Geospatial Habitat Assessment Tool "GeoHAT"

John Fay Dean Urban Lydia Olander **Overview**

Q: What is GeoHAT?

A: Broadly speaking...

A prototype for a coherent framework for evaluating sites based on value in ecosystem service provision **Overview**

Q: What is GeoHAT?

A: More precisely...

A map-based tool that evaluates biodiversity support under alternative landscape scenarios

Strengths of GeoHAT

• Uses readily available national scale data

Element Occurrences

Strengths of GeoHAT

• Flexible - can be adapted to different objectives

Workflow

- 1. Define the study area & extract base data
- 2. Create habitat patches
- 3. Calculate patch attributes
 - A. Size/shape
 - B. Spatial context
 - C. Vulnerability
 - D. Biodiversity support
- 4. Apply a decision hierarchy
- 5. View the results

Case study: S. Fork Catawba River

1. Define study area/extract data

- Habitat - Patches
- Resistance surface - Context
- Development threat - Vulnerability

Solar radiation
- Abiotic zipcodes

•

- Topographic convergence - Abiotic zipcodes
- Relative slope position - Abiotic zipcodes

- Soil pH - Abiotic zipcodes
- Percent sand
 Abiotic zipcodes

• Biodiversity support - Context

- Distance from... - Context
- Area within distance
 - Context

2a. Define "Habitat"

2b. Create habitat patches

2c. Create habitat sub-patches

3. Evaluate patches

- A. Size & shape
- B. Spatial context
- C. Vulnerability

D. Biodiversity support

3A. Patch size & shape

- Patch area
- Patch core area (edge = 60m)
- Core:Area ratio
- Shape index

3A. Patch size & shape

3B. Spatial context

- i. Patch position relative to other patches "Connectivity"
- ii. Distance to existing protected areas "Efficiency"

Presumption: closer patches interact more frequently or intensely than distant patches

Least cost paths among patch pairs

Edge list

FromID	ToID	Cost
2	4	434.56
2	5	180
6	8	180
9	14	0
17	20	127.28
18	19	90
18	34	0
18	35	307.28
20	29	974.57
23	26	1018.24
28	55	217.28
28	67	0
29	30	180
31	32	60
34	35	180
35	39	180
36	69	180
36	82	180
40	41	180
40	44	180
41	44	434.56
43	45	0
44	49	180
44	57	180

Threshold = 5 km; Diameter = 20; # Components = 1

Gr	Graph Summary TXT				
	Distance	NComps	Diameter		
	500	744	1614		
	1000	267	14503		
	1500	61	50475		
	2000	16	75907		
	2500	4	82253		
	3000	3	79453		
	3500	2	81836		
	4000	2	81237		
	4500	2	80894		
	5000	2	80219		
	5500	2	79394		
	6000	1	84390		
	6500	4	00764		

• <u>Degree centrality</u>:

patches within connectivity threshold to a given patch

• <u>Betweenness centrality</u>:

Frequency a patch is found in the LCP between other patches

• <u>Closeness centrality</u>:

Avg. distance to neighbors relative to other patches

• <u>Connected area (HA)</u>:

Total patch area within the connectivity threshold (3 km)

• <u>Probably connected area</u>:

Inverse distance weighted area within connectivity threshold (3 km)

3B. Spatial context

3C. Vulnerability

Patch proximity and sensitivity to threats

3D. Biodiversity support

Patch overlap with areas of biological importance

- Known occurrences (EO data)
- Predicted occurrences
 - Distribution models
 - Inhabited "abiotic zipcodes"
- Ecological buffering/support potential
 Diversity of "abiotic zipcodes"

Known biodiversity support

Density of element occurrence observations

Abiotic "zip codes"

For each zip-code:

- Tally the number of element occurrences (count)
- Divide by zip code area (density)
- Rank zip codes from 0 to 5, based on element occurrence density (rank)

Abiotic "zip codes"

EOs/zip code

Density: <u># EOs/zip code</u> zip area Rank: Zip code Rank (1-5)

Zip code patch summaries Fewest 20% - 2 - 3 Most 20% Patch zip code variety Patch mean zip code rank

3D. Biodiversity support

Patch overlap with known species occurrences

Workflow

- 1. Define the study area & extract base data
- 2. Create habitat patches
- 3. Calculate patch attributes
 - A. Size/shape
 - B. Spatial context
 - C. Vulnerability
 - D. Biodiversity support
- 4. Apply a decision hierarchy
- 5. View the results

Multi-attribute synthesis

Scenarios

- I. Favor patch size/shape
- II. Favor patch connectivity
- III. Favor patch biodiversity
- IV. Reduce patch threat

V. Equal importance among all 4

Scenario I

• Favor shape/size

Scenario I

• Favor shape/size

Scenario II

• Favor patch connectivity

Scenario II

• Favor patch connectivity

Scenario III

• Favor patch vulnerability

Scenario III

• Favor patch vulnerability

Scenario IV

• Favor patch biodiversity

Scenario IV

• Favor patch biodiversity

Scenario V

• Equal importance

Scenario comparison

Multi-attribute visualization

Multi-attribute visualization

Biodiversity

Future directions

- Additional habitat patch assessments
 Climate adaptation
- Merge with other assessments
 - Water quality
 - Recreation
- Improve interface and access to tool

Recap

- Easy to assemble
- Room to maneuver:
 - Intragroup weightings (e.g. area vs. shape index)
 - Intergroup weightings (e.g. connectivity vs vulnerability)
- Room to grow: