and game templates. It also loads valid paramters,
rules, and conditions for the Builder to offer to users to include in their custom games.

The i18n Translator manages Error message translation and mappings between user representationa and
class resprestation of rules in games for the entire project. It acts as a layer of abstraction to restrict direct
access to the resource files.

Runner

The runner provides an interface for a user to load and play game files. Creating a board and players that
are governed by rules specified in a "game template". The Runner diplays controls that enable the user to
complete allowed rules that have been defined by the builder.

Each of the parts of the game are represented in the Rules Builder as a Stage .

Game - The game stage is the top level stage. It contains the game rules, the players, and the game
controller.
Round - The round stage contains the round rules and a turn
Turn - The turn stage contains the turn rules, and a list of phases
Phase - A phase is a part of a Players turn. The phase stage contains

The player can only move on to the next phase if the current phase is complete. For example, in Gin
Rummy the player cannot discard a card until they have played a valid set or hit onto an existing set.

Phases contain contain PlayerActions which are the actions that the player can take during the
phase.

Phases contain Conditions which are the rules that must be met for the phase to be complete.

Each stage contains Stages:

BeforeActions which is a list of Computer Actions that contains the actions that the computer will
take before a stage.
AfterActions which is a list of Computer Actions that contains the actions that the computer will

take after the stage.

Assumptions or Simplifications

Stages

Computer Actions

Create Group: Creates a new group in the game with the specified tag, view type, and direction.

Check Win Amount: Checks if the player has won based on the specified amount.

Check Win Score: Checks if the player has won based on the specified score. Place Deck: Places a deck in
the specified group tag.

Transfer: Transfers a specified amount from the source tag to the destination tag.

Shuffle: Shuffles the specified group tag.

The Phase Stage contains Player Actions which are actions that a player CAN make during a give
phase.

A player can advance to a new phase once the required conditions have been met for that phase.

PlayerDraw: This action allows the player to draw the first card from a specific source and move it to a specific
destination.

PlayerTransfer: This action allows the player to transfer an item or card from a specific source to a specific
destination.

CreateGroup: This action allows the player to create a group with a given tag, view type, and direction.

Swap: This action allows the player to swap the contents of two different groups identified by their tags.

A condition is a rule that must be met for a phase to be complete. For example, in Gin Rummy, the Draw

phase is complete when the player has drawn a card from the deck or the discard pile.

Group Empty: Checks if a specific group (specified by the group_tag parameter) is empty.

Meld Condition: Checks if a specific group (specified by the group_tag parameter) contains cards that form a

Computer Actions: (For Before or after Stages)

Player Actions

Player Actions:

Conditions

Phase Conditions:

meld (a set of three or more cards of the same rank).

Run Condition: Checks if a specific group (specified by the group_tag parameter) contains cards that form a
run (a sequence of three or more cards of the same suit in consecutive rank order).

Run Or Meld Condition: Checks if a specific group (specified by the group_tag parameter) contains cards that
form either a run or a meld.

Transfer Amount: Checks if a specific amount of cards (specified by the amount parameter) can be
transferred from one group to another.

This is not an exhasustive list of all possible actions or conditions in the game, just some of the most significant
features

We had a number of team meetings in the initial planning phase where we worked out how the game data
would be encoded and transfered from the backend to the frontend. Once we started coding, the Parser team
met with the Builder team to discuss the specific formatting of the objects and the JSON file. However, the
parser team didn't meet with the runner team until later in the week. At that point the Runner team had come
come up with a slightly different implementation of the condition checking than the Builder team was
anticipating. This caused us to have to reconcile the two designs which slowed down the process. Making
sure that everyone is on the same page about implemetnation level details before splitting up into
groups is something that we need to work on

This flux in the rules of a game resulted in a disconnect between the teams and required collaborative efforts to
unify our design decisions:

@Del (Exampleks of changed condition names)

Since the Runner team was unable to solidify their design needs since not all game variations had been
considered. The Parser team had to change the expected definitions required for bulding a complete game and
redesign their API. To support new features, paramters, rules, actions, the Builder and Parser teams worked
together to design a flexible API based on "records"

The structures of the records were closed but the contents were flexible and open to change.

Changes from the Plan

Changing Runner Backend Methods:

Stage Record API:

StageRecord API structure:

 public interface StageRecord<SUBSTAGE extends StageRecord> {

 List<ComputerActionRecord> beforeActions();

 List<ComputerActionRecord> afterActions();

 List<SUBSTAGE> stages();
 }

This interface was implemented by GameRecord , RoundRecord , TurnRecord and extend by
PhaseRecord . It was cemeted early on in the design process as a key interaction between the Builder team

and teh parser team. However, by leaving the content of the these records open and extentible, any number of
before actions, after actions, and stages could be included in a record including ones that had yet to be
inmplemented by the runner

The API is a two way interface between the Builder UI and the Parser. The purpose is to help the Builder
present valid options to the UI and check that the correct paramters (and types) are provided to the builder.

Valid Options API:

/**
 * Fetch all available options for a category
 *
 * @param categoryType category type
 * @return list of available options
 */
List<String> fetchOptions(Category categoryType);

 /**
 * Fetches a list of all required parameters for a particular option
 *
 * @param categoryType category type
 * @param optionName list of required parameters
 * @return list of all required parameter names
 * @throws NonexistentOptionException if the provided option does not exist in the category
 */
 List<String> fetchParametersForOption(Category categoryType, String optionName)
 throws NonexistentOptionException;

 /**
 * Validates if a given option was provided with the correct input type
 *
 * @param optionName option name
 * @param parameters map of values to parameters
 * @throws RuntimeException if the given information is invalid
 */
 void validateOption(Category categoryType, String optionName, Map<String, String> parameters)
 throws RuntimeException;

Add implementation in src/main/java/oogasalad/runner/model/

action/computer/ for new before/after actions (or win conditions)
action/player/ for new player actions (valid moves in a phase)
conditions/ for new end of phase conditions

Add filepath for new condition/action methods to
src/main/resources/oogasalad/file_manager/ParserClasses.properties

Add expected Configuration information in valid_options
Add Translations for Builder and Runner to display for each language in
src/main/resources/oogasalad/file_manager/valid_options

How to Add New Features

Add Runner error messages if necessary in
src/main/resources/oogasalad/runner/languages

Any modification to existing functionality or new features requries no changes to the builder, it will dynamically
load in the data about rules and paramters into the UI and enforce paramter types based on the files in the
valid_options directory. Coding for new rules will only need to be in the runner.

