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Abstract

This paper concerns the uniform inference for nonparametric series estimators in time-series

applications. We develop a strong approximation theory of sample averages of serially depen-

dent random vectors with dimensions growing with the sample size. The strong approximation

is first proved for heterogeneous martingale difference arrays and then extended to general

mixingales via martingale approximation, readily accommodating a majority of applications

in applied econometrics. We use these results to justify the asymptotic validity of a uniform

confidence band for series estimators and show that it can also be used to conduct nonpara-

metric specification test for conditional moment restrictions. The validity of high-dimensional

heteroskedasticity and autocorrelation consistent (HAC) estimators is established for making

feasible inference. The proposed method is broadly useful for forecast evaluation, empirical

microstructure, dynamic stochastic equilibrium models and inference problems based on inter-

section bounds. We demonstrate the empirical relevance of the proposed method by studying

the Mortensen–Pissarides search and matching model for equilibrium unemployment, and shed

new light on the unemployment volatility puzzle from an econometric perspective.
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1 Introduction

Series estimators play a central role in econometric analysis that involves nonparametric compo-

nents. Such problems arise routinely from applied work because the economic intuition of the

guiding economic theory often does not depend on stylized parametric model assumptions. The

simple, but powerful, idea of series estimation is to approximate the unknown function using a

large (asymptotically diverging) number of basis functions. This method is intuitively appealing

and easy to use in various nonparametric and semiparametric settings. In fact, an empirical re-

searcher’s “flexible” parametric specification can often be given a nonparametric interpretation by

invoking properly the series estimation theory.

The inference theory of series estimation is well understood in two broad settings; see, for

example, Andrews (1991a), Newey (1997) and Chen (2007). The first is the semiparametric setting

in which a researcher makes inference about a finite-dimensional parameter and/or a “regular”

finite-dimensional functional of the nonparametric component. In this case, the finite-dimensional

estimator has the parametric n1/2 rate of convergence. The second setting pertains to the inference

of “irregular” functionals of the nonparametric component, with the leading example being the

pointwise inference for the unknown function, where the irregular functional evaluates the function

at a given point. The resulting estimator has a slower nonparametric rate of convergence.

The uniform series inference for the unknown function, on the other hand, is a relatively open

question. Unlike pointwise inference, a uniform inference procedure speaks to the global, instead

of local, properties of the function. It is useful for examining functional features like monotonicity,

convexity, symmetry and, more generally, function-form specifications, which are evidently of great

empirical interest. In spite of its clear relevance, the uniform inference theory for series estimation

appears to be “underdeveloped” in the current literature mainly due to the lack of asymptotic tools

available to the econometrician. Technically speaking, the asymptotic problem at hand involves a

functional convergence that is non-Donsker, which is very different from Donsker-type functional

central limit theorems commonly used in various areas of modern econometrics (Davidson (1994),

van der Vaart and Wellner (1996), White (2001), Jacod and Shiryaev (2003), Jacod and Protter

(2012)).

Recently, Chernozhukov, Lee, and Rosen (2013), Chernozhukov, Chetverikov, and Kato (2014)

and Belloni, Chernozhukov, Chetverikov, and Kato (2015) have made important contributions on

uniform series inference. The innovative idea underlying this line of research is to construct a
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strong Gaussian approximation for the functional series estimator, which elegantly circumvents

the deficiency of the conventional “asymptotic normality” concept (formalized in terms of weak

convergence) in this non-Donsker context. With independent data, the strong approximation for

the functional estimator can be constructed using Yurinskii’s coupling which, roughly speaking,

establishes the asymptotic normality for the sample mean of a “high-dimensional” data vector.1

The uniform series inference theory of Chernozhukov, Lee, and Rosen (2013) and Belloni, Cher-

nozhukov, Chetverikov, and Kato (2015) relies on this type of coupling and, hence, are restricted

to cross-sectional applications with independent data.2

Set against this background, we develop a uniform inference theory for series estimators in

time-series applications. Inspired by Chernozhukov, Lee, and Rosen (2013), our approach is also

based on strong approximation, but with several distinct contributions unique to the time-series

setting. Firstly, we prove a high-dimensional strong approximation (i.e., coupling) theorem in a

general setting that accommodates typical time-series econometric applications. In this effort, we

start with establishing a coupling result for general heterogeneous martingale difference arrays. Al-

though this “baseline” result rules out serial correlation, it is actually useful in many applications

in dynamic stochastic equilibrium (e.g., consumption-based asset pricing) models, in which an in-

formation flow is embedded. Going one step further, we use a martingale approximation technique

to extend the martingale-difference coupling result to general mixingales, which cover most data

generating processes in time-series econometrics as special cases, including martingale differences,

ARMA processes, linear processes, various mixing and near-epoch dependent series. Equipped

with these limit theorems, we establish a uniform inference theory for series estimators, which

is our main econometric contribution. These results can be conveniently used for nonparametri-

cally testing conditional moment equalities and, more generally, hypotheses based on intersection

bounds (Chernozhukov, Lee, and Rosen (2013)). Finally, in order to conduct feasible inference, we

prove the validity of classical Newey–West type HAC estimators for long-run covariance matrices

with growing dimensions.

The proposed theory is broadly useful in many empirical time-series applications. In Section

2, we discuss how to use our method in a battery of prototype examples, along with heuristic

discussions for the underlying econometric theory. This section provides practical guidance for the

formal theory presented in Section 3. The applications are drawn from empirical microstructure,

1In the present paper, we refer to a random vector as high-dimensional if its dimension grows to infinity with the

sample size.
2Yurinksii’s coupling concerns the strong approximation of a high-dimensional vector under the Euclidean dis-

tance. Chernozhukov, Chetverikov, and Kato (2014) establish a strong approximation for the largest entry of a

high-dimensional vector under a more general setting.
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asset pricing and dynamic macroeconomic equilibrium models. As a concrete demonstration,

we apply the proposed method to study the Mortensen–Pissarides search and matching model

(Pissarides (1985), Mortensen and Pissarides (1994), Pissarides (2000)), which is the standard

theory for equilibrium unemployment.

We focus empirically on the unemployment volatility puzzle. In an influential paper, Shimer

(2005) showed that the standard Mortensen–Pissarides model, when calibrated in the conventional

way, generates unemployment volatility that is far lower than the empirical estimate. Various

modifications to the standard model have been proposed to address this puzzle; see Shimer (2004),

Hall (2005), Mortensen and Nagypál (2007), Hall and Milgrom (2008), Pissarides (2009) and

many references in Ljungqvist and Sargent (2017). Hagedorn and Manovskii (2008), on the other

hand, took a different route and showed that the standard model actually can generate high levels

of unemployment volatility using their alternative calibration strategy. The plausibility of this

alternative calibration remains a contentious issue in the literature; see, for example, Hornstein,

Krusell, and Violante (2005), Costain and Reiter (2008), Hall and Milgrom (2008) and Chodorow-

Reich and Karabarbounis (2016).

To shed some light on this debate from an econometric perspective, we derive a conditional

moment restriction from the equilibrium Bellman equations; using the proposed uniform inference

method, we then test whether this restriction holds or not at the parameter values calibrated by

Hagedorn and Manovskii (2008). The test strongly rejects the hypothesis that these calibrated

values are compatible with the equilibrium conditional moment restriction. At the same time, we

find a wide range of parameter values which the test does not reject, and use them to form an

Anderson–Rubin confidence set. We further use this confidence set to impose an “admissibility”

constraint on the parameter space. When the loss minimization in Hagedorn and Manovskii’s

calibration is constrained within this confidence set, the calibrated parameter values are notably

different, both statistically and economically, from the unconstrained benchmark, leaving 26%–

46% of unemployment volatility unexplained in the model. To this extent, the Shimer critique

cannot be simply addressed by Hagedorn and Manovskii’s alternative calibration once we impose

the equilibrium conditional moment restriction. Our findings thus suggest that modifications to the

standard Mortensen–Pissarides model are necessary for a better understanding of the cyclicality

of unemployment.

The present paper is related to several strands of literature. The most closely related is the

literature on series estimation and, more generally, sieve estimation. Early work in this area mainly

focuses on semiparametric inference or pointwise nonparametric inference; see, for example, van de

Geer (1990), Andrews (1991a), Gallant and Souza (1991), Newey (1997), Chen (2007), Chen and
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Pouzo (2012), Chen, Liao, and Sun (2014), Chen and Pouzo (2015), Chen and Christensen (2015),

Hansen (2015) and many references therein. Chernozhukov, Lee, and Rosen (2013), Chernozhukov,

Chetverikov, and Kato (2014), Belloni, Chernozhukov, Chetverikov, and Kato (2015) and Chen and

Christensen (2018) studied uniform inference for independent data. By contrast, our econometric

focus is on the uniform series inference for time-series data.

On the technical side, our strong approximation results for heterogeneous martingale difference

arrays and mixingales are related to the literature on high-dimensional coupling in statistics. The

recent work of Chernozhukov, Lee, and Rosen (2013) and Belloni, Chernozhukov, Chetverikov, and

Kato (2015) rely on Yurinskii’s coupling (Yurinskii (1978)) for independent data. There has been

limited research on high-dimensional coupling in the time-series setting. Zhang and Wu (2017) es-

tablish the strong approximation for the largest entry of a high-dimensional centered vector under

a specific dependence structure based on stationary nonlinear systems (Wu (2005)); Chernozhukov,

Chetverikov, and Kato (2013) show a similar result for mixing sequences. Unlike these papers, we

consider the strong approximation for the entire high-dimensional vector for heterogeneous data

with general forms of dependency (that are commonly used in time-series econometrics), estab-

lish the feasible uniform inference for the nonparametric series estimator and apply the theory

to an important macroeconomic analysis.3 Technically speaking, the martingale-based technique

developed here is very different from the “large-block-small-block” technique employed in both

Chernozhukov, Chetverikov, and Kato (2013) and Zhang and Wu (2017), and it is necessitated

by the distinct dependence structure studied in the present paper. Regarding future research, our

martingale approach is of further importance because it provides a necessary theoretical founda-

tion for a more general theory involving discretized semimartingales that are widely used in the

burgeoning literature of high-frequency econometrics (Aı̈t-Sahalia and Jacod (2014), Jacod and

Protter (2012)).4

For conducting feasible inference, we extend the classical HAC estimation result in economet-

rics (see, e.g., Newey and West (1987), Andrews (1991b), Hansen (1992), de Jong and Davidson

(2000)) to the setting with “large” long-run covariance matrices with growing dimensions. This

result is of independent interest more generally for high-dimensional time-series inference. Zhang

and Wu (2017) studied a “batched mean” estimator of high-dimensional long-run covariance ma-

trices under a dependence structure based on nonlinear system theory. We focus on Newey–West

3The coupling for the largest entry of a high-dimensional vector can also be established in our setting by a

straightforward adaptation of the theory developed here, which is available upon request.
4High-frequency asymptotic theory is mainly based on a version (see, e.g., Theorem IX.7.28 in Jacod and Shiryaev

(2003)) of the martingale difference central limit theorem. The key difficulty for extending our coupling results further

to the high-frequency setting is to accommodate non-ergodicity, which by itself is a very challenging open question.
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type estimators and prove their validity under dependence structures that are commonly used in

econometrics.

Finally, we contribute empirically to the search and matching literature, which is an important

area in macroeconomics; see, for example, Pissarides (1985), Mortensen and Pissarides (1994),

Shimer (2005), Hornstein, Krusell, and Violante (2005), Costain and Reiter (2008), Hagedorn and

Manovskii (2008), Hall and Milgrom (2008), Pissarides (2009), Ljungqvist and Sargent (2017) and

many references therein. Complementary to the standard calibration methodology that dominates

quantitative work in this literature, we demonstrate how to use the proposed uniform inference

method to help “disciplining” the calibration econometrically. Our approach of using Anderson–

Rubin confidence sets for constraining the parameter space in the calibration is a new way of

introducing econometric principles into an otherwise standard “computational experiment” (Kyd-

land and Prescott (1996)). Our empirical findings shed light on the unemployment volatility puzzle

from this new perspective. With this concrete demonstration, we hope to strengthen the message

that modern econometric tools can be fruitfully used to assist quantitative analysis of dynamic

stochastic macroeconomic equilibrium models.

The paper is organized as follows. Section 2 provides a heuristic guidance of our econometric

method in the context of several classical empirical examples. Section 3 represents the formal

econometric theory. The empirical application on equilibrium unemployment is given in Section

4. Section 5 concludes. Technical derivations, including all proofs for our theoretical results, are

in the supplemental appendix of this paper.

Notations. For any real matrix A, we use ‖A‖ and ‖A‖S to denote its Frobenius norm and

spectral norm, respectively. We use a(j) to denote the jth component of a vector a; A(i,j) is

defined similarly for a matrix A. For a random matrix X, ‖X‖p denotes its Lp-norm, that is,

‖X‖p = (E ‖X‖p)1/p.

2 Theoretical heuristics and motivating examples

In this section, we provide a heuristic discussion for our econometric method in the context of

several “prototype” empirical examples. These examples consist of a broad range of macroeconomic

and financial applications, including nonparametric estimation in empirical microstructure and

specification tests based on Euler and Bellman equations in dynamic stochastic equilibrium models.

Section 2.1 provides some background about strong approximation. Sections 2.2 and 2.3 discuss a

battery of potential applications of our econometric method.
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2.1 High-dimensional strong approximation

As discussed in the introduction, the main econometric contribution of the current paper concerns

the uniform inference for series estimators in the time-series setting, for which the key (proba-

bilistic) ingredient is a novel result for high-dimensional strong approximation. The issue of high

dimensionality arises because series estimation involves “many” regressors. In this subsection, we

introduce the notion of strong approximation and position it in the broad econometrics literature.

Consider a sequence Sn of mn-dimensional statistics defined on some probability space. We

stress that the dimension mn is allowed to grow to infinity as n → ∞. A sequence S̃n of random

vectors, defined on the same probability space, is called a strong approximation of Sn if

‖Sn − S̃n‖ = op(δn) (2.1)

for some real sequence δn → 0; we reserve the symbol δn for this role throughout.5 A useful special

case is when the approximating variable S̃n has a Gaussian N (0,Σn) distribution with some

mn×mn covariance matrix Σn, so that (2.1) formalizes a notion of “asymptotic normality” for the

random vector Sn; we refer to Σn as the pre-asymptotic covariance matrix of Sn. By contrast, in a

conventional “textbook” setting with fixed dimension, the asymptotic normality is stated in terms

of convergence in distribution (i.e., weak convergence), which in turn can be deduced by using a

proper central limit theorem (Davidson (1994), White (2001), Jacod and Shiryaev (2003)). The

conventional notion is evidently not applicable when the dimension of Sn also grows asymptotically;

indeed, the limiting variable would have a growing dimension and become a “moving target.”6

An immediate nontrivial theoretical question is whether a strong approximation like (2.1) ac-

tually exists for general data generating processes. In the cross-sectional setting with independent

data, Yurinskii’s coupling (Yurinskii (1978)) provides the strong approximation for sample mo-

ments. Establishing this result requires calculations that are more refined than those used for

obtaining a “usual” central limit theorem for independent data; we refer the reader to Chapter 10

of Pollard (2001) for technical details. In principle, this limit theorem for sample moments can be

extended to more general moment-based inference problems using the insight of Hansen (1982).

5We note that without specifying δn, condition (2.1) is equivalent to ‖Sn − S̃n‖ = op(1). Indeed, a random

real sequence Xn = op(1) if and only if Xn = op(δn) for some real sequence δn → 0, although the convergence of

the latter could be arbitrarily slow. The rate δn is needed explicitly for justifying feasible inference (by relying on

anit-concentration inequalities) in the high-dimensional case.
6Technically speaking, the limit theorem of interest here is non-Donsker. It is therefore fundamentally different

from the strong invariance principle used by Mikusheva (2007), who considers the approximation for a partial sum

process using a Brownian motion. In her case, the limiting law (induced by the Brownian motion) is fixed and the

limit theorem is of Donsker type.
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As a first contribution in this direction, Chernozhukov, Lee, and Rosen (2013) and Belloni, Cher-

nozhukov, Chetverikov, and Kato (2015) develop a uniform inference theory for the series estimator

in the cross-sectional setting using Yurinskii’s coupling and a related extension by Chernozhukov,

Chetverikov, and Kato (2014). In the present paper, we extend Yurinskii’s coupling to a general

setting with dependent data so as to advance this line of econometric research towards time-series

applications.

Before diving into the formal theory (see Section 3), we now proceed to illustrate the proposed

econometric method in some classical empirical examples that emerge from various areas of em-

pirical economics. Our goal is to provide some intuition underlying the theoretical construct in

concrete empirical contexts so as to guide practical application.

2.2 Uniform inference for series estimators

The main focus of our econometric analysis is on the uniform inference for nonparametric series

estimators constructed using dependent data. Uniform inference is useful in many cross-sectional

problems; see Andrews (1991a) and Belloni, Chernozhukov, Chetverikov, and Kato (2015) for many

references. In this subsection, we provide examples for time-series applications so as to motivate

directly our new theory.

Consider a nonparametric time-series regression model:

Yt = h(Xt) + ut, E [ut|Xt] = 0, (2.2)

where the unknown function h(·) is the quantity of econometric interest and the data series

(Xt, Yt)1≤t≤n is generally serially dependent. We aim to make inference about the entire function

h(·) without relying on specific parametric assumptions. More precisely, the goal is to construct a

confidence band [L̂n(x), Ûn(x)] such that the uniform coverage probability

P
(
L̂n(x) ≤ h (x) ≤ Ûn(x) for all x ∈ X

)
(2.3)

converges to a desired nominal level (say, 95%) in large samples.

A case in point is the relationship between volume (Y ) and volatility (X) for financial assets.7

Since the seminal work of Clark (1973), a large literature has emerged for documenting and ex-

plaining the positive relationship between volume and volatility in asset markets; see, for example,

Tauchen and Pitts (1983), Karpoff (1987), Gallant, Rossi, and Tauchen (1992), Andersen (1996),

7The price volatility is not directly observed. A standard approach in the recent literature is to use high-frequency

realized volatility measures as a proxy.
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Bollerslev, Li, and Xue (2018) and references therein. Stylized microstructure models imply vari-

ous specific functional relation between the expected volume and volatility (see, e.g., Kyle (1985),

Kim and Verrecchia (1991), Kandel and Pearson (1995)). Gallant, Rossi, and Tauchen (1993)

propose a nonparametric method for computing nonlinear impulse responses, which is adopted by

Tauchen, Zhang, and Liu (1996) for studying the nonparametric volume–volatility relationship.

The series estimator ĥn(·) of h (·) is formed simply as the best linear prediction of Yt given

a growing number mn of basis functions of Xt, collected by P (Xt) ≡ (p1(Xt), . . . , pmn (Xt))
>.

More precisely, we set ĥn(x) ≡ P (x)> b̂n, where b̂n is the least-square coefficient obtained from

regressing Yt on P (Xt), that is,

b̂n ≡

(
n∑
t=1

P (Xt)P (Xt)
>

)−1( n∑
t=1

P (Xt)Yt

)
. (2.4)

Unlike the standard least-square problem with fixed dimension, the dimension of b̂n grows asymp-

totically, which poses the key challenge for making uniform inference on the h (·) function.

This issue can be addressed by using the strong approximation device. The intuition is as

follows. Let b∗n denote the “population” analogue of b̂n such that h(x)− P (x)>b∗n is close to zero

uniformly in x as mn →∞; such an approximation is justified by numerical approximation theory.8

The sampling error of b̂n is measured by

Sn = n1/2(b̂n − b∗n).

Based on the strong approximation for the sample average of P (Xt)ut, we can construct a strong

Gaussian approximation S̃n for Sn such that S̃n ∼ N (0,Σn). Since ĥn(x) = P (x)>b̂n, the standard

error of ĥn(x) is σn(x) = (P (x)>ΣnP (x))1/2. We can further show that the standard error

function σn(·) can be estimated “sufficiently well” by a sample-analogue estimator σ̂n(·), which

generally involves a high-dimensional HAC estimator (see Section 3.3).

Taken together, these results eventually permit a strong approximation for the t-statistic pro-

cess indexed by x:

n1/2
(
ĥn (x)− h (x)

)
σ̂n(x)

=
P (x)> S̃n
σn(x)

+Op(δn), (2.5)

which is directly useful for feasible inference. The above coupling result shows clearly that the

sampling variability of the t-statistics at various x’s is driven by the high-dimensional Gaussian

vector S̃n but with different loadings (i.e., P (x) /σn(x)). Importantly, (2.5) depicts the asymptotic

8We remind the reader that the “true” parameter b∗n depends on n because its dimension (i.e., mn) grows

asymptotically; see Assumption 6(i) for the formal definition of b∗n.
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behavior of ĥ (x) jointly across all x’s and, hence, provides the theoretical foundation for conducting

uniform inference. The resulting econometric procedure is very easy to implement. It differs from a

textbook linear regression only in the computation of critical values, which is detailed in Algorithm

1 in Section 3.4.

The nonparametric regression (2.2) can be easily modified to accommodate partially param-

eterized models, which is a notable advantage of series estimators compared with kernel-based

alternatives; see Andrews (1991a) for a comprehensive discussion. We briefly discuss an important

empirical example as a further motivation. Engle and Ng (1993) study the estimation of the news

impact curve, which depicts the relation between volatility and lagged price shocks. Classical

GARCH-type models (e.g., Engle (1982), Bollerslev (1986), Nelson (1991), etc.) typically imply

specific parametric forms for the news impact curve. In order to “allow the data to reveal the

curve directly (p. 1763),” Engle and Ng (1993) estimate a partially linear model of the form

Yt = aYt−1 + h (Xt−1) + ut,

where Yt is the volatility, Xt−1 is the price shock and the function h (·) is the news impact curve.

While the curve h(·) is left fully nonparametric, this regression is partially parameterized in lagged

volatility (via the term aYt−1) as a parsimonious control for self-driven volatility dynamics. To

estimate h (·), we regress Yt on Yt−1 and P (Xt−1) and obtain their least-square estimates ân and

b̂n, respectively. The nonparametric estimator for h (·) is then ĥn(·) = P (·)> b̂n. The uniform

inference for h(·) can be done in the same way as in the fully nonparametric case.

2.3 Nonparametric specification tests for conditional moment restrictions

The uniform confidence band (recall (2.3)) can also be used conveniently for testing conditional mo-

ment restrictions against nonparametric alternatives. To fix idea, consider a test for the following

conditional moment restriction

E [g (Y ∗t , γ0) |Xt] = 0, (2.6)

where g (·, ·) is a known function, Y ∗t is a vector of observed endogenous variables, Xt is a vector

of observed state variables and γ0 is a finite-dimensional parameter. To simplify the discussion,

we assume for the moment that the test is performed with respect to a known parameter γ0, and

will return to the case with unknown γ0 at the end of this subsection.

To implement the test, we cast (2.6) as a nonparametric regression in the form of (2.2) by

setting Yt = g (Y ∗t , γ0), h (x) = E [Yt|Xt = x] and ut = Yt − h (Xt). Testing the conditional

moment restriction (2.6) is then equivalent to testing whether the regression function h (·) is
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identically zero. The formal test can be carried out by checking whether the “zero function” is

covered by the uniform confidence band, that is,

L̂n (x) ≤ 0 ≤ Ûn (x) for all x ∈ X . (2.7)

This procedure is in spirit analogous to the t-test used most commonly in applied work and it can

reveal directly where (in terms of x) the conditional moment restriction is violated.

Conditional moment restrictions are prevalent in dynamic stochastic equilibrium models. A

leading example is from consumption-based asset pricing (see, e.g., Section 13.3 of Ljungqvist and

Sargent (2012)), for which we set (with Y ∗t = (Ct, Ct+1, Rt+1))

g (Y ∗t , γ0) =
δu′ (Ct+1)

u′ (Ct)
Rt+1,

where Rt+1 is the excess return of an asset, Ct is the consumption, δ is the discount rate and u′ (·)
is the marginal utility function parameterized by γ. The variable Xt includes (Rt, Ct) and possibly

other observed state variables.

The conditional moment restriction in the asset pricing example above, like in many other

cases, is derived as the Euler equation in a dynamic program. More generally, it is also possible

to derive conditional moment restrictions from a system of Bellman equations. Our empirical

application (see Section 4) on the search and matching model for equilibrium unemployment is of

this type. To avoid repetition, we refer the reader to Section 4 for details.

Finally, we return to the issue with unknown γ0. In this case, γ0 should be replaced by an

estimated or, perhaps more commonly in macroeconomic applications, a calibrated value γ̂n.9 The

feasible version of the test is then carried out using Yt = g(Y ∗t , γ̂n). As we shall show theoretically

in Section 3.5, the estimation/calibration error in γ̂n is asymptotically negligible under empirically

plausible conditions. The intuition is straightforward: since γ0 is finite-dimensional, its estima-

tion/calibration error vanishes at a (fast) parametric rate, which is dominated by the sampling

variability in the nonparametric inference with a (slow) nonparametric rate of convergence. Sim-

ply put, when implementing the nonparametric test, which is relatively noisy, one can treat γ̂n

effectively as γ0 with negligible asymptotic consequences. This type of negligibility is not only

practically convenient, but often necessary in macroeconomic applications for justifying formally

the “post-calibration” inference. Indeed, the calibration may be done by following “consensus

estimates” or is based on summary statistics provided in other papers (which themselves may rely

on data sources that are not publicly available); in such cases, the limited statistical information

9We refer the reader to the comprehensive review of Dawkins, Srinivasan, and Whalley (2001) for discussions

about estimation and calibration.
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from the calibration is insufficient for the econometrician to formally account for its sampling

variability via standard sequential inference technique (e.g., Section 6 of Newey and McFadden

(1994)). Our nonparametric test is, at least asymptotically, immune to this issue and, hence, pro-

vides a convenient but econometrically formal inference tool in this important type of empirical

applications.

3 Main theoretical results

This section contains our theoretical results. Section 3.1 and Section 3.2 present the strong approx-

imation theorems for heterogeneous martingale differences and mixingales, respectively. Section

3.3 establishes the validity of classical HAC estimators in the high-dimensional setting. The uni-

form inference theory for series estimators is presented in Section 3.4. Section 3.5 provides further

results on how to use this uniform inference theory for testing conditional moment restrictions.

3.1 Strong approximation for martingale difference arrays

In this subsection, we present the strong approximation result for heterogeneous martingale dif-

ference arrays. This result serves as our first step for extending Yurinskii’s coupling, which is

applicable for independent data, towards a general setting with serial dependency and hetero-

geneity. Although the martingale difference is uncorrelated, it can accommodate general forms of

dependence through high-order conditional moments. This result will be extended to mixingales

in Section 3.2, below.10

Fix a probability space (Ω,F ,P). We consider an mn-dimensional square-integrable martingale

difference array (Xn,t)1≤t≤kn,n≥1 with respect to a filtration (Fn,t)1≤t≤kn,n≥1, where kn → ∞ as

n → ∞. That is, Xn,t is Fn,t-measurable with finite second moment and E [Xn,t|Fn,t−1] = 0. Let

Vn,t ≡ E
[
Xn,tX

>
n,t|Fn,t−1

]
denote the conditional covariance matrix of Xn,t and set

Σn,t ≡
t∑

s=1

E [Vn,s] .

In typical applications, kn = n is the sample size and Xn,t = k
−1/2
n Xt represents a normalized

version of the series Xt; the order of magnitude of Vn,t is then k−1
n . For simplicity, we denote

Σn ≡ Σn,kn in the sequel.

10More generally, the martingale-difference coupling developed here may be extended to the setting with discretized

semimartingales (see, e.g., Jacod and Protter (2012) and Aı̈t-Sahalia and Jacod (2014)) that are routinely used in

high-frequency econometrics.
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Our goal is to construct a strong Gaussian approximation for the statistic

Sn ≡
kn∑
t=1

Xn,t.

In the conventional setting with fixed dimension, the classical martingale difference central limit

theorem (see, e.g., Theorem 3.2 in Hall and Heyde (1980)) implies that

Sn
d−→ N (0,Σ) , (3.1)

where Σ = limn→∞Σn. In the present paper, however, we are mainly interested in the case with

mn →∞. We aim to construct a coupling sequence S̃n ∼ N (0,Σn) such that ‖Sn− S̃n‖ = Op (δn)

for some δn → 0. The following assumption is needed.

Assumption 1. Suppose (i) the eigenvalues of knE [Vn,t] are uniformly bounded from below and

from above by some fixed positive constants; (ii) uniformly for any sequence hn of integers that

satisfies hn ≤ kn and hn/kn → 1, ∥∥∥∥∥
hn∑
t=1

Vn,t − Σn,hn

∥∥∥∥∥
S

= Op(rn). (3.2)

where rn is a real sequence such that rn = o(1).

Condition (i) of Assumption 1 states that the random vector Xn,t is non-degenerate. Condition

(ii) is somewhat non-standard and needs further discussion. When hn = kn, (3.2) requires the

conditional covariance of the martingale Sn (i.e.,
∑kn

t=1 Vn,t) to be close to the pre-asymptotic

covariance matrix Σn. This condition would be easily verified by appealing to a law of large

numbers in conventional settings with fixed dimensions, but this argument needs to be adapted

slightly to accommodate the growing dimension in the present setting. More generally, we require

(3.2) holds for any hn that is bounded by and is close to kn. This requirement typically does

not complicate the verification of condition (3.2), but it is needed in our proof which relies on a

stopping time technique on large matrices for constructing the coupling variable S̃n. This technical

complication arises because the conditional covariance Vn,t is generally stochastic in the time-series

setting, whereas it would be nonrandom for independent data.

Assumption 1 is easy to verify under primitive conditions, with condition (ii) being the rela-

tively nontrivial part. For concreteness, we illustrate how to verify condition (ii) in the following

proposition. The primitive conditions mainly require that the volatility Vn,t is weakly dependent,

here formalized in terms of strong and uniform mixing coefficients.
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Proposition 1. Suppose (i) Vn,t = vt/kn for some process (vt)t≥0 taking values in Rmn⊗mn such

that supt,j,l ‖v
(j,l)
t ‖q ≤ c̄2

n for some constant q ≥ 2 and some real sequence c̄n; either (ii) q > 2 and

vt is strong mixing with mixing coefficient αk satisfying
∑kn

k=1 α
1−2/q
k < ∞, or (iii) q = 2 and vt

is uniform mixing with mixing coefficient φk satisfying
∑kn

k=1 φ
1/2
k < ∞. Then, uniformly for all

sequence hn that satisfies hn ≤ kn,∥∥∥∥∥
hn∑
t=1

(Vn,t − E [Vn,t])

∥∥∥∥∥
2

= O(rn), for rn ≡ c̄2
nmnk

−1/2
n . (3.3)

Consequently, condition (ii) of Assumption 1 holds provided that rn = o(1).

Comment. The sequence c̄n bounds the magnitude of the k
1/2
n Xn,t array. It is instructive to

illustrate the “typical” magnitude of c̄n in the context of series estimation, where Xn,t is the score

process given by Xn,t = utP (Xt)k
−1/2
n . We have c̄n = O(1) if P (·) collects splines or trigonometric

polynomials and c̄n = O(m
1/2
n ) if P (·) consists of power series or Legendre polynomials. In these

two cases, rn = o(1) is implied by mn � k
1/2
n and mn � k

1/4
n , respectively.

We are now ready to state the strong approximation result for martingale difference arrays.

Theorem 1. Under Assumption 1, there exists a sequence S̃n of mn-dimensional random vectors

with distribution N (0,Σn) such that∥∥∥Sn − S̃n∥∥∥ = Op(m
1/2
n r1/2

n + (Bnmn)1/3), (3.4)

where Bn ≡
∑kn

t=1 E[‖Xn,t‖3].

Theorem 1 extends Yurinskii’s coupling towards general heterogeneous martingale difference ar-

rays. In order to highlight the difference between these results, we describe briefly the construction

underlying Theorem 1. Our proof consists of two steps. The first step is to construct another mar-

tingale S∗n whose conditional covariance matrix is exactly Σn such that ‖Sn − S∗n‖ = Op(m
1/2
n r

1/2
n ).

This approximation step is not needed in the conventional setting with independent data, because

in the latter case the conditional covariance process Vn,t is nonrandom. In order to construct S∗n,

we introduce a stopping time defined as the “hitting time (under the matrix partial order)” of the

predictable covariation process
∑t

s=1 Vn,s at the covariance matrix Σn. Condition (3.2) is used to

establish an asymptotic lower bound for this stopping time, which in turn is needed for bounding

the approximation error between S∗n and Sn. In the second step, we establish a strong approxima-

tion for S∗n. Since the conditional covariance matrix of S∗n is engineered to be exactly Σn (which is

nonrandom), we can use a version of Lindeberg’s method and Strassens’ theorem for establishing

the strong approximation.
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The strong approximation rate in (3.4) can be simplified under additional (mild) assumptions.

Corollary 1, below, provides a pedagogical example of this kind. We remind the reader that

the typical order of each component of the (normalized) variable Xn,t is k
−1/2
n and, hence, it is

reasonable to assume that its fourth moment is of order k−2
n .

Corollary 1. Under the same setting as Theorem 1, if supt,j E[(X
(j)
n,t )

4] = O
(
k−2
n

)
holds in addi-

tion, then Bn = O(k
−1/2
n m

3/2
n ). Consequently, ‖Sn − S̃n‖ = Op(m

1/2
n r

1/2
n +m

5/6
n k

−1/6
n ).

Comment. This corollary suggests that mn � k
1/5
n is needed for the validity of the strong

approximation. The dimension mn thus cannot grow too fast relative to the sample size kn.

3.2 Strong approximation for mixingales via high-dimensional martingale ap-

proximation

Theorem 1 is apparently restrictive for time-series applications since martingale differences are

serially uncorrelated. In this subsection, we extend the coupling result above towards mixingale

processes via martingale approximation. Mixingales form a quite general class of models, includ-

ing martingale differences, linear processes and various types of mixing and near-epoch dependent

processes as special cases, and naturally allow for data heterogeneity; see, for example, Davidson

(1994) for a comprehensive review.11 The coupling result developed here thus readily accommo-

dates most applications in macroeconomics and finance.

We now turn to the formal setup. Consider an mn-dimensional Lq-mixingale array (Xn,t) with

respect to a filtration (Fn,t) that satisfies the following conditions: for 1 ≤ j ≤ mn and k ≥ 0,∥∥∥E[X
(j)
n,t |Fn,t−k]

∥∥∥
q
≤ cn,tψk,

∥∥∥X(j)
n,t − E[X

(j)
n,t |Fn,t+k]

∥∥∥
q
≤ cn,tψk+1, (3.5)

where the constants cn,t and ψk control the magnitude and the dependence of the Xn,t variables,

respectively. We maintain the following assumption, where c̄n depicts the magnitude of k
1/2
n Xn,t

(recall the comment following Proposition 1).

Assumption 2. The array (Xn,t) satisfies (3.5) for some q ≥ 3. Moreover, for some positive

sequence c̄n, supt |cn,t| ≤ c̄nk
−1/2
n = O(1) and

∑
k≥0 ψk <∞.

Assumption 2 allows us to approximate the partial sum of the mixingaleXn,t using a martingale.

More precisely, we can represent

Xn,t = X∗n,t + X̃n,t − X̃n,t+1 (3.6)

11It is well known that linear processes and mixing processes are special cases of mixingales. Under certain

conditions, near-epoch dependent arrays also form mixingales; see, for example, Theorem 17.5 of Davidson (1994).

More generally, it may be possible to extend the martingale-difference coupling result to an even larger class of data

generating processes than the mixingale class, provided that a martingale approximation result is available.
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where X∗n,t ≡
∑∞

s=−∞ {E [Xn,t+s|Fn,t]− E [Xn,t+s|Fn,t−1]} forms a martingale difference and the

“residual” variable X̃n,t satisfies supj,t ‖X̃
(j)
n,t‖2 = O(c̄nk

−1/2
n ).12 This representation further permits

an approximation of Sn via the martingale S∗n =
∑kn

t=1X
∗
n,t, that is,

‖Sn − S∗n‖2 =
∥∥∥X̃n,1 − X̃n,kn+1

∥∥∥
2

= O(c̄nm
1/2
n k−1/2

n ). (3.7)

In the typical case with c̄n = O(1), the approximation error in (3.7) is negligible as soon as the

dimension mn grows at a slower rate than kn. Consequently, a strong approximation for the

martingale S∗n (as described in Theorem 1) is also a strong approximation for Sn.

Theorem 2 formalizes this result under a high-level condition (see condition (ii) below) regarding

the approximating martigale difference array X∗n,t. In Supplemental Appendix S.B.1, we illustrate

how to verify this high-level condition with concrete examples.

Theorem 2. Suppose (i) Assumption 2 holds; (ii) Assumption 1 is satisfied for the martingale

difference array X∗n,t; and (iii) the largest eigenvalue of Σn is bounded. Then there exists a sequence

S̃n of mn-dimensional random vectors with distribution N (0,Σn) such that∥∥∥Sn − S̃n∥∥∥ = Op(c̄nm
1/2
n k−1/2

n ) +Op(m
1/2
n r1/2

n + (B∗nmn)1/3) +Op(c̄nmnk
−1/2
n + c̄2

nm
3/2
n k−1

n ), (3.8)

where Σn = V ar(Sn) and B∗n =
∑kn

t=1 E[‖X∗n,t‖3].

Comments. (i) There are three types of approximation errors underlying this strong approx-

imation result. The first Op(c̄nm
1/2
n k

−1/2
n ) component is due to the martingale approximation.

The second term arises from the approximation of the martingale S∗n using a centered Gaussian

variable S̃∗n with covariance matrix Σ∗n ≡ E[S∗nS
∗>
n ]. The magnitude of this error is characterized

by Theorem 1 as Op(m
1/2
n r

1/2
n + (B∗nmn)1/3). The third error component measures the distance

between the two coupling variables S̃∗n and S̃n, and is of order Op(c̄nmnk
−1/2
n + c̄2

nm
3/2
n k−1

n ).

(ii) It is instructive to simplify the rate in (3.8) in a “typical” setting with c̄n = O(1) and

mnk
−1
n = O(1). Corollary 1 suggests that B∗n = O(k

−1/2
n m

3/2
n ). We then deduce∥∥∥Sn − S̃n∥∥∥ = Op(m

1/2
n r1/2

n +m5/6
n k−1/6

n ) +Op(mnk
−1/2
n ). (3.9)

Since the validity of the strong approximation requires mn � k
1/5
n , mnk

−1/2
n = o(m

5/6
n k

−1/6
n ). We

can thus simplify the error bound as ‖Sn− S̃n‖ = Op(m
1/2
n r

1/2
n +m

5/6
n k

−1/6
n ), which coincides with

the rate shown in Theorem 1. In this sense, our generalization of the strong approximation result

from martingale differences towards mixingales typically leads to no additional cost in terms of

convergence rate.

12See Lemma A3 in the supplemental appendix for technical details about this approximation.

16



The strong approximation results established in Theorems 1 and 2 are mainly used in the

current paper for establishing a uniform inference theory for series estimators. That noted, these

results are also useful in other econometric settings. One case in point is the “reality check” of

White (2000) for testing superior performance of competing models; also see Romano and Wolf

(2005), Hansen (2005) and Hansen, Lunde, and Nason (2011) for refinements and extensions. The

asymptotic properties of such tests rely on the asymptotic normality of the sample average of a

loss differential vector that summarizes the relative performance of competing models. While the

existing theory in aforementioned work has been developed for a fixed number of models, practical

applications often involve “many” models. Indeed, White (2000) suggested (p. 1111) that this

feature could be captured by letting the number of models (i.e., mn) grow with the sample size.

The strong approximation result developed here may be used to address the technical complication

due to the growing dimension. But we do not pursue such results formally so as to remain focused

on series inference.

3.3 High-dimensional HAC estimation

In this subsection, we establish the asymptotic validity of a class of HAC estimators for the covari-

ance matrix Σn which is needed for conducting feasible inference. Compared with the conventional

setting on HAC estimation (see, e.g., Hannan (1970), Newey and West (1987), Andrews (1991b),

Hansen (1992), de Jong and Davidson (2000), etc.), the main difference in our analysis is to allow

the dimension mn to diverge asymptotically. Moreover, in the current setting, feasible inference

requires not only the consistency of the HAC estimator, but also a characterization of its rate of

convergence (see Theorem 5(b)).

We study standard Newey–West type estimators. For each s ∈ {0, . . . , kn − 1}, define the

sample covariance matrix at lag s, denoted Γ̃X,n (s), as

Γ̃X,n(s) ≡
kn−s∑
t=1

Xn,tX
>
n,t+s (3.10)

and further set Γ̃X,n (−s) = Γ̃X,n (s)>. The HAC estimator for Σn is then defined as

Σ̃n ≡
kn−1∑

s=−kn+1

K (s/Mn) Γ̃X,n(s) (3.11)

where K (·) is a kernel smoothing function and Mn is a bandwidth parameter that satisfies Mn →∞
as n→∞. The kernel function satisfies the following standard assumption.
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Assumption 3. (i) K (·) is bounded, Lebesgue-integrable, symmetric and continuous at zero with

K (0) = 1; (ii) for some constants C ∈ R and r1 ∈ (0,∞], limx→0(1−K(x))/ |x|r1 = C.13

In order to analyze the limit behavior of Γ̃X,n(s) under general forms of serial dependence, we

assume that the demeaned components of Xn,tX
>
n,t+j also behave like mixingales (recall (3.5)).

More precisely, we maintain the following assumption that can be easily verified under more prim-

itive conditions.

Assumption 4. We have Assumption 2. Moreover, (i) for any n > 0, any t and any j, E [Xn,t] = 0

and E [Xn,tXn,t+j ] only depends on n and j; (ii) for all j ≥ 0 and s ≥ 0,

sup
t

max
1≤l,k≤mn

∥∥∥E [X(l)
n,tX

(k)
n,t+j

∣∣∣Fn,t−s]− E
[
X

(l)
n,tX

(k)
n,t+j

]∥∥∥
2
≤ c̄2

nk
−1
n ψs;

(iii) supt max1≤l,k≤mn

∥∥∥X(k)
n,tX

(l)
n,t+j

∥∥∥
2
≤ c̄2

nk
−1
n for all j ≥ 0; (iv) sups≥0 sψ

2
s <∞ and

∑∞
s=0 s

r2ψs <

∞ for some r2 > 0.

In this assumption, condition (i) imposes covariance stationarity on the array Xn,t mainly for

the sake of expositional simplicity. Condition (ii) extends the mixingale property from Xn,t to the

centered version of Xn,tX
>
n,t+j .

14 Conditions (iii) reflects that the scale of k
1/2
n Xn,t is bounded by

c̄n. Condition (iv) specifies the level of weak dependence. The rate of convergence of the HAC

estimator is given by the following theorem.

Theorem 3. Under Assumptions 3 and 4, ‖Σ̃n − Σn‖ = Op(c̄
2
nmn(Mnk

−1/2
n +M−r1∧r2n )).

Comment. Theorem 3 provides an upper bound for the convergence rate of the HAC estimator. It

is interesting to note that, in the conventional setting with fixed mn and c̄n = O(1), the convergence

rate is simply Op(Mnk
−1/2
n + M−r1∧r2n ). In this special case, Σ̃n is a consistent estimator under

the conditions Mnk
−1/2
n = o(1) and Mn →∞, which are weaker than the requirement imposed by

Newey and West (1987), Hansen (1992) and De Jong (2000). With mn diverging to infinity, the

convergence rate slows down by a factor mn.

In many applications, we need to form the HAC estimator using “generated variables” that

rely on some (possibly nonparametric) preliminary estimator. For example, specification tests

13This condition holds for many commonly used kernel functions. For example, it holds with (C, r1) = (0,∞) for

the truncated kernel, (C, r1) = (1, 1) for the Bartlett kernel, (C, r1) = (6, 2) for the Parzen kernel, (C, r1) = (π2/4, 2)

for the Tukey-Hanning kernel and (C, r1) = (1.41, 2) for the quadratic spectral kernel. See Andrews (1991b) for

more details about these kernel functions.
14Generally speaking, the mixingale coefficient for Xn,tX

>
n,t+j may be different from that of Xn,t. Here, we assume

that they share the same coefficient ψs so as to simplify the technical exposition.
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described in Section 2.3 involve estimating/calibrating a finite-dimensional parameter in the struc-

tural model. In nonparametric series estimation problems, the HAC estimator is constructed using

residuals from the nonparametric regression. We now proceed to extend Theorem 3 to accommo-

date generated variables.

We formalize the setup as follows. In most applications, the true (latent) variable Xn,t has the

form

Xn,t = k−1/2
n g(Zt, θ0),

where Zt is observed and g(z, θ) is a measurable function known up to a parameter θ. The

unknown parameter θ0 may be finite or infinite dimensional and can be estimated by θ̂n. We use

X̂n,t = k
−1/2
n g(Zt, θ̂n) as a proxy for Xn,t. The feasible versions of (3.10) and (3.11) are then given

by

Γ̂X,n(s) ≡
kn−s∑
t=1

X̂n,tX̂
>
n,t+s, Γ̂X,n(−s) = Γ̂X,n(s), 0 ≤ s ≤ kn − 1,

and Σ̂n ≡
∑kn−1

s=−kn+1K (s/Mn) Γ̂X,n(s), respectively.

Theorem 4, below, characterizes the convergence rate of the feasible HAC estimator Σ̂n when

θ̂n is “sufficiently close” to the true value θ0; the latter condition is formalized as follows.

Assumption 5. (i) k−1
n

∑kn
t=1 ‖g(Zt, θ̂n) − g(Zt, θ0)‖2 = Op(δ

2
θ,n) where δθ,n = o(1) is a positive

sequence; (ii) maxt ‖g(Zt, θ0)‖2 = O(m
1/2
n ).

Assumption 5(i) is a high-level condition that embodies two types of regularities: the smooth-

ness of g(·) with respect to θ and the convergence rate of the preliminary estimator θ̂n. Quite

commonly, g(·) is stochastically Lipschitz in θ and δθ,n equals the convergence rate of θ̂n. Sharper

primitive conditions might be tailored in more specific applications. Assumption 5(ii) states that

the mn-dimensional vector is of size O(m
1/2
n ) in L2-norm, which holds trivially in most applications.

Theorem 4. Under Assumptions 3, 4 and 5, we have∥∥∥Σ̂n − Σn

∥∥∥ = Op

(
c̄2
nmn(Mnk

−1/2
n +M−r1∧r2n )

)
+Op

(
Mnm

1/2
n δθ,n

)
. (3.12)

Comments. (i) The estimation error shown in (3.12) contains two components. The first term

accounts for the estimation error in the infeasible estimator Σ̃n and the second Op(Mnm
1/2
n δθ,n)

term is due to the difference between the feasible and the infeasible estimators. If the infeasible

estimator is consistent, the feasible one is also consistent provided that Mnm
1/2
n δθ,n = o(1).

(ii) The error bound in (3.12) can be further simplified when θ is finite-dimensional. In this

case, one usually has δθ,n = k
−1/2
n . It is then easy to see that the second error component in
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(3.12) is dominated by the first. Simply put, the “plug-in” error resulted from using a parametric

preliminary estimator θ̂n is negligible compared to the intrinsic sampling variability that is present

even in the infeasible case with known θ0. When θ is infinite-dimensional, δθ,n converges to zero

at a rate slower than k
−1/2
n , and both error terms are potentially relevant.

3.4 Uniform inference for nonparametric series regressions

In this subsection, we apply the limit theorems above to develop an asymptotic theory for con-

ducting uniform inference based on series estimation. We describe the implementation details for

the procedure outlined in Section 2.2 and show its asymptotic validity.

Consider the following nonparametric regression model: for 1 ≤ t ≤ n,

Yt = h (Xt) + ut (3.13)

where h (·) is the unknown function to be estimated, Xt is a random vector that may include

lagged Yt’s, and ut is an error term that satisfies

E [ut|Xt] = 0. (3.14)

Dynamic stochastic equilibrium models often imply a stronger restriction

E [ut|Ft−1] = 0, (3.15)

where the information flow Ft−1 is a σ-field generated by {Xs, us−1}s≤t and possibly other variables.

As described in Section 2.2, the series estimator of h (x) is given by ĥn(x) ≡ P (x)> b̂n, where P (·)
collects the basis functions and b̂n is the least-square coefficient obtained by regressing Yt on P (Xt);

recall (2.4).

We need some notations for characterizing the sampling variability of the functional estimator

ĥn(·). The pre-asymptotic covariance matrix for b̂n is given by Σn ≡ Q−1
n AnQ

−1
n , where

Qn ≡ n−1
n∑
t=1

E
[
P (Xt)P (Xt)

>
]
, An ≡ V ar

[
n−1/2

n∑
t=1

utP (Xt)

]
.

The pre-asymptotic standard error of n1/2(ĥn (x)− h (x)) is thus

σn (x) ≡
(
P (x)>ΣnP (x)

)1/2
.

To conduct feasible inference, we need to estimate σn(x), which amounts to estimating Qn and

An. The Qn matrix can be estimated by

Q̂n ≡ n−1
n∑
t=1

P (Xt)P (Xt)
>.
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For the estimation ofAn, we consider two scenarios. The first scenario is when ut forms a martingale

difference sequence, that is, (3.15) holds. In this case, An = n−1
∑n

t=1 E
[
u2
tP (Xt)P (Xt)

>] and it

can be estimated by

Ân ≡ n−1
n∑
t=1

û2
tP (Xt)P (Xt)

>, where ût = Yt − ĥn(Xt). (3.16)

In the second scenario, we suppose only the mean independence assumption (3.14), so An is

generally a long-run covariance matrix. We use a HAC estimator for An as described in Section

3.3. We set

Γ̂n(s) ≡ n−1
n−s∑
t=1

ûtût+sP (Xt)P (Xt+s)
>, Γ̂n(−s) = Γ̂n (s)> ,

and estimate An using

Ân ≡ n−1
n−1∑

s=−n+1

K (s/Mn) Γ̂n(s). (3.17)

With Σ̂n ≡ Q̂−1
n ÂnQ̂

−1
n , the estimator of σn (x) is given by

σ̂n (x) ≡
(
P (x)> Σ̂nP (x)

)1/2
.

Under some regularity conditions, we shall show (see Theorem 5) that the “sup-t” statistic

T̂n ≡ sup
x∈X

∣∣∣∣∣∣
n1/2

(
ĥn(x)− h(x)

)
σ̂n(x)

∣∣∣∣∣∣ ,
can be (strongly) approximated by

T̃n ≡ sup
x∈X

∣∣∣∣∣P (x)>S̃n
σn (x)

∣∣∣∣∣ , S̃n ∼ N (0,Σn) .

For α ∈ (0, 1), the 1 − α quantile of T̃n can be used to approximate that of T̂n. We can use

Monte Carlo simulation to estimate the quantiles of T̃n, and then use them as critical values to

construct uniform confidence bands for the function h (·). Algorithm 1, below, summarizes the

implementation details.

Algorithm 1 (Uniform confidence band construction)

Step 1. Draw mn -dimensional standard normal vectors ξn repeatedly and compute

T̃ ∗n ≡ sup
x∈X

∣∣∣∣∣P (x)>Σ̂
1/2
n ξn

σ̂n (x)

∣∣∣∣∣ .
Step 2. Set cvn,α as the 1− α quantile of T̃ ∗n in the simulated sample.
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Step 3. Report L̂n(x) = ĥn(x) − cvn,ασ̂n(x) and Ûn(x) = ĥn(x) + cvn,ασ̂n(x) as the (1− α)-level

uniform confience band for h (·). �

We are now ready to present the asymptotic theory that justifies the validity of the confidence

band described in the algorithm above. To streamline the discussion, we collect the key ingredients

of the theorem in the following high-level assumption. These conditions are either standard in the

series estimation literature or can be verified using the limit theorems that we have developed in

the previous subsections. Below, we denote ζLn ≡ supx1,x2∈X ‖P (x1)− P (x2)‖ / ‖x1 − x2‖.

Assumption 6. For each j = 1, . . . , 4, let δj,n = o(1) be a positive sequence. Suppose: (i) log(ζLn ) =

O(log(mn)) and there exists a sequence (b∗n)n≥1 of mn-dimensional constant vectors such that

sup
x∈X

(
1 + ‖P (x)‖−1

)
n1/2

∣∣∣h(x)− P (x)>b∗n

∣∣∣ = O(δ1,n);

(ii) the eigenvalues of Qn and An are bounded from above and away from zero; (iii) the sequence

n−1/2
∑n

t=1 P (Xt)ut admits a strong approximation Ñn ∼ N (0, An) such that∥∥∥∥∥n−1/2
n∑
t=1

P (Xt)ut − Ñn

∥∥∥∥∥ = Op (δ2,n) ;

(iv) ‖Q̂n −Qn‖ = Op(δ3,n); (v) ‖Ân −An‖ = Op(δ4,n).

A few remarks on Assumption 6 are in order. Conditions (i) and (ii) are fairly standard in

series estimation; see, for example, Andrews (1991a), Newey (1997), Chen (2007) and Belloni,

Chernozhukov, Chetverikov, and Kato (2015). In particular, condition (i) specifies the precision

for approximating the unknown function h (·) via basis functions, for which comprehensive results

are available from numerical approximation theory. The strong approximation in condition (iii) can

be verified by using Theorem 2 in general and, if ut is a martingale difference sequence (i.e., (3.15)

holds), it suffices to apply Theorem 1 to the martingale difference array Xn,t = n−1/2P (Xt)ut.

Conditions (iv) and (v) pertain to the convergence rates of Q̂n and Ân. Theorem 4 can be used to

provide the rate for Ân. The convergence rate for Q̂n can be derived in a similar (actually simpler)

fashion.15

The asymptotic validity of the uniform confidence band [L̂n(·), Ûn (·)] is justified by the follow-

ing theorem.

Theorem 5. The following statements hold under Assumption 6:

15Primitive conditions for Assumption 6 are provided and justified in Supplemental Appendix S.B.2.
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(a) the sup-t statistic T̂n admits a strong approximation, that is, T̂n = T̃n +Op(δn) for

δn = δ1,n + δ2,n +m1/2
n (δ3,n + δ4,n);

(b) if δn(logmn)1/2 = o(1) holds in addition, the uniform confidence band described in Algo-

rithm 1 has asymptotic level 1− α:

P
(
L̂n(x) ≤ h(x) ≤ Ûn(x) for all x ∈ X

)
→ 1− α.

3.5 Specification test for conditional moment restrictions

In this subsection, we provide a formal discussion on the specification test outlined in Section 2.3.

Recall that our econometric interest is to test conditional moment restrictions of the form

E [g(Y ∗t , γ0)|Xt] = 0, (3.18)

where g (·) is a known function and γ0 is a finite-dimensional parameter from a parameter space

Υ ⊆ Rd. As discussed in Section 2.3, when γ0 is known, we can cast the testing problem as a

nonparametric regression by setting

Yt = g(Y ∗t , γ0), h(x) = E [Yt|Xt = x] and ut = Yt − E [Yt|Xt] . (3.19)

The test for (3.18) can then be carried out by examining whether the uniform confidence bound

[L̂n(x), Ûn(x)] covers the zero function (recall (2.7)).

This testing strategy is inspired by Chernozhukov, Lee, and Rosen (2013). These authors

conduct inference for intersection bounds using the uniform inference theory for series estimators,

including the inference for conditional moment inequalities as a special case. Although we restrict

attention to conditional moment equalities, our technical results for the strong approximation

of the t-statistic process (i.e., n1/2(ĥn(·) − h(·))/σ̂n(·)) and the standard error estimator σ̂n(·)
can actually be used to verify the key high-level conditions in Chernozhukov, Lee, and Rosen

(2013) and, hence, to extend their method to time-series applications (see Supplemental Appendix

S.B.3 for the formal result).16 Like Chernozhukov, Lee, and Rosen (2013), our nonparametric

16The “main and preferred approach (p. 690)” of Chernozhukov, Lee, and Rosen (2013) is given by their Theorem

2, which relies on Conditions C.1–C.4 in that paper. These authors show (Lemma 5) that these high-level conditions

are implied by Condition NS in the context of series estimation. To extend their result to the time-series setting, we

only need to verify Condition NS(i)(a) and NS(ii) in that paper. The former concerns the strong approximation of

the t-statistic process and the latter is on the convergence rate of the covariance matrix estimator. Both conditions

can be verified under Assumption 7 below (see Proposition B3 in the supplemental appendix of the current paper

for technical details).
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test is similar in spirit to the test of Hardle and Mammen (1993). This method is distinct from

Bierens-type tests (see, e.g., Bierens (1982) and Bierens and Ploberger (1997)) that are based on

transforming the conditional moment restriction into unconditional ones using instruments. These

two approaches are complementary with their own merits; see Chernozhukov, Lee, and Rosen

(2013) for further discussions.

The situation becomes somewhat more complicated when γ0 is unknown, but a “proxy” γ̂n

is available; this proxy may be estimated by a conventional econometric procedure (e.g., Hansen

(1982)) or calibrated from a computational experiment (Kydland and Prescott (1996)). For flex-

ibility, we intentionally remain agnostic about how γ̂n is constructed; in fact, we do not even

assume that γ0 is identified from the conditional moment restriction (3.18) which we aim to test.

This setup is particularly relevant when γ̂n is calibrated using a different data set (e.g., micro-level

data) and/or based on an auxiliary economic model.17

Equipped with γ̂n, we can implement the econometric procedure described in Section 3.4,

except that we take Yt as the “generated” variable g (Y ∗t , γ̂n). More precisely, we set

b̂n =

(
n−1

n∑
t=1

P (Xt)P (Xt)
>

)−1(
n−1

n∑
t=1

P (Xt) g (Y ∗t ; γ̂n)

)
,

ĥn(x) = P (x)> b̂n, ût = g (Y ∗t , γ̂n)− ĥn(Xt) and then define σ̂n(x) similarly as in Section 3.4. As

alluded to previously (see Section 2.3), we aim to provide sufficient conditions such that replacing

γ0 with γ̂n leads to negligible errors. The intuition is that the parametric proxy error in γ̂n tends to

be asymptotically dominated by the “statistical noise” in the nonparametric test.18 We formalize

this intuition with a few assumptions.

Assumption 7. Conditions (i)-(iv) of Assumption 6 hold with h(x) = E[g(Y ∗t , γ0)|Xt = x] and

ut = g(Y ∗t , γ0)−h(Xt), condition (v) of Assumption 6 holds for Ân defined using ût = g(Y ∗t , γ̂n)−
ĥn(Xt), and δn(logmn)1/2 = o(1).

Assumption 7 allows us to cast the testing problem into the nonparametric regression setting

of Section 3.4. These conditions can be verified in the same way as discussed above. However,

this assumption is not enough for our analysis because condition (iii) pertains only to the strong

17It might be possible to refine the finite-sample performance of this “plug-in” procedure if additional structure

about γ̂n is available. We aim to establish a general approach for a broad range of applications, leaving specific

refinements for future research.
18While this “negligibility” intuition may be plausible for our nonparametric test (at least asymptotically), it is

not valid for Bierens-type tests for which it is necessary to account for the sampling variability in the preliminary

estimator γ̂n. Therefore, when γ̂n is calibrated with limited statistical information to the econometrician, it is

unclear how to formally justify Bierens-type tests.
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approximation of the infeasible estimator defined using g (Y ∗t , γ0) as the dependent variable. For

this reason, we need some additional regularity conditions for closing the gap between the infeasible

estimator and the feasible one. Below, we use gγ (·) and gγγ (·) to denote the first and the second

partial derivatives of g (y, γ) with respect to γ, and we set

Gn ≡ n−1
n∑
t=1

E
[
P (Xt)gγ(Y ∗t , γ0)>

]
, H(x) ≡ E [gγ(Y ∗t , γ0)|Xt = x] .

Assumption 8. Suppose (i) for any y, g(y, γ) is twice continuously differentiable with respect to

γ; (ii) there exists a positive sequence δ5,n such that δ5,n(logmn)1/2 = o(1) and

n−1
n∑
t=1

P (Xt)gγ(Y ∗t , γ0)> −Gn = Op(δ5,n);

(iii) for some constant ρ > 0 and mn×d matrix-valued sequence φ∗n, supx∈X
∥∥P (x)>φ∗n −H(x)

∥∥ =

O(m−ρn ); (iv) supγ∈Υ n
−1
∑n

t=1 ‖gγγ(Y ∗t , γ)‖2 = Op(1), supx∈X ‖H(x)‖ < ∞ and E[‖gγ(Y ∗t , γ0)‖2]

is bounded; (v) max1≤k≤mn supx∈X |pk(x)| ≤ ζn for a non-decreasing positive sequence ζn =

O(m
ρ−1/2
n ); (vi) γ̂n− γ0 = Op(n

−1/2); (vii) supx∈X ‖P (x)‖−1 = o((logmn)−1/2) and ζnmnn
−1/2 =

o(1).

Conditions (i)–(v) of Assumption 8 jointly impose a type of (stochastic) smoothness for the

moment functions with respect to γ. These conditions are useful for controlling the effect of the

estimation error in γ̂n on ĥn(·). Condition (vi) states that γ̂n is a n1/2-consistent estimator for γ0,

which is natural because the latter is finite-dimensional. Condition (vii) mainly reflects the fact

that the standard error σn(·) of the nonparametric estimator is divergent due to the moderately

growing number of series terms.

As a practical guide, we summarize the implementation details for the specification test in the

following algorithm, followed by its theoretical justification.

Algorithm 2 (Specification Test of Conditional Moment Restrictions)

Step 1. Implement Algorithm 1 with Yt = g(Y ∗t , γ̂n) and obtain the sup-t statistic T̂n and the

critical value cvn,α.

Step 2. Reject the null hypothesis (3.18) at significance level α if T̂n > cvn,α. �

Theorem 6. Suppose that Assumptions 7 and 8 hold. Then under the null hypothesis (3.18),

the test described in Algorithm 2 has asymptotic level α. Under the alternative hypothesis that

E [g(Y ∗t , γ0)|Xt = x] 6= 0 for some x ∈ X , the test rejects with probability approaching one.
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4 Empirical application on a search and matching model

4.1 The model and the equilibrium conditional moment restriction

The Mortensen–Pissarides search and matching model (Pissarides (1985), Mortensen and Pis-

sarides (1994), Pissarides (2000)) has become the standard theory of equilibrium unemployment.

This model has helped economists understand how regulation and economic policies affect un-

employment, job vacancies, and wages. However, in an influential work, Shimer (2005) reports

that the standard Mortensen–Pissarides model calibrated in the conventional way cannot explain

the large volatility in unemployment observed in the data, that is, the unemployment volatility

puzzle (Pissarides (2009)). A large literature has emerged to address this puzzle by modifying

the standard model. For example, Shimer (2004) and Hall (2005) first introduce sticky wages;

Hall and Milgrom (2008) replace the standard Nash model of bargaining with an alternating offer

bargaining model and Mortensen and Nagypál (2007) further consider separation shocks in this

setting; Gertler and Trigari (2009) model sticky wage via staggered multiperiod wage contracting.

Pissarides (2009) emphasizes the distinction between wage stickiness in continuing jobs and that

in new matches and instead proposes a model with fixed matching cost. Ljungqvist and Sar-

gent (2017) provide additional references and identify the common channel of these reconfigured

matching models using the concept of fundamental surplus fraction.

Hagedorn and Manovskii (2008), henceforth HM, take a different route to confront the Shimer

critique. They demonstrate that the standard model actually can generate a high level of volatility

in unemployment if the parameters are calibrated using their alternative calibration strategy. The

key outcome of their calibration is a high value of nonmarket activity (i.e., opportunity cost of

employment) that is very close to the level of productivity. Consequently, the fundamental surplus

fraction is low (Ljungqvist and Sargent (2017)), resulting in a large elasticity of market tightness

with respect to productivity that in turn greatly improves the standard model’s capacity for

generating unemployment volatility. To the extent that this alternative calibration is plausible,

the Shimer critique to the standard model is less of a concern.

Several authors have argued that HM’s calibrated value of the nonmarket activity is implausibly

large according to certain calibration metrics. For example, Hall and Milgrom (2008) state that

HM’s calibrated value of the nonmarket return would imply too high an elasticity of labor supply.

Costain and Reiter (2008), cited by Pissarides (2009), argue that HM’s calibration would imply an

effect of the unemployment insurance policy much higher than their empirical estimates. These

arguments are of course economically sound in principle, but the actual quantitative statements

invariably rely on additional economic or econometric assumptions, bringing in new quantities that
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can be equally difficult to calibrate or to estimate.19 To appreciate how complex the calibration

of this single parameter can be, we cite the recent comprehensive study of Chodorow-Reich and

Karabarbounis (2016). To measure the nonmarket return, these authors resort to a broad range

of data sources, including the Current Population Survey, the Survey of Income and Program

Participation, Interval Revenue Service Public Use Files, the Consumer Expenditure Survey, the

Panel Study of Income Dynamics, and National Income and Product Accounts data. Chodorow-

Reich and Karabarbounis (2016) find that, depending on the specific auxiliary assumptions on the

utility function, the value of nonmarket activity can range from 0.47 to 0.96; in particular, this

range contains HM’s calibrated value of 0.955. How to calibrate the value of this parameter (among

many other parameters) still appears to be a contentious issue in the literature; see Hornstein,

Krusell, and Violante (2005) for a review.

We aim to shed some light on this debate. Rather than resorting to some “external” target

like in aforementioned calibration exercises, we rely on a conditional moment restriction that

arises “internally” from the equilibrium Bellman equations.20 We then test it using the proposed

nonparametric test as described in Subsection 3.5. Constructively, by forming an Anderson–Rubin

confidence set, we explore the extent to which this equilibrium conditional moment restriction

restricts a calibrated model’s capacity for generating unemployment volatility. We stress from the

outset that, our approach should be considered as a complement, instead of a substitute, to the

conventional paradigm for evaluating calibrated models. Given the complexity of the empirical

problem of interest, we believe that the new econometric perspective offered here is a useful addition

to empirical macroeconomists’ toolbox.

We now turn to the details. For the purpose at hand, we restate HM’s version of the standard

Mortensen–Pissarides model with aggregate uncertainty. Time is discrete. There is a unit measure

of infinitely lived workers and a continuum of infinitely lived firms. The workers maximize their

expected lifetime utility and the firms maximize their expected profit. Workers and firms share

19More precisely, Hall and Milgrom (2008) rely on a specific utility function calibrated using additional data. In a

comprehensive study, Chodorow-Reich and Karabarbounis (2016) show that the calibration of the nonmarket return

is sensitive to the choice of utility function; see Section IV.E in that paper. Costain and Reiter (2008) rely on

econometric estimates of the effect of unemployment insurance benefit. This estimation problem itself is empirically

difficult and controversial as explained in Section 4 of Costain and Reiter (2008); see also the response of Hagedorn

and Manovskii (2008), p. 1703.
20We use the word “internal” in two literal senses. First, our test can be performed without making additional

economic assumptions (e.g., the form of utility function as needed in Hall and Milgrom (2008)). Second, we do not use

additional data (e.g., the impact of unemployment insurance across countries as used by Costain and Reiter (2008)).

In fact, we only use data on productivity and labor market tightness, which are shared among all quantitative

research in this area.
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the same discount factor δ. The only source of aggregate shock is the labor productivity pt (i.e.,

the output per each unit of labor), which follows a Gaussian AR(1) model in log level:

log pt+1 = ρ log pt + εt, εt ∼ N
(
0, σ2

ε

)
.

Workers can either be unemployed or employed. An unemployed worker gets flow utility z from

nonmarket activity and searches for a job. As alluded to above, the value of nonmarket activity

z is the key parameter of interest, because it determines the fundamental surplus fraction in the

standard model (Ljungqvist and Sargent (2017)). Firms attract workers by maintaining an open

vacancy at flow cost cp, where the subscript p indicates that cp is a function of productivity. HM

parameterize the vacancy cost cp as

cp ≡ cKp+ cW pξ, (4.1)

where cK and cW are the steady-state capital cost and labor cost for posting vacancies, respectively,

and ξ is the wage-productivity elasticity.

Let ut denote the unemployment rate and vt the number of vacancies. The number of new

matches is given by the matching function

m (ut, vt) =
utvt(

ult + vlt
)1/l ,

for some matching parameter l > 0; den Haan, Ramey, and Watson (2000) provide motivations for

using this matching function (see their footnote 6). The key quantity in the search and matching

model is the market tightness θt ≡ vt/ut. The job finding rate and the vacancy filling rate are

given by, respectively,

f (θt) ≡
m (ut, vt)

ut
=

θt(
1 + θlt

)1/l , q (θt) ≡
m (ut, vt)

vt
=

1(
1 + θlt

)1/l .
Matched firms and workers separate exogenously with probability s per period. There is free entry

of firms, which drives the expected present value of an open vacancy to zero. Matched firms and

workers split the surplus according to the generalized Nash bargaining solution. The workers’

bargaining power is β ∈ (0, 1).

We now describe the equilibrium of this model and derive from it a conditional moment restric-

tion on observed data. Denote the firm’s value of a job by J , the firm’s value of an unfilled vacancy

by V , the worker’s value of having a job by W , the worker’s value of being unemployed by U and

the wage by w; these quantities are functions of the state variable in equilibrium. Following the

convention of macroeconomics, for a generic variable X, let Ep[Xp′ ] denote the one-period ahead
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conditional expectation of X given the current productivity p. The equilibrium is characterized

by the following Bellman equations:

Jp = p− wp + δ (1− s)Ep
[
Jp′
]

(4.2)

Vp = −cp + δq (θp)Ep
[
Jp′
]

(4.3)

Up = z + δ
{
f (θp)Ep

[
Wp′

]
+ (1− f (θp)Ep

[
Up′
]
)
}

(4.4)

Wp = wp + δ
{

(1− s)Ep
[
Wp′

]
+ sEp

[
Up′
]}
. (4.5)

In addition, free entry implies

Vp = 0, (4.6)

and Nash bargaining implies

Jp = (Wp − Up) (1− β)/β. (4.7)

From equations (4.2)–(4.7), we can solve the functions Jp, Vp, Up, Wp and wp in terms of θp, and

then reduce this system of equations to the following functional equation for θp (see Supplemental

Appendix S.B.4 for details):

δq (θp)Ep

[
(1− β)

(
p′ − z

)
− βθp′cp′ + (1− s)

cp′

q
(
θp′
)]− cp = 0. (4.8)

In standard calibration analysis, one can solve θp from this equation, and then calibrate parameters

by matching certain model-implied quantities (e.g., the average market tightness, the job finding

rate, etc.) with their empirical counterparts.

From an econometric viewpoint, we consider (4.8) alternatively as a conditional moment re-

striction on observed data. Replacing p and θ with their observed time series yields

δq (θt)Et
[
(1− β) (pt+1 − z)− βθt+1ct+1 + (1− s) ct+1

q (θt+1)

]
− ct = 0, (4.9)

where we write ct in place of cpt (recall (4.1)) and use Et to denote the conditional expectation given

the time-t information.21 For our discussion below, it is convenient to rewrite (4.9) equivalently as

Et [ζt+1 − z] = 0, (4.10)

where the variable ζt+1 does not depend on z and is defined as

ζt+1 ≡ pt+1 −
βθt+1ct+1

1− β
+

(1− s) ct+1

(1− β) q (θt+1)
− ct

(1− β) δq (θt)
. (4.11)

Below, we refer to (4.10) as the equilibrium conditional moment restriction and conduct formal

econometric inference based on it.
21Since the state process is Markovian, the time-t information set is spanned by pt, that is, Et [ · ] = E [ · |pt].
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4.2 Testing results for the benchmark calibration

We start with testing whether the equilibrium conditional moment restriction (4.9) holds or not

at the benchmark parameter values calibrated by HM, which are summarized in Table 1.22 It is

instructive to briefly recall HM’s calibration strategy. The calibration involves two stages. In the

first stage, the parameters δ, s, ρ, σε, c
K , cW and ξ are calibrated by matching certain empirical

quantities. These parameters are then fixed. The second stage pins down the three remaining

key parameters of the model: the value of nonmarket activity z, the workers’ bargaining power

parameter β and the matching parameter l. These parameters are jointly determined by matching

model-implied wage-productivity elasticity, average job finding rate and average market tightness

with their empirical estimates.23

The second stage involving the nonmarket return and the bargaining parameter is the “more

contentious” part of the calibration (see Hornstein, Krusell, and Violante (2005), p. 37). For this

reason, we structure our investigation using the same two-stage architecture as HM; that is, we

fix the first-stage parameters at their calibrated values, and intentionally focus on how the key

parameters (z, β, l) interact with the equilibrium conditional moment restriction. Doing so allows

us to speak directly to the core of the debate on the unemployment volatility puzzle. We are

interested especially in the value of nonmarket activity z because it is the sole determinant of the

fundamental surplus fraction in the standard Mortensen–Pissarides model with Nash bargaining

(Ljungqvist and Sargent (2017)). For the sake of comparison, we use exactly the same data from

1951 to 2004 as in HM’s analysis, where pt and θt are measured using their cyclical component

obtained from the Hodrick–Prescott filter with smoothing parameter 1600.24

The calibration described in Table 1 was conducted at the weekly frequency. Since our econo-

metric inference is based on quarterly data, we need to adjust (δ, s, q (·)) accordingly to the quar-

22Table 1 reproduces Table 2 in Hagedorn and Manovskii (2008) except that we write σε = 0.0034 instead of

σ2
ε = 0.0034. The latter appears to be a typo, in view of the discussion in the first paragraph on p. 1695 in

Hagedorn and Manovskii (2008) and their Fortran code that is available online. We also include the information

for the calibrated vacancy cost function cp = cKp+ cW pξ as described in Section III.B of Hagedorn and Manovskii

(2008).
23In Section II.A of Hagedorn and Manovskii (2008), the authors state that the matching parameter l is chosen

to fit the weekly average job finding rate 0.139. In Section III.C, the authors further mention that the nonmarket

return z and the bargaining parameter β are chosen to fit the average labor market tightness 0.634 and the wage-

productivity elasticity 0.449. In their numerical implementation, these three parameters are calibrated jointly by

minimizing the sum of squared relative biases (normalized by the target values) in the wage-productivity elasticity,

the average job finding rate and the average labor market tightness; see the subroutine “func” in their Fortran code

that is available at the publisher’s website.
24The data is obtained from the publisher’s website. For brevity, we refer the reader to Hagedorn and Manovskii

(2008) for additional information about the data.
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Table 1: Calibrated Parameter Values at Weekly Frequency

Parameter Definition Value

z Value of nonmarket activity 0.955

β Workers’ bargaining power 0.052

l Matching parameter 0.407

cK Capital costs of posting vacancies 0.474

cW Labor costs of posting vacancies 0.110

ξ Wage elasticity 0.449

δ Discount rate 0.991/12

s Separation rate 0.0081

ρ Persistence of productivity shocks 0.9895

σε Standard deviation of innovations in productivity 0.0034

terly frequency (i.e., 12 weeks). We set δ = 0.99. At the monthly frequency, HM estimate the job

finding rate and the separation rate to be f = 0.45 and s̃ = 0.026, respectively, which imply a

quarterly separation rate s = 0.047 in the current discrete-time model.25 The vacancy filling rate

function q (·) at the quarterly frequency can be adjusted from its weekly counterpart as

q (θ) = 1−

(
1− 1

(1 + θl)
1/l

)12

.

25During each month, an employed worker may be separated (not separated) from the current job, denoted S

(NS), and a job seeker may find (not find) a job, denoted F (NF). We compute the quarterly separation rate s as

the probability of being unemployed at the end of a quarter conditional on being employed at the beginning of the

quarter. This event contains four paths: (S,F,S), (S,NF,NF), (NS,S,NF) and (NS,NS,S). Summing the probabilities

along these paths, we obtain s = s̃
[
fs̃+ (1− f)2

]
+(1− s̃) [s̃ (1− f) + (1− s̃) s̃] ≈ 0.047. This quarterly adjustment

results in a lower value than that from a “simple” adjustment 0.026 × 3 ≈ 0.078. The latter is higher because it

ignores the nontrivial possibility that the worker’s employment status can switch multiple times within a quarter at

the 0.45 monthly job finding rate. If this higher separation rate were used in our analysis, ζt+1 would be smaller and

the equilibrium moment restriction would “demand” unambiguously a lower level of nonmarket return, which in turn

would generate a lower level of unemployment volatility. Hence, using the “simple” adjustment would not change

qualitatively (indeed would strengthen quantitatively) our main finding on the unemployment volatility puzzle.
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Figure 1: Nonparametric test for the conditional moment restriction under the calibration of

Hagedorn and Manovskii (2008). We plot the scatter of the residual of the equilibrium conditional

moment restriction ζt+1 − z versus the productivity pt, the nonparametric fit (solid) and the 95%

uniform two-sided confidence band (dashed). The series estimator (solid) is computed using a

cubic polynomial and the standard error is computed under the martingale difference assumption

implied by the conditional moment restriction.

With these adjustments, we test whether the equilibrium conditional moment restriction (4.10)

holds or not using the nonparametric test described in Algorithm 2 (see Section 3.5).

Figure 1 shows the scatter of the residual ζt+1 − z in the moment condition (4.10) versus the

conditioning variable pt. Under the equilibrium conditional moment restriction, ζt+1 − z should

be centered around zero conditional on each level of pt and there should be no correlation pattern

between these variables. By contrast, we see from the figure that the scatter of ζt+1−z is centered

below zero, suggesting that the value of nonmarket activity z is too high given the other calibrated

parameters. We also see a mildly positive relationship between the residual and the productivity.26

26Compared with the relatively wide uniform confidence band, the positive relation between the residual ζt+1 − z
and pt is not very salient in Figure 1. That being said, this pattern alludes to the economically important notion

that the value of nonmarket activity may be procyclical. Indeed, the upward sloping pattern would be conveniently

“absorbed” by allowing z to be an increasing affine function of the productivity. Using detailed microdata and

administrative or national accounts data, Chodorow-Reich and Karabarbounis (2016) provide direct evidence that z

is procyclical and its elasticity with respect to productivity is close to one, suggesting an approximately affine rela-
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Figure 2: Empirical relationship between the value of nonmarket activity (z) and workers’ bar-

gaining power (β) implied by the unconditional moment restriction.

These patterns are more clearly revealed by the nonparametric fit of E[ζt+1 − z|pt], displayed as

the solid line. The uniform confidence band of the conditional moment function does not overlap

with zero for a wide range of productivity levels, indicating a strong rejection (with the p-value

being virtually zero) of the equilibrium conditional moment restriction given the parameter values

in the benchmark calibration.

As clearly shown by Figure 1, the conditional moment function E[ζt+1 − z|pt] would be closer

to zero if a lower value of z were used; recall that the variable ζt+1 does not depend on z. Varying

the other parameters may serve the same purpose. In order to gain some further insight, we look

at a specific implication of (4.10): taking an unconditional expectation on (4.10) yields

z = E [ζt+1] . (4.12)

Therefore, given the other parameters, this condition may be used to uniquely determine the value

of nonmarket activity z, for which the expectation in (4.12) can be estimated by a simple sample

average. Figure 2 plots the point estimate of z as a function of the bargaining parameter β for

various levels of the matching parameter l. We see that the estimated value of nonmarket activity

tionship between these variables. These authors also show that the procyclicality of z implies far less unemployment

volatility in leading models of the labor market than that observed in the data.
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is higher when the bargaining parameter β is lower and/or the matching parameter l is higher.

Interestingly, increasing the matching parameter beyond 0.407 has very small effect, as illustrated

by the “limiting” case with l = 100. Consistent with the testing result depicted in Figure 1,

Figure 2 shows that the calibrated value of z = 0.955 (asterisk) is too high relative to the moment

condition (4.12). This is true even in the limiting case with a very large value of l. The only way

to obtain a 0.955 estimate for z is to change workers’ bargaining power to an even lower value.

4.3 Confidence sets of admissible parameter values

We have found that the equilibrium conditional moment restriction (4.10) is rejected at the pa-

rameter values in the benchmark calibration. We now ask a more constructive question: which

parameter values, if there are any, are compatible with the equilibrium conditional moment re-

striction (4.10)? The formal econometric answer to this question is given by the Anderson–Rubin

confidence set for (z, β, l) obtained by inverting the nonparametric specification test. We remind

the reader that, parallel to HM’s calibration strategy, we keep the “first-stage” parameters fixed

at their calibrated values and focus on the three key parameters (z, β, l).

The (1 − α)-level Anderson–Rubin confidence set is constructed as follows. For each value of

(z, β, l), we implement the nonparametric specification test for the conditional moment restriction

(4.10) and include it in the confidence set if the test does not reject at the α significance level; the

tests are implemented in the same way as depicted by Figure 1. To simplify the discussion, we refer

to each element in the confidence set as being admissible. Intuitively, this confidence set embodies

the econometric constraint on the parameter space implied by the equilibrium moment condition

(4.10) through the lens of our test, in the sense that an admissible parameter vector satisfies this

constraint statistically. As is standard in econometrics, we implement the test inversion by using

a grid search: we consider z ∈ [0.01, 0.99], β ∈ [0.01, 0.2] and l ∈ [0.3, 0.5] and discretize these

intervals with mesh size 0.001, resulting in roughly 38 million grid points in total.27

Figure 3 shows the three-dimensional 95%-level confidence set for (z, β, l). The domain of each

plot is the same as that used in the grid search. An obvious, but important, observation is that

the confidence set is far away from empty.28 In other words, the equilibrium conditional moment

27In this exercise, we maintain the same numerical precision for the parameters as reported in the text of Hagedorn

and Manovskii (2008). Due to the computational cost, we do not consider “large” bargaining parameters or matching

parameters for the following reasons. From Figure 2, we see that increasing the matching parameter has minimal

effect on the equilibrium moment condition. In addition, taking large values of β would lead to lower admissible

values of the nonmarket return z, which in turn will result in lower levels of unemployment volatility. Therefore,

whether these (large) parameter values are included or not does not affect our main empirical findings concerning

the unemployment volatility puzzle.
28An empty confidence set would imply a rejection of the economic model for all parameter values under consid-
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Figure 3: Anderson–Rubin confidence sets (95% level) for (z, β, l).

restriction is compatible with the data for a wide range of parameter values and, to this extent, is

not overly restrictive.

We now compare HM’s calibrated parameter values with those in the confidence set. To simplify

the visual inspection, we plot in Figure 4 a two-dimensional slice of the 95% confidence set (light

colored area) on the (z, β) plane sectioned at l = 0.407, which is the value of the matching

parameter calibrated by HM; we also plot the 90%-level confidence set (dark colored area) for

comparison. HM’s calibrated values z = 0.955 and β = 0.052 (asterisk) appear to be “close” to

the confidence sets. Indeed, adjusting (z, β) downwards to, say (0.935, 0.052), would result in a

“borderline” admissible parameter value on the boundary of the 95% confidence set. However, we

stress that this difference is actually economically large. As HM show analytically, the tightness-

productivity elasticity is proportional to p/ (p− z), that is, the inverse of the fundamental surplus

fraction studied more generally by Ljungqvist and Sargent (2017). Varying z from 0.955 to 0.935

would increase the fundamental surplus fraction from 0.045 to 0.065 and subsequently reduce the

tightness-productivity elasticity by roughly 30%. Therefore, this seemingly small difference in z

would suppress nontrivially the model’s capacity for generating volatilities in market tightness and

eration. This logic is also commonly used for specification tests in settings with weak or partial identification; see,

for example, Stock and Wright (2000), Andrews and Soares (2010), among others.
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Figure 4: Two-dimensional illustration of Anderson–Rubin confidence set and constrained calibra-

tion. We plot 90% and 95% confidence sets for (z, β) obtained as slices of the corresponding three-

dimensional Anderson–Rubin confidence sets sectioned at l = 0.407. Hagedorn and Manovskii’s

(2008) calibrated value is plotted for comparison, which is obtained by minimizing the loss function

defined as the root mean square relative error for matching average tightness, wage-productivity

elasticity and average job finding rate. The dashed line is an indifference curve induced by this loss

function that is tangent to the 95% confidence set; the indifference curve is constructed from the

numerical solutions of the equilibrium Bellman equations. The tangent point (z, β) = (0.922, 0.075)

depicts the solution to the constrained calibration (with l fixed at 0.407 in this illustration).
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unemployment. In view of how “thin” the confidence sets in Figure 4 are in the z-dimension, this

difference is also statistically highly significant, which is expected given the testing result depicted

by Figure 1.

Our intention is not to suggest that the parameter values of (z, β) in the confidence sets are

“better” than those calibrated by HM, because it would be difficult to make such a claim due to

the lack of a “consensus” set of calibration targets. After all, HM’s calibration is designed to match

three important economic targets exactly, so any other choices of parameters ought to do worse in

these dimensions, and vice versa. However, we do assert, based on formal econometric evidence,

that the equilibrium moment condition (4.10) is violated at these parameter values at conventional

significance levels. Since this condition is derived directly from the equilibrium Bellman equations,

such a violation suggests a lack of internal consistency in HM’s calibrated model.

How to ensure this type of internal consistency in the calibration exercise? A simple way to

achieve this is to restrict the calibration among admissible parameter values in the confidence

set, because the equilibrium moment condition is not rejected for those parameters by our con-

struction. We implement this idea in two settings. In Setting (1), we choose (z, β, l) from the

three-dimensional 95% confidence set depicted in Figure 4 by minimizing the same loss function as

in HM, defined as the sum of squared relative calibration error relative to the wage-productivity

elasticity, the average job finding rate and the average labor market tightness. In Setting (2), we

impose a more stringent constraint by restricting the loss minimization within the (smaller) 90%

confidence set.29

Using these “admissibility constrained” calibrations, we aim to seek a constructive compro-

mise between macro-type calibration and moment-based estimation (Kydland and Prescott (1996),

Hansen and Heckman (1996), Dawkins, Srinivasan, and Whalley (2001)). We bring in econometric

tools: econometrically justified confidence sets are used to “discipline” the calibration. But we

are not conducting GMM-type estimation: we use the calibrator’s loss function, instead of an

econometrician’s loss function defined by instrumented moment conditions (cf. Hansen (1982)).30

29We remind the reader that, without the admissibility constraints, these calibrations would be identical to that of

HM. In particular, since these parameter values are chosen to minimize the same objective function (though under

different constraints), the differences in the calibrated parameters reflect exclusively the effect of the admissibility

constraints. Being aware of the critiques from Hall and Milgrom (2008), Costain and Reiter (2008) and Pissarides

(2009), we intentionally use the same calibration targets as HM in order to demonstrate precisely how much effect

the econometric constraint has on the calibration.
30We note that the Anderson–Rubin type confidence set used here is very different from the confidence sets

obtained from the standard GMM theory. The former is computationally more difficult to obtain (generally due to

the grid search), but is immune to issues arising from weak or partial identification; see, for example, Stock and

Wright (2000) for a discussion on weak identification in GMM problems.
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Intuitively, GMM-type estimation would result in estimates at the “center” of the confidence sets

depicted by Figures 3 and 4, which can be much different from the calibrated value because they

minimize different loss functions. By contrast, the constrained calibration yields “admissible” pa-

rameter values that are the closest, formally measured by the calibration loss, to the standard

(unconstrained) calibrated value. To illustrate this point graphically, we plot in Figure 4 an indif-

ference curve (dashed) induced by HM’s loss function that is tangent to the 95% confidence set.

Again, we fix the matching parameter at 0.407 only for the ease of visual illustration. The tangent

point between the indifference curve and the confidence set corresponds to the parameter value

obtained from a constrained calibration. The standard GMM estimate, on the other hand, is at

the center of the confidence set and is evidently further away from HM’s calibrated values than

the tangent point.

We now turn to the results. Table 2 compares the calibrated parameter values of (z, β, l) in

these two constrained calibrations with HM’s unconstrained benchmark. Not surprisingly, since the

parameters are chosen to minimize the same loss function, they appear to be “numerically close”

to each other. However, as emphasized above, the seemingly small differences in the nonmarket

return z actually correspond to large differences in the fundamental surplus fraction (p−z)/p and,

hence, are economically significant. In Panel A of Table 3, we report the model-implied values of

the target variables and compare them with the empirical estimates. The fourth row summarizes

the goodness of fit, defined as the root mean square relative calibration error for matching the three

calibration targets. As expected, HM’s calibrated parameters result in an almost exact fitting.31

Under the admissibility constraint, the relative calibration error is 13% in Setting (1) and is 17%

in the more constrained Setting (2); intuitively, these numbers gauge the “cost” a calibrator needs

to pay for satisfying statistically the equilibrium conditional moment restriction.

We see from Table 2 that the value of nonmarket activity in the constrained calibrations are

lower than that in the unconstrained benchmark. Hence, in theory, we expect the unemployment

volatility generated in the former to be lower than that in the latter. To anticipate how much

the effect is, we can do some back-of-the-envelope calculations using the theory of Ljungqvist and

Sargent (2017). Note that reducing z from 0.955 to 0.941 (resp. 0.926) decreases the inverse of

fundamental surplus fraction by roughly 24% (resp. 39%). As a coarse theoretical approximation,

we expect the unemployment volatility to drop by a similar amount.

To quantify this effect precisely, we solve the equilibrium numerically in each calibration set-

31The calibration error using HM’s calibrated values is slightly larger than that reported in their paper. The

reason for this small difference is that we use the parameter values reported in their main text, which are less precise

than those actually used in their numerical work.
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Table 2: Calibrated Parameter Values at Weekly Frequency

Calibration Setting

Parameter Definition HM (1) (2)

z Value of nonmarket activity 0.955 0.941 0.926

β Workers’ bargaining power 0.052 0.058 0.077

l Matching parameter 0.407 0.373 0.337

Table 3: Simulation Results for Calibrated Models

Calibration Setting

Variable Data HM (1) (2)

Panel A. Calibration Targets

Wage-productivity elasticity 0.449 0.451 0.459 0.486

Average job finding rate 0.139 0.140 0.134 0.108

Average market tightness 0.634 0.644 0.772 0.737

Relative calibration error – 1% 13% 17%

Panel B. Volatility Measures

Unemployment 0.125 0.143 0.093 0.068

Vacancy 0.139 0.167 0.117 0.093

Tightness 0.259 0.289 0.198 0.150
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ting, and then compute the volatility of unemployment, vacancy and labor market tightness by

simulation.32 Panel B of Table 3 reports the simulated volatilities along with the corresponding

empirical estimates. From the second column, we observe that HM’s calibrated values indeed gen-

erate sizable volatilities in unemployment and labor market tightness, which are actually higher

than the empirical estimates reported in the first column; this is consistent with HM’s finding that

their alternative calibration strategy can be used to address the unemployment volatility puzzle

in the standard Mortensen–Pissarides model. However, when we re-calibrate (z, β, l) under the

admissibility constraint in Setting (1), the simulated volatilities are reduced roughly by 35% and

is 26% lower than the empirical estimate. This difference becomes even larger if the restrict the

calibration within the 90%-level confidence set (Setting (2)). In this case, the simulated unem-

ployment volatility is 52% lower than that in HM and is 46% lower than the empirical estimate.

These numerical findings are in line with our back-of-the-envelope theoretical calculation. They

suggest that a notable portion of the observed unemployment volatility is not explained by the

Mortensen–Pissarides model once we “discipline” the calibration by imposing the admissibility

constraint depicted by the confidence sets. The Shimer critique is clearly in force, although to a

smaller extent in our exercise (cf. Shimer (2005)).

4.4 Discussions on the unemployment volatility puzzle

We summarize our empirical findings as follows. First, our nonparametric specification test pro-

vides strong evidence that HM’s calibrated parameter values are incompatible with the equi-

librium conditional moment restriction directly implied by the equilibrium Bellman equations.

Constructively, we compute the Anderson–Rubin confidence set consisting of admissible values

of the three key parameters (z, β, l) which, by construction, satisfy statistically the equilibrium

condition through the lens of our specification test. The confidence set contains a wide range of

parameter values, generally with lower nonmarket return than the benchmark value z = 0.955.

We revisit HM’s calibration strategy used for addressing the unemployment volatility puzzle. We

follow the same calibration strategy, except that we require the parameters to be compatible with

the equilibrium conditional moment restriction (4.10) by imposing the admissibility constraint.

As a result, the model-implied unemployment volatility is 26%–46% lower than the empirical es-

timate, depending on the choice of confidence level. Although the volatilities in these calibrations

32We use the same algorithm as Hagedorn and Manovskii (2008) that is available from the publisher’s website.

The model is solved at the weekly frequency. The simulated data are then aggregated to the quarterly frequency.

We extract the cyclical components via the Hodrick–Prescott filter with smoothing parameter 1600, and then report

their standard deviations as the volatility measures.
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are much higher than those generated by the “common” calibration (cf. Shimer (2005)), they are

still notably lower than the observed volatility of unemployment.

These empirical findings shed some light on the debate concerning the unemployment volatility

puzzle. Several authors have argued that the z = 0.955 value of nonmarket activity calibrated by

HM may be too high according to various metrics, such as the labor supply elasticity or the effect

of unemployment policy; see, for example, Hall and Milgrom (2008), Costain and Reiter (2008)

and Pissarides (2009). These authors, among others, thus assert the necessity for modifying the

standard Mortensen–Pissarides model in various ways (e.g., by introducing wage stickiness or fixed

matching cost) so as to confront the Shimer critique. Our argument is complementary to, but

conceptually distinct from, these papers: we examine the “internal consistency” of the calibrated

model by formally testing the equilibrium conditional moment restriction directly derived from

the Bellman equations, while being agnostic about which “external” calibration targets should be

picked for evaluating a competing set of calibrated parameters. Once we restrict the calibration

within admissible parameter values, we find that the unemployment volatility puzzle is still present

to a nontrivial extent, despite that we choose exactly the same calibration targets as HM. Our

findings thus suggest that the unemployment volatility puzzle cannot be completely addressed by

using HM’s alternative calibration strategy, even if one would be willing to ignore other important

criteria such as those emphasized by Hall and Milgrom (2008), Costain and Reiter (2008) and

Pissarides (2009). Hence, we conclude that modifying the standard Mortensen–Pissarides model

using insight from Shimer (2004), Hall (2005), Mortensen and Nagypál (2007), Hornstein, Krusell,

and Violante (2007), Hall and Milgrom (2008), Gertler and Trigari (2009), Pissarides (2009),

among others, is necessary for a better understanding of the cyclical behavior of unemployment;

see Ljungqvist and Sargent (2017) for a more complete list of contributions. In principle, our

econometric methodology can also be applied to examine these alternative models, but this task

is beyond the scope of the present paper.

5 Conclusion

We develop a uniform inference theory for nonparametric series estimators in time-series settings.

While the pointwise inference problem has been addressed in the literature, uniform series infer-

ence in the time-series setting remains an open question to date. Inspired by the recent work of

Chernozhukov, Lee, and Rosen (2013) and Belloni, Chernozhukov, Chetverikov, and Kato (2015),

we develop a uniform inference theory for series estimators, relying crucially on our novel strong

approximation theory for heterogeneous dependent data with growing dimensions. To conduct
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feasible inference, we also extend the classical HAC estimation theory to a high-dimensional set-

ting. The proposed inference procedure is easy to implement and is broadly applicable in a wide

range of empirical problems in economics and finance. The technical results on strong approxima-

tion and HAC estimation also provide theoretical tools for other econometric problems involving

high-dimensional data vectors.

To demonstrate empirically the usefulness of our theory, we apply the proposed inference

procedure to the classical Mortensen–Pissarides search and matching model for equilibrium un-

employment, with a special focus on the unemployment volatility puzzle. The question about

what are the “plausible” parameter values is at the center of this debate. We contribute to this

literature by resorting to standard econometric principles: we derive an equilibrium conditional

moment restriction from the Bellman equations and nonparametrically test its validity for a broad

range of parameters. We reject Hagedorn and Manovskii’s (2008) calibrated values, and find that

a constrained version of their calibration subject to an “admissibility” requirement (implied by our

test) would lead to an economically nontrivial difference in the key model parameters, resulting

in 26%–46% of unexplained unemployment volatility. Our findings suggest that Hagedorn and

Manovskii’s alternative calibration strategy cannot address completely the unemployment volatil-

ity puzzle and, hence, confirm the necessity of modifying the standard search and matching model

as is done in the recent macroeconomics literature.
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S.A Proofs

For any real matrix A, we use ‖A‖ and ‖A‖S to denote its Frobenius norm and spectral norm,

respectively. If A is a real square matrix, we denote its trace, the smallest and the largest eigen-

values by Tr(A), λmin(A) and λmax(A), respectively. We use a(j) to denote the jth component of

a vector a; A(i,j) is defined similarly for a matrix A. For a random matrix X, ‖X‖p denotes its

Lp-norm, that is, ‖X‖p = (E ‖X‖p)1/p. For any two positive sequences an and bn, an � bn means

that an = o(bn). For any two real constants a and b, a ∧ b = min{a, b}. Throughout the proofs,

we use K to denote a generic constant that may change from line to line.

S.A.1 Proof of Proposition 1

Proof of Proposition 1. We observe that

E

∣∣∣∣∣
hn∑
t=1

(
V

(j,l)
n,t − E[V

(j,l)
n,t ]

)∣∣∣∣∣
2


=
1

k2n
E

∣∣∣∣∣
hn∑
t=1

(
v
(j,l)
t − E[v

(j,l)
t ]

)∣∣∣∣∣
2


=
1

k2n

hn∑
s,t=1

E
[(
v
(j,l)
t − E[v

(j,l)
t ]

)(
v(j,l)s − E[v(j,l)s ]

)]
≤ 2

k2n

hn−1∑
k=0

hn∑
t=k+1

∣∣∣E [(v(j,l)t − E[v
(j,l)
t ]

)(
v
(j,l)
t−k − E[v

(j,l)
t−k ]

)]∣∣∣ .

(A.1)

We then prove the assertions for the α-mixing and φ-mixing cases separately.

The α-mixing case. By the covariance inequality for strong mixing processes (see, e.g., Corollary

14.3 of Davidson (1994)),∣∣∣E [(v(j,l)t − E[v
(j,l)
t ]

)(
v
(j,l)
t−k − E[v

(j,l)
t−k ]

)]∣∣∣ ≤ Kα1−2/q
k

∥∥∥v(j,l)t

∥∥∥
q

∥∥∥v(j,l)t−k

∥∥∥
q
.

Therefore, we can further bound the terms in (A.1) as follows

E

∣∣∣∣∣
hn∑
t=1

(
V

(j,l)
n,t − E[V

(j,l)
n,t ]

)∣∣∣∣∣
2
 ≤ Kc̄4n

k2n

hn−1∑
k=0

(hn − k)α
1−2/q
k ≤ Kc̄4nk−1n ,

where the second inequality is due to condition (ii). The assertion of the proposition readily follows.

The φ-mixing case. The case with uniform mixing can be proved similarly. Indeed, by the

covariance inequality for uniform mixing processes (see, e.g., Corollary 14.5 of Davidson (1994))

and condition (iii),

E

∣∣∣∣∣
hn∑
t=1

(
V

(j,l)
n,t − E[V

(j,l)
n,t ]

)∣∣∣∣∣
2
 ≤ K

k2n

hn−1∑
k=0

(hn − k)φ
1/2
k

(
sup
j,l,t

∥∥∥v(j,l)t

∥∥∥
2

)2

≤ Kc̄4nk−1n .

From here, the assertion of the proposition for the φ-mixing case readily follows. Q.E.D.
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S.A.2 Proof of Theorem 1

The proof of Theorem 1 consists of two steps. The first step is to approximate Sn with another

martingale S∗n whose conditional covariance matrix is exactly Σn; see Lemma A1. We then establish

the coupling between S∗n and S̃n by using Lindeberg’s method and Strassen’s theorem; see Lemma

A2.

Turning to the details, we start with describing the approximating martingale S∗n. Consider

the following stopping time:

τn ≡ max

{
t ∈ {1, . . . , kn} : Σn −

t∑
s=1

Vn,s is positive semi-definite

}
,

with the convention that max ∅ = 0. We note that τn is a stopping time because Vn,t is Fn,t−1-
measurable for each t and Σn is nonrandom. The matrix

ξn ≡

{
Σn when τn = 0,

Σn −
∑τn

t=1 Vn,t when τn ≥ 1,

is positive semi-definite by construction.

Let Kn be a sequence of integers such that Kn → ∞ and let (ηn,t)kn+1≤t≤kn+Kn be indepen-

dent mn-dimensional standard normal vectors. We construct another martingale difference array

(Zn,t,Hn,t)1≤t≤kn+Kn as follows:

Zn,t ≡

{
Xn,t1{t≤τn} when 1 ≤ t ≤ kn,
K
−1/2
n ξ

1/2
n ηn,t when kn + 1 ≤ t ≤ kn +Kn,

and the filtration is given by

Hn,t ≡

{
Fn,t when 1 ≤ t ≤ kn,
Fn,kn ∨ σ(ηn,s : s ≤ t) when kn + 1 ≤ t ≤ kn +Kn.

Since τn is a stopping time, it is easy to verify that (Zn,t,Hn,t)1≤t≤kn+Kn indeed forms a martingale

difference array. We denote

V ∗n,t = E
[
Zn,tZ

>
n,t

∣∣∣Hn,t−1] (A.2)

and set

S∗n =

kn+Kn∑
t=1

Zn,t. (A.3)

The conditional covariance matrix of S∗n is exactly Σn, that is,

kn+Kn∑
t=1

V ∗n,t =

τn∑
t=1

Vn,t + ξn = Σn. (A.4)

Lemma A1, below, quantifies the approximation error between Sn and S∗n.
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Lemma A1. Suppose that Assumption 1 holds. Then, ‖Sn − S∗n‖ = Op(m
1/2
n r

1/2
n ).

Proof of Lemma A1. Step 1. In this step, we show that for any ε > 0, there exists a finite

constant C1 > 0 such that, for u∗n = dC1rnkne and h∗n = kn − u∗n,

lim sup
n→∞

P (τn < h∗n) < ε. (A.5)

Fix ε > 0. By Assumption 1(ii), there exists a finite constant C2 > 0 such that for any hn ≤ kn
satisfying hn/kn → 1,

lim sup
n→∞

P

(
λmax

(
hn∑
t=1

Vn,t − Σn,hn

)
> C2rn

)
< ε. (A.6)

Let λ > 0 denote a lower bound for the eigenvalues as described in Assumption 1(i). We shall

show that (A.5) holds for C1 ≡ C2/λ.

Since rn = o(1) by Assumption 1(ii), we have u∗n/kn → 0 and h∗n/kn → 1. In particular, (A.6)

holds for hn = h∗n. Moreover, observe that

u∗n
rnkn

=
dC1rnkne
rnkn

≥ C1 =
C2

λ
,

which, together with the definition of λ, implies that

C2rn ≤
u∗n
kn
λ ≤ λmin

 kn∑
t=h∗n+1

E [Vn,t]

 . (A.7)

We then observe

P (τn < h∗n) ≤ P

λmax

 h∗n∑
t=1

Vn,t − Σn

 > 0


= P

λmax

 h∗n∑
t=1

Vn,t − Σn,h∗n − (Σn − Σn,h∗n)

 > 0


≤ P

λmax

 h∗n∑
t=1

Vn,t − Σn,h∗n

 > λmin

 kn∑
t=h∗n+1

E [Vn,t]


≤ P

λmax

 h∗n∑
t=1

Vn,t − Σn,h∗n

 > C2rn

 , (A.8)

where the first inequality follows from the definition of τn, the second inequality follows from the

property of eigenvalues and the last inequality is by (A.7). From (A.6) and (A.8), the claim (A.5)

readily follows.
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Step 2. We now prove the assertion of Lemma A1. Note that

Sn − S∗n =

kn∑
t=1

Xn,t1{t>τn} −K
−1/2
n ξ1/2n

kn+Kn∑
t=kn+1

ηn,t.

Hence, it suffices to show

kn∑
t=1

Xn,t1{t>τn} = Op(m
1/2
n r1/2n ), K−1/2n ξ1/2n

kn+Kn∑
t=kn+1

ηn,t = Op(m
1/2
n r1/2n ). (A.9)

Recall u∗n and h∗n from step 1. By the assertion of step 1, we can assume that τn ≥ h∗n without

loss of generality; otherwise, we can restrict attention to the event {τn ≥ h∗n} with the exceptional

probability made arbitrarily small.

Since τn is a stopping time, {t > τn} ∈ Fn,t−1. Therefore, (Xn,t1{t>τn})t≥1 are martingale

differences. It is then easy to see that

E

∥∥∥∥∥
kn∑
t=1

Xn,t1{t>τn}

∥∥∥∥∥
2
 = E

[
kn∑
t=1

‖Xn,t‖2 1{t>τn}

]

≤
kn∑

t=h∗n+1

E
[
‖Xn,t‖2

]
= Tr

 kn∑
t=h∗n+1

E [Vn,t]

 .
By Assumption 1(i), the majorant side of the above inequality is O (u∗nmn/kn) = O (mnrn). The

first assertion in (A.9) then readily follows.

Turning to the second assertion in (A.9), we note that

E

∥∥∥∥∥∥K−1/2n ξ1/2n

kn+Kn∑
t=kn+1

ηn,t

∥∥∥∥∥∥
2 =

1

Kn

kn+Kn∑
t=kn+1

E
[∥∥∥ξ1/2n ηn,t

∥∥∥2]

= Tr (E [ξn]) ≤ Tr

 kn∑
t=h∗n+1

E [Vn,t]

 .
By the same argument as above, the majorant side of the above inequality is O (mnrn), which

implies the second assertion in (A.9). Q.E.D.

The next lemma establishes the strong approximation for S∗n.

Lemma A2. Let λ̄ denote the upper bound of the eigenvalues of Σn. Suppose that Kn ≥ 36m3
nλ̄

3
/B2

n.

Then, there exists a sequence S̃n of mn-dimensional centered Gaussian random vectors with co-

variance matrix Σn such that ∥∥∥S∗n − S̃n∥∥∥ = Op((Bnmn)1/3).
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Proof of Lemma A2. Step 1. We introduce some notations and outline the proof in this step.

For any positive constant C > 1, we denote δC,n ≡ C(Bnmn)1/3. We also set σ2n ≡ B
2/3
n m

−1/3
n and

note that
δ2C,n
mnσ2n

= C2 and
Bn

σ2nδC,n
= C−1. (A.10)

Below, we denote

ψC,n ≡
(

C2

exp (C2 − 1)

)mn/2

.

Note that as C →∞,

ψC,n → 0 uniformly in n. (A.11)

In step 2, below, we show that the following inequality holds for any Borel subset A ⊆ Rmn :

P (S∗n ∈ A) ≤ Fn
(
A3δC,n

)
+

1

1− ψC,n

(
ψC,n +

4Bn
σ2nδC,n

)
, (A.12)

where Fn denotes the distribution of an N (0,Σn) random variable and

A3δC,n ≡
{
x ∈ Rmn : inf

y∈A
‖x− y‖ ≤ 3δC,n

}
.

Consequently, by Strassen’s Theorem (see, e.g., Theorem 10.8 in Pollard (2001)), we can construct

a variable S̃n ∼ N (0,Σn) such that

P
(∥∥∥S∗n − S̃n∥∥∥ > 3δC,n

)
≤ 1

1− ψC,n

(
ψC,n +

4Bn
σ2nδC,n

)
=

1

1− ψC,n
(
ψC,n + 4C−1

)
.

By (A.11), for any ε > 0 there exists a constant Cε > 1 such that for any C > Cε and for any n,

the majorant side of the above inequality is bounded by ε, yielding

P
(∥∥∥S∗n − S̃n∥∥∥ > 3C(Bnmn)1/3

)
< ε.

This proves the assertion of the lemma.

Step 2. It remains to show (A.12). For notational simplicity, we write δn and ψn in place of

δC,n and ψC,n, respectively. With σn described in step 1, we consider the following functions on

Rmn :

gn(x) ≡ max
{

0, 1− d(x,Aδn)/δn

}
, fn(x) ≡ E [gn(x+ σnN ∗)] ,

whereN ∗ is an mn-dimensional standard normal random vector and d
(
x,Aδn

)
denotes the distance

between x and the set Aδn . By Lemma 10.18 in Pollard (2001), fn(·) is three-time continuously

differentiable such that for all (x, y),∣∣∣∣fn(x+ y)− fn(x)− ∂fn(x)>y − 1

2
y>∂2fn(x)y

∣∣∣∣ ≤ ‖y‖3σ2nδn
, (A.13)
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and

(1− ψn)1 {x ∈ A} ≤ fn(x) ≤ ψn + (1− ψn)1
{
x ∈ A3δn

}
. (A.14)

Let ζn,t, 1 ≤ t ≤ kn + Kn, be independent mn-dimensional standard normal vectors and

ζ̃n,t ≡ (V ∗n,t)
1/2ζn,t; recall the definition of V ∗n,t from (A.2). We set

Dn,t ≡
∑

1≤s<t
Zn,s +

∑
t<s≤kn+Kn

ζ̃n,s.

It is easy to see that∫
fn(x)Fn(dx) = E

[
fn(Dn,1 + ζ̃n,1)

]
, E [fn(S∗n)] = E [fn(Dn,kn+Kn + Zn,kn+Kn)] ,

and

Dn,t + Zn,t = Dn,t+1 + ζ̃n,t+1, 1 ≤ t ≤ kn +Kn − 1.

Hence,

E [fn(S∗n)]−
∫
fn(x)Fn(dx) =

kn+Kn∑
t=1

(
E [fn(Dn,t + Zn,t)]− E

[
fn(Dn,t + ζ̃n,t)

])
. (A.15)

By (A.13), we have∣∣∣E [fn(Dn,t + Zn,t)]− E [fn(Dn,t)]− E[∂fn(Dn,t)
>Zn,t]

−(1/2)E[Tr(∂2fn(Dn,t)Zn,tZ
>
n,t)]

∣∣∣ ≤ 1

σ2nδn
E[ ‖Zn,t‖3],

(A.16)

and ∣∣∣E[fn(Dn,t + ζ̃n,t]− E [fn(Dn,t)]− E[∂fn(Dn,t)
>ζ̃n,t]

−(1/2)E[Tr(∂2fn(Dn,t)ζ̃n,tζ̃
>
n,t)]

∣∣∣ ≤ 1

σ2nδn
E[‖ζ̃n,t‖3].

(A.17)

Since ζ̃n,t = (V ∗n,t)
1/2ζn,t and ζn,t is a standard normal random vector independent of Dn,t and

V ∗n,t, we have

E[∂fn(Dn,t)
>ζ̃n,t] = 0 and E[Tr(∂2fn(Dn,t)ζ̃n,tζ̃

>
n,t)] = E[Tr(∂2fn(Dn,t)V

∗
n,t)]. (A.18)

Let D̃n,t ≡
∑

1≤s<t Zn,s+(Σn−
∑t

s=1 V
∗
n,t)ζn,t. We note that since Σn is nonrandom, Σn−

∑t
s=1 V

∗
n,t

is Hn,t−1-measurable. We then observe that

E[∂fn(Dn,t)
>Zn,t] = E[∂fn(D̃n,t)

>Zn,t]

= E[∂fn(D̃n,t)
>E[Zn,t|Hn,t−1, ζn,t]]

= E[∂fn(D̃n,t)
>E[Zn,t|Hn,t−1]] = 0, (A.19)

where the first equality holds because the conditional distribution of D̃n,t given Hn,kn+Kn is the

same as that of Dn,t; the second equality holds because
∑

1≤s<t Zn,s and Σn −
∑t

s=1 V
∗
n,t are

7



Hn,t−1-measurable; the third equality is by the independence between ζn,t and Hn,kn+Kn and the

last equality holds because (Zn,t,Hn,t)1≤t≤kn+Kn is a martingale difference array by construction.

Similarly,

E[Tr(∂2fn(Dn,t)Zn,tZ
>
n,t)] = E[Tr(∂2fn(D̃n,t)Zn,tZ

>
n,t)]

= E[Tr(∂2fn(D̃n,t)E[Zn,tZ
>
n,t|Hn,t−1, ζn,t])]

= E[Tr(∂2fn(D̃n,t)E[Zn,tZ
>
n,t|Hn,t−1])]

= E[Tr(∂2fn(D̃n,t)V
∗
n,t)] = E[Tr(∂2fn(Dn,t)V

∗
n,t)]. (A.20)

Combining the results in (A.18), (A.19) and (A.20), we have

E[∂fn(Dn,t)
>Zn,t] = E[∂fn(Dn,t)

>ζ̃n,t] = 0

E[Tr(∂2fn(Dn,t)Zn,tZ
>
n,t)] = E[Tr(∂2fn(Dn,t)ζ̃n,tζ̃

>
n,t)].

Combining this with (A.15), (A.16) and (A.17), we deduce∣∣∣∣E [f(S∗n)]−
∫
fn(x)Fn(dx)

∣∣∣∣
≤ 1

σ2nδn

kn+Kn∑
t=1

(
E[ ‖Zn,t‖3] + E[‖ζ̃n,t‖3]

)
=

1

σ2nδn

kn∑
t=1

(
E[
∥∥Xn,t1{t≤τn}

∥∥3] + E[‖V 1/2
n,t ζn,t1{t≤τn}‖

3]
)

+
2

σ2nδn

kn+Kn∑
t=kn+1

E
[∥∥∥K−1/2n ξ1/2n ηn,t

∥∥∥3]

≤ 1

σ2nδn

kn∑
t=1

(
E[ ‖Xn,t‖3] + E[‖V 1/2

n,t ζn,t‖3]
)

+
2

σ2nδn

kn+Kn∑
t=kn+1

E
[∥∥∥K−1/2n ξ1/2n ηn,t

∥∥∥3]
≤ 3Bn
σ2nδn

+
2

σ2nδnK
1/2
n

E
[∥∥∥ξ1/2n N

∥∥∥3] ,
where N is a generic mn-dimensional standard normal random vector and the last inequality

follows from (denoting by Φ the distribution function of N )

E
[∥∥∥V 1/2

n,t ζn,t

∥∥∥3] = E
[(
ζ>n,tE[Xn,tX

>
n,t|Fn,t−1]ζn,t

)3/2]
= E

[∫ (
u>E[Xn,tX

>
n,t|Fn,t−1]u

)3/2
Φ (du)

]
= E

[∫ (
E[(u>Xn,t)

2|Fn,t−1]
)3/2

Φ (du)

]
≤ E

[∫
E[|u>Xn,t|3|Fn,t−1]Φ (du)

]
= E

[∣∣∣ζ>n,tXn,t

∣∣∣3] =
√

8/πE
[
‖Xn,t‖3

]
.
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Note that Σn − ξn is positive semi-definite. Hence,

E
[∥∥∥ξ1/2n N

∥∥∥3] = E
[(
N>ξnN

)3/2]
≤ E

[(
N>ΣnN

)3/2]
≤ λmax(Σn)3/2E

[(
N>N

)3/2]
≤ λ̄

3/2
(
E
[(
N>N

)2])3/4

≤ 3λ̄
3/2
m3/2
n .

Hence, under the condition Kn ≥ 36λ̄
3
m3
n/B

2
n,∣∣∣∣E [f(S∗n)]−

∫
fn(x)Fn(dx)

∣∣∣∣ ≤ 3Bn
σ2nδn

+
6λ̄

3/2
m

3/2
n

σ2nδnK
1/2
n

≤ 4Bn
σ2nδn

. (A.21)

From (A.14) and (A.21),

P (S∗n ∈ A) ≤ 1

1− ψn
E [fn (S∗n)]

≤ 1

1− ψn

(∫
fn(x)Fn(dx) +

4Bn
σ2nδn

)
≤ 1

1− ψn

(
ψn + (1− ψn)Fn

(
A3δn

)
+

4Bn
σ2nδn

)
= Fn

(
A3δn

)
+

1

1− ψn

(
ψn +

4Bn
σ2nδn

)
,

which proves (A.12) as wanted. Q.E.D.

Proof of Theorem 1. Let Kn satisfy the condition in Lemma A2 and then define S∗n as in

(A.3). The assertion of Theorem 1 then readily follows from Lemma A1 and Lemma A2. Q.E.D.

S.A.3 Proof of Corollary 1

Proof of Corollary 1. We can bound Bn =
∑kn

t=1 E[‖Xn,t‖3] as follows:

kn∑
t=1

E
[
‖Xn,t‖3

]
≤

kn∑
t=1

(
E
[
‖Xn,t‖4

])3/4

=

kn∑
t=1

mn∑
j=1

mn∑
l=1

E
[(
X

(j)
n,t

)2 (
X

(l)
n,t

)2]3/4

≤
kn∑
t=1

mn∑
j=1

(
E
[(
X

(j)
n,t

)4])1/2
3/2

= O
(
k−1/2n m3/2

n

)
,

9



where the first inequality is by Jensen’s inequality; the second inequality is by the Cauchy–Schwarz

inequality and the last line follows from supt,j E[(X
(j)
n,t )

4] = O
(
k−2n

)
. Plugging the estimate above

into (3.4), we readily deduce the assertion of Corollary 1. Q.E.D.

S.A.4 Proof of Theorem 2

We first establish the martingale approximation as claimed in (3.6) and (3.7) in the main text; see

Lemma A3 below. The variables X∗n,t and X̃n,t are defined as follows:

X∗n,t ≡
∞∑

s=−∞
{E [Xn,t+s|Fn,t]− E [Xn,t+s|Fn,t−1]} , (A.22)

X̃n,t ≡
∞∑
s=0

E [Xn,t+s|Fn,t−1]−
∞∑
s=0

{Xt−s−1 − E [Xt−s−1|Fn,t−1]} . (A.23)

Lemma A3. The following statements hold under Assumption 2 for each j ∈ {1, . . . ,mn}
(a)

∑∞
s=−∞

∥∥∥E [X(j)
n,t+s|Fn,t

]
− E

[
X

(j)
n,t+s|Fn,t−1

]∥∥∥
q
≤ 4c̄nk

−1/2
n

∑∞
s=0 ψs;

(b) supj,t,n ‖X
∗(j)
n,t ‖q ≤ 4c̄nk

−1/2
n

∑∞
s=0 ψs and E

[
X∗n,t|Fn,t−1

]
= 0;

(c)
∑∞

s=0

∥∥∥E [X(j)
n,t+s|Fn,t−1

]∥∥∥
q

+
∑∞

s=0

∥∥∥X(j)
t−s−1 − E

[
X

(j)
t−s−1|Fn,t−1

]∥∥∥
q
≤ 2c̄nk

−1/2
n

∑∞
s=0 ψs;

(d) supj,t,n ‖X̃
(j)
n,t‖q < 2c̄nk

−1/2
n

∑∞
s=0 ψs;

(e) Xn,t = X∗n,t + X̃n,t − X̃n,t+1 for each t ≥ 1;

(f) ‖Sn − S∗n‖2 = O(c̄nm
1/2
n k

−1/2
n ).

Proof of Lemma A3. (a) We first note that

∞∑
s=0

∥∥∥E [X(j)
n,t+s|Fn,t

]
− E

[
X

(j)
n,t+s|Fn,t−1

]∥∥∥
q

≤
∞∑
s=0

∥∥∥E [X(j)
n,t+s|Fn,t

]∥∥∥
q

+
∞∑
s=0

∥∥∥E [X(j)
n,t+s|Fn,t−1

]∥∥∥
q

≤ c̄nk−1/2n

( ∞∑
s=0

ψs +

∞∑
s=0

ψs+1

)
≤ 2c̄nk

−1/2
n

∞∑
s=0

ψs <∞.

(A.24)
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In addition, we have

−1∑
s=−∞

∥∥∥E [X(j)
n,t+s|Fn,t

]
− E

[
X

(j)
n,t+s|Fn,t−1

]∥∥∥
q

≤
−1∑

s=−∞

∥∥∥X(j)
n,t+s − E

[
X

(j)
n,t+s|Fn,t

]∥∥∥
q

+
−1∑

s=−∞

∥∥∥X(j)
n,t+s − E

[
X

(j)
n,t+s|Fn,t−1

]∥∥∥
q

≤
∞∑
s=1

∥∥∥X(j)
n,t−s − E

[
X

(j)
n,t−s|Fn,t

]∥∥∥
q

+
∞∑
s=1

∥∥∥X(j)
n,t−s − E

[
X

(j)
n,t−s|Fn,t−1

]∥∥∥
q

≤ c̄nk−1/2n

( ∞∑
s=1

ψs+1 +

∞∑
s=1

ψs−1

)
≤ 2c̄nk

−1/2
n

∞∑
s=0

ψs <∞.

(A.25)

The assertion of part (a) then follows from (A.24) and (A.25).

(b) From (A.24) and (A.25), we deduce that ‖X∗(j)n,t ‖q ≤ 4c̄nk
−1/2
n

∑∞
s=0 ψs. It remains to verify

that E
[
X∗n,t|Fn,t−1

]
= 0. To this end, we set

X∗n,t(m) =
m∑

s=−m
{E [Xn,t+s|Fn,t]− E [Xn,t+s|Fn,t−1]} .

It is easy to see that E
[
X∗n,t(m)|Fn,t−1

]
= 0. We note that

∣∣∣X∗(j)n,t (m)
∣∣∣ ≤ ∞∑

s=−∞

∣∣∣E [X(j)
n,t+s|Fn,t

]
− E

[
X

(j)
n,t+s|Fn,t−1

]∣∣∣
where the right-hand side of the above display is integrable by the calculations in part (a). Since

limm→∞X
∗(j)
n,t (m) = X

∗(j)
n,t almost surely by part (a), we deduce E

[
X
∗(j)
n,t |Fn,t−1

]
= 0 by using the

dominated convergence theorem.

(c) The assertion of part (c) follows from (3.5) directly. Indeed,

∞∑
s=0

∥∥∥E [X(j)
n,t+s|Fn,t−1

]∥∥∥
q
≤ c̄nk−1/2n

∞∑
s=0

ψs <∞ (A.26)

and
∞∑
s=0

‖Xt−s−1 − E [Xt−s−1|Fn,t−1]‖q ≤ c̄nk
−1/2
n

∞∑
s=0

ψs <∞. (A.27)

(d) The assertion follows from part (c) and the triangle inequality.
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(e) We verify the assertion of part (e) as follows:

X̃n,t+1 − X̃n,t +Xn,t

=

∞∑
s=0

E [Xn,t+1+s|Fn,t]−
∞∑
s=0

{Xt−s − E [Xt−s|Fn,t]}

−
∞∑
s=0

E [Xn,t+s|Fn,t−1] +
∞∑
s=0

{Xt−s−1 − E [Xt−s−1|Fn,t−1]}+Xn,t

=
∞∑
s=1

E [Xn,t+s|Fn,t] +
∞∑
s=0

{E [Xt−s|Fn,t]−Xt−s}

−
∞∑
s=0

E [Xn,t+s|Fn,t−1] +

∞∑
s=1

{Xt−s − E [Xt−s|Fn,t−1]}+Xn,t

=
∞∑
s=0

(E [Xn,t+s|Fn,t]− E [Xn,t+s|Fn,t−1]) +
∞∑
s=1

{E [Xt−s|Fn,t]− E [Xt−s|Fn,t−1]}

=

∞∑
s=−∞

{E [Xn,t+s|Fn,t]− E [Xn,t+s|Fn,t−1]} = X∗n,t.

(f) The assertion follows from parts (d,e), the triangle inequality and
∑

k ψk <∞. Q.E.D.

Proof of Theorem 2. By Theorem 1, Lemma A3(f) and the triangle inequality, there exists a

sequence S̃∗n of mn-dimensional random vectors with distribution N (0,Σ∗n) such that∥∥∥Sn − S̃∗n∥∥∥ = Op(m
1/2
n r1/2n + (B∗nmn)1/3 + c̄nm

1/2
n k−1/2n ), (A.28)

where Σ∗n = E[S∗nS
∗>
n ]. By Lyapunov’s inequality and Lemma A3(d),

‖Sn − S∗n‖
2
2 =

mn∑
j=1

E
[∣∣∣X̃(j)

n,t − X̃
(j)
n,kn+1

∣∣∣2] ≤ Kc̄2nmnk
−1
n . (A.29)

By definition, Σn − Σ∗n = E[SnS
>
n − S∗nS∗>n ]. Hence, for any a ∈ Rmn ,∥∥∥a> (Σn − Σ∗n)

∥∥∥2 ≤ K
∥∥∥E [a>(Sn − S∗n)S>n

]∥∥∥2 +K
∥∥∥E [a>Sn(Sn − S∗n)>

]∥∥∥2
+K

∥∥∥E [a>(Sn − S∗n)(Sn − S∗n)>
]∥∥∥2 . (A.30)

We now bound the terms on the majorant side of (A.30). Note that

E
[
a>(Sn − S∗n)S>n

]
Σ−1n E

[
Sn(Sn − S∗n)>a

]
≤ E

[∣∣∣a>(Sn − S∗n)
∣∣∣2] ,

which holds because the left-hand side is the second moment of the residual obtained by projecting

a>(Sn − S∗n) on the random vector Sn. The first term in (A.30) can thus be bounded by∥∥∥E [a>(Sn − S∗n)S>n

]∥∥∥2 ≤ λmax(Σn)E
[∣∣∣a>(Sn − S∗n)

∣∣∣2]
≤ K ‖a‖2 ‖Sn − S∗n‖

2
2 (A.31)
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where the second inequality is by the Cauchy–Schwarz inequality and the boundedness of λmax (Σn).

Turning to the second term in (A.30), we use the Cauchy–Schwarz inequality to derive∥∥∥E [a>Sn(Sn − S∗n)>
]∥∥∥2 ≤ E

[
(a>Sn)2

]
‖Sn − S∗n‖

2
2 ≤ K ‖a‖

2 ‖Sn − S∗n‖
2
2 . (A.32)

For the third term in (A.30), we observe∥∥∥E [a>(Sn − S∗n)(Sn − S∗n)>
]∥∥∥2 ≤ ‖a‖2

(
λmax

(
E
[
(Sn − S∗n)(Sn − S∗n)>

]))2
≤ ‖a‖2

(
Tr
(
E
[
(Sn − S∗n)(Sn − S∗n)>

]))2
= ‖a‖2 ‖Sn − S∗n‖

4
2 . (A.33)

Combining (A.30)–(A.33), we deduce that

sup
{a:‖a‖=1}

a> (Σn − Σ∗n) (Σn − Σ∗n)> a ≤ K ‖Sn − S∗n‖
2
2 +K ‖Sn − S∗n‖

4
2

= Op(c̄
2
nmnk

−1
n + c̄4nm

2
nk
−2
n ).

Hence,

‖Σn − Σ∗n‖S = Op(c̄nm
1/2
n k−1/2n + c̄2nmnk

−1
n ). (A.34)

Let S̃n ≡ (Σn)1/2(Σ∗n)−1/2S̃∗n, so S̃n ∼ N (0,Σn). By definition,

S̃n − S̃∗n =
[
(Σn)1/2 − (Σ∗n)1/2

]
(Σ∗n)−1/2S̃∗n

which implies that

E
[∥∥∥S̃n − S̃∗n∥∥∥2] ≤ ∥∥∥(Σn)1/2 − (Σ∗n)1/2

∥∥∥2
S
E
[
S̃∗>n (Σ∗n)−1S̃∗n

]
≤ K ‖Σn − Σ∗n‖

2
S E
[
S̃∗>n (Σ∗n)−1S̃∗n

]
= O(c̄2nm

2
nk
−1
n + c̄4nm

3
nk
−2
n ) (A.35)

where the second inequality is by Exercise 7.2.18 in Horn and Johnson (1990) (also see Lemma

A.2 in Belloni, Chernozhukov, Chetverikov, and Kato (2015)) and λmin(Σ∗n)−1 = O(1), and the

last line follows from E[S̃∗>n (Σ∗n)−1S̃∗n] = mn and (A.34). Hence,∥∥∥S̃n − S̃∗n∥∥∥ = Op(c̄nmnk
−1/2
n + c̄2nm

3/2
n k−1n ). (A.36)

The assertion of the theorem then follows from (A.28) and (A.36). Q.E.D.

S.A.5 Proof of Theorem 3 and Theorem 4

Lemma A4. Let Γ
(k,l)
X,n (s) ≡ E[X

(k)
n,tX

(l)
n,t+s]. Under Assumption 2 and Assumption 4(i,iv),

max
1≤k,l≤mn

∞∑
s=−∞

|s|r2 |Γ(k,l)
X,n (s)| ≤ Kc̄2nk−1n . (A.37)
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Proof of Lemma A4. For each s ≥ 0,∣∣∣Γ(k,l)
X,n (s)

∣∣∣ =
∣∣∣E[X

(k)
n,tE[X

(l)
n,t+s|Fn,t]]

∣∣∣
≤

∥∥∥X(k)
n,t

∥∥∥
2

∥∥∥E[X
(l)
n,t+s|Fn,t]

∥∥∥
2

≤
∥∥∥E[X

(k)
n,t |Fn,t]

∥∥∥
q

∥∥∥E[X
(l)
n,t+s|Fn,t]

∥∥∥
q

≤ ψ0ψsc̄
2
nk
−1
n , (A.38)

where the first equality is by repeated conditioning; the first inequality is by the Cauchy–Schwarz

inequality; the second inequality follows from Lyapunov’s inequality; the last line is due to As-

sumption 2. Hence,

∞∑
s=−∞

|s|r2
∣∣∣Γ(k,l)
X,n (s)

∣∣∣ ≤ 2
∞∑
s=0

sr2
∣∣∣Γ(k,l)
X,n (s)

∣∣∣ ≤ (2ψ0

∞∑
s=0

|s|r2 ψs

)
c̄2nk
−1
n . (A.39)

By Assumption 4(iv), K = 2ψ0
∑∞

s=0 |s|
r2 ψs is finite. This finishes the proof. Q.E.D.

Lemma A5. Under Assumptions 2, 3 and 4, we have for any s with |s| ≤ kn − 1,

max
1≤k,l≤mn

∥∥∥Γ̃
(k,l)
X,n (s)− E[Γ̃

(k,l)
X,n (s)]

∥∥∥2
2
≤ Kc̄4nk−1n (A.40)

where K > 0 is a finite constant that does not depend on s.

Proof of Lemma A5. Step 1. In this step, we derive some preliminary estimates. Let ηt,s =

X
(l)
n,tX

(k)
n,t+s − E[X

(l)
n,tX

(k)
n,t+s]. We shall show that

|E [ηt,sηt+h,s]| ≤

{
ψh−sc̄

4
nk
−2
n when h ≥ s ≥ 0,

K
(
ψs−h + ψ2

h + ψ2
s

)
c̄4nk
−2
n when s > h ≥ 0.

(A.41)

We start with the case h ≥ s ≥ 0. By Assumption 4(iii), we have for all s ≥ 0,

sup
t

max
1≤l,k≤mn

E
[
η2t,s
]
≤ sup

t
max

1≤l,k≤mn

E
[∣∣∣X(l)

n,tX
(k)
n,t+s

∣∣∣2] ≤ c̄4nk−2n . (A.42)

By the Cauchy–Schwarz inequality, Assumptions 4(ii) and (A.42), we deduce

|E [ηt,sηt+h,s]| = |E [ηt,sE [ηt+h,s| Fn,t+s]]| ≤ ‖ηt,s‖2 ‖E [ηt+h,s| Fn,t+s]‖2 ≤ ψh−sc̄
4
nk
−2
n , (A.43)

as asserted.

Turning to the case with s > h ≥ 0, we first note that by the definition of ηt,s and the triangle

inequality,

|E [ηt,sηt+h,s]| ≤ |E [ηt,hηt+s,h]|+
∣∣∣Γ(k,l)
n,X (h)

∣∣∣2 +
∣∣∣Γ(k,l)
n,X (s)

∣∣∣2 . (A.44)
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By swapping s and h in (A.43), we obtain |E [ηt,hηt+s,h]| ≤ ψs−hc̄4nk−2n . By (A.38),∣∣∣Γ(k,l)
n,X (h)

∣∣∣2 +
∣∣∣Γ(k,l)
n,X (s)

∣∣∣2 ≤ K(ψ2
h + ψ2

s)c̄
4
nk
−2
n .

The second claim in (A.41) then readily follows from these estimates.

Step 2. We now prove (A.40). Since Γ̃
(k,l)
X,n (s) = Γ̃

(l,k)
X,n (−s), it suffices to consider s ≥ 0. With

ηt,s defined in step 1, we can rewrite Γ̃
(k,l)
X,n (s)− E[Γ̃

(k,l)
X,n (s)] =

∑kn−s
t=1 ηt,s. Hence,

∥∥∥Γ̃
(k,l)
X,n (s)− E[Γ̃

(k,l)
X,n (s)]

∥∥∥2
2

= E

(kn−s∑
t=1

ηt,s

)2


≤ 2

kn−s−1∑
h=0

kn−s−h∑
t=1

|E [ηt,sηt+h,s]| = 2 (R1,n +R2,n) , (A.45)

where (sums over empty sets are set to zero by convention)

R1,n ≡
kn−s−1∑
h=s

kn−s−h∑
t=1

|E [ηt,sηt+h,s]| , R2,n ≡
(kn−s−1)∧(s−1)∑

h=0

kn−s−h∑
t=1

|E [ηt,sηt+h,s]| .

By (A.41),

R1,n ≤

(
kn−s−1∑
h=s

kn − s− h
kn

ψh−s

)
c̄4nk
−1
n ≤

( ∞∑
h=0

ψh

)
c̄4nk
−1
n , (A.46)

and similarly,

R2,n ≤ K

(kn−s−1)∧(s−1)∑
h=0

kn − s− h
kn

(
ψs−h + ψ2

h + ψ2
s

) c̄4nk
−1
n

≤ K

( ∞∑
h=0

(
ψh + ψ2

h

)
+ sψ2

s

)
c̄4nk
−1
n . (A.47)

Combining (A.45), (A.46) and (A.47), we deduce∥∥∥Γ̃
(k,l)
X,n (s)− E[Γ̃

(k,l)
X,n (s)]

∥∥∥2
2
≤ K

( ∞∑
h=0

ψh + sψ2
s

)
c̄4nk
−1
n .

Since
∑∞

h=0 ψh <∞ and sups≥0 sψ
2
s <∞ under Assumption 2 and Assumption 4(iv), the assertion

of the lemma follows from the above inequality. Q.E.D.

Proof of Theorem 3. Recall that ΓX,n(s) ≡ E[Xn,tX
>
n,t+s]. By definition, we can decompose

Σ̃n − Σn =

kn−1∑
s=−kn+1

K (s/Mn)
(

Γ̃X,n(s)− E
[
Γ̃X,n(s)

])

+

kn−1∑
s=−kn+1

(K (s/Mn)− 1)(kn − s)ΓX,n(s). (A.48)
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To bound the first term on the right-hand side of (A.48), we note, by the triangle inequality,∥∥∥∥∥∥
kn−1∑

s=−kn+1

K (s/Mn)
(

Γ̃X,n(s)− E
[
Γ̃X,n(s)

])∥∥∥∥∥∥
≤

kn−1∑
s=−kn+1

|K (s/Mn)|
∥∥∥Γ̃X,n(s)− E

[
Γ̃X,n(s)

]∥∥∥ . (A.49)

By (A.40),

E
[∥∥∥Γ̃X,n(s)− E

[
Γ̃X,n(s)

]∥∥∥] ≤ (mn∑
k=1

mn∑
l=1

∥∥∥Γ̃
(k,l)
X,n (s)− E[Γ̃

(k,l)
X,n (s)]

∥∥∥2
2

)1/2

≤ Kc̄2nmnk
−1/2
n .

Combining this estimate with (A.49), we deduce

E

∥∥∥∥∥∥
kn−1∑

s=−kn+1

K (s/Mn)
(

Γ̃X,n(s)− E
[
Γ̃X,n(s)

])∥∥∥∥∥∥


≤ Kc̄2nmnk
−1/2
n

kn−1∑
s=−kn+1

|K (s/Mn)| ≤ Kc̄2nmnMnk
−1/2
n ,

where the second inequality follows from Assumption 3. From here, we deduce

kn−1∑
s=−kn+1

K (s/Mn)
(

Γ̃X,n(s)− E
[
Γ̃X,n(s)

])
= Op(c̄

2
nmnMnk

−1/2
n ). (A.50)

We now turn to the second term on the right-hand side of (A.48). By definition,∥∥∥∥∥∥
kn−1∑

s=−kn+1

(K (s/Mn)− 1)(kn − s)ΓX,n(s)

∥∥∥∥∥∥
2

=

mn∑
k=1

mn∑
l=1

∣∣∣∣∣∣
kn−1∑

s=−kn+1

(K (s/Mn)− 1)(kn − s)Γ(k,l)
X,n (s)

∣∣∣∣∣∣
2

.

(A.51)

Let r = r1 ∧ r2. By Assumption 3, we can fix some (small) constant ε ∈ (0, 1) such that

|1−K(x)|
|x|r

≤ |1−K(x)|
|x|r1

≤ K for x ∈ [−ε, ε] . (A.52)

By the triangle inequality∣∣∣∣∣∣
kn−1∑

s=−kn+1

(K (s/Mn)− 1)(kn − s)Γ(k,l)
X,n (s)

∣∣∣∣∣∣
≤ knM−rn

∑
|s|≤εMn

∣∣∣∣K (s/Mn)− 1

|s/Mn|r
∣∣∣∣ |s|r ∣∣∣Γ(k,l)

X,n (s)
∣∣∣

+kn
∑

εMn<|s|<kn

|K (s/Mn)− 1|
∣∣∣Γ(k,l)
X,n (s)

∣∣∣ .
(A.53)

16



By (A.52), ∑
|s|≤εMn

∣∣∣∣K (s/Mn)− 1

|s/Mn|r
∣∣∣∣ |s|r ∣∣∣Γ(k,l)

X,n (s)
∣∣∣ ≤ K

∑
|s|≤εMn

|s|r
∣∣∣Γ(k,l)
X,n (s)

∣∣∣
≤ K

∞∑
s=−∞

|s|r
∣∣∣Γ(k,l)
X,n (s)

∣∣∣ . (A.54)

Since K (·) is bounded (Assumption 3),∑
εMn<|s|<kn

|K (s/Mn)− 1|
∣∣∣Γ(k,l)
X,n (s)

∣∣∣ ≤ K
∑

εMn<|s|<kn

∣∣∣Γ(k,l)
X,n (s)

∣∣∣
≤ KM−rn

∞∑
s=−∞

|s|r
∣∣∣Γ(k,l)
X,n (s)

∣∣∣ . (A.55)

Combining (A.53), (A.54) and (A.55), we deduce∣∣∣∣∣∣
kn−1∑

s=−kn+1

(K (s/Mn)− 1)(kn − s)Γ(k,l)
X,n (s)

∣∣∣∣∣∣ ≤ KknM−rn
∞∑

s=−∞
|s|r

∣∣∣Γ(k,l)
X,n (s)

∣∣∣ ≤ Kc̄2nM−rn (A.56)

where the second inequality is by (A.37). By (A.51) and (A.56),

kn−1∑
s=−kn+1

(K (s/Mn)− 1)(kn − s)ΓX,n(s) = O(c̄2nmnM
−r
n ). (A.57)

The assertion of the theorem then follows from (A.48), (A.50) and (A.57). Q.E.D.

Proof of Theorem 4. By Theorem 3,∥∥∥Σ̃n − Σn

∥∥∥ = Op(c̄
2
nmn(Mnk

−1/2
n +M−r1∧r2n )). (A.58)

To prove the assertion of the theorem, it remains to show that∥∥∥Σ̂n − Σ̃n

∥∥∥ = Op(Mnm
1/2
n δθ,n). (A.59)

By the definitions of Γ̂X,n(s) and Γ̃X,n(s), for any s ≥ 0, we can decompose

Γ̂X,n(s)− Γ̃X,n(s) = k−1n

kn−s∑
t=1

[
g(Zt, θ̂n)− g(Zt, θ0)

] [
g(Zt+s, θ̂n)− g(Zt+s, θ0)

]>
+k−1n

kn−s∑
t=1

[
g(Zt, θ̂n)− g(Zt, θ0)

]
g(Zt+s, θ0)

>

+k−1n

kn−s∑
t=1

g(Zt, θ0)
[
g(Zt+s, θ̂n)− g(Zt+s, θ0)

]>
. (A.60)
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Therefore, by the triangle inequality and the Cauchy–Schwarz inequality,

max
|s|≤kn−1

∥∥∥Γ̂X,n(s)− Γ̃X,n(s)
∥∥∥

≤ k−1n
kn∑
t=1

∥∥∥g(Zt, θ̂n)− g(Zt, θ0)
∥∥∥2

+2

(
k−1n

kn∑
t=1

∥∥∥g(Zt, θ̂n)− g(Zt, θ0)
∥∥∥2)1/2(

k−1n

kn∑
t=1

‖g(Zt, θ0)‖2
)1/2

.

(A.61)

By Assumption 5(ii) and Markov’s inequality,

k−1n

kn∑
t=1

‖g(Zt, θ0)‖2 = Op(mn). (A.62)

By Assumption 5(i), (A.61) and (A.62), we deduce

max
|s|≤kn−1

∥∥∥Γ̂X,n(s)− Γ̃X,n(s)
∥∥∥ = Op(m

1/2
n δθ,n). (A.63)

By the triangle inequality, (A.63) and Assumption 3(i), we deduce

∥∥∥Σ̂n − Σ̃n

∥∥∥ ≤
kn−1∑

s=−kn+1

|K (s/Mn)|
∥∥∥Γ̂X,n(s)− Γ̃X,n(s)

∥∥∥
≤ max

|s|≤kn−1

∥∥∥Γ̂X,n(s)− Γ̃X,n(s)
∥∥∥ kn−1∑
s=−kn+1

|K (s/Mn)|

= Op(Mnm
1/2
n δθ,n) (A.64)

as claimed in (A.59). This finishes the proof. Q.E.D.

S.A.6 Proof of Theorem 5

Proof of Theorem 5. Step 1. The proof for part (a) of the theorem is divided into 3 steps.

Below, for a generic real sequence an, let Opu(an) denote a random sequence that is Op(an)

uniformly in x ∈ X . In this step, we show

n1/2P (x)>(b̂n − b∗n)

σn (x)
=
n−1/2P (x)>Q−1n P>n Un

σn (x)
+Opu(δ1,n +m1/2

n δ3,n), (A.65)

where Pn ≡ [P (X1), ..., P (Xn)]> and Un = (u1, . . . , un)>.

By Assumption 6(ii),

sup
x∈X

‖P (x)‖
σn (x)

≤ (λmin(An))−1/2λmax(Qn) ≤ K. (A.66)
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By Assumptions 6(ii), (iv) and (v), we have, with probability approaching one,

λmax(Q̂n) + λmax(Ân) + λ−1min(Q̂n) + λ−1min(Ân) ≤ K. (A.67)

Let h∗n (·) ≡ P (·)> b∗n, Hn = (h(X1), . . . , h(Xn))> and H∗n = (h∗n(X1), . . . , h
∗
n(Xn))>. By the

definition of b̂n, we can decompose

b̂n − b∗n = (P>n Pn)−1
(
P>n Un

)
+ (P>n Pn)−1P>n (Hn −H∗n). (A.68)

By Assumption 6(ii),

E
[∥∥∥n−1P>n Un∥∥∥2] = n−1Tr (An) ≤ Kmnn

−1, (A.69)

which together with Markov’s inequality implies that∥∥∥n−1/2P>n Un∥∥∥ = Op(m
1/2
n ). (A.70)

We observe

sup
x∈X

1

σn (x)

∣∣∣n1/2P (x)>(P>n Pn)−1
(
P>n Un

)
− n−1/2P (x)>Q−1n

(
P>n Un

)∣∣∣
= sup

x∈X

1

σn (x)

∣∣∣P (x)>Q̂−1n

(
Q̂n −Qn

)
Q−1n

(
n−1/2P>n Un

)∣∣∣
≤ (λmin(Q̂n)λmin(Qn))−1

∥∥∥Q̂n −Qn∥∥∥∥∥∥n−1/2P>n Un∥∥∥ sup
x∈X

‖P (x)‖
σn (x)

= Op(m
1/2
n δ3,n),

(A.71)

where the inequality follows from the Cauchy–Schwarz inequality and the last line is derived from

Assumption 6(iv), (A.66), (A.67) and (A.70).

By Assumption 6(i), (A.66) and (A.67),

sup
x∈X

1

σn (x)

∣∣∣n1/2P (x)>(P>n Pn)−1P>n (Hn −H∗n)
∣∣∣

≤ sup
x∈X

‖P (x)‖
σn (x)

(
(Hn −H∗n)>Pn(P>n Pn)−1/2Q̂−1n (P>n Pn)−1/2P>n (Hn −H∗n)

)1/2
≤
(
(Hn −H∗n)>Pn(P>n Pn)−1P>n (Hn −H∗n)

)1/2
(λmin(Q̂n))1/2

sup
x∈X

‖P (x)‖
σn (x)

≤
supx∈X n

1/2
∣∣h(x)− P (x)>b∗n

∣∣
(λmin(Q̂n))1/2

sup
x∈X

‖P (x)‖
σn (x)

= Op(δ1,n).

(A.72)

The claim in (A.65) follows by combining the results in (A.68), (A.71) and (A.72).

Step 2. In this step, we show that

sup
x∈X

∣∣∣∣∣n1/2P (x)>(b̂n − b∗n)

σ̂n (x)
− n1/2P (x)>(b̂n − b∗n)

σn (x)

∣∣∣∣∣ = Op(m
1/2
n (δ3,n + δ4,n)). (A.73)
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By the triangle inequality∥∥∥Σ̂n − Σn

∥∥∥
S
≤

∥∥∥(Q̂−1n −Q−1n )ÂnQ̂
−1
n

∥∥∥
S

+
∥∥∥Q−1n (Ân −An)Q̂−1n

∥∥∥
S

+
∥∥∥Q−1n An(Q̂−1n −Q−1n )

∥∥∥
S
.

By the Cauchy–Schwarz inequality, Assumption 6(ii, iv) and (A.67),

∥∥∥(Q̂−1n −Q−1n )ÂnQ̂
−1
n

∥∥∥
S
≤
λmax(Ân)

∥∥∥Q̂n −Qn∥∥∥
λmin(Qn)(λmin(Q̂n))2

= Op(δ3,n).

Similarly, ‖Q−1n (Ân − An)Q̂−1n ‖S = Op(δ4,n) and ‖Q−1n An(Q̂−1n − Q−1n )‖S = Op(δ3,n). Combining

these estimates, we get ∥∥∥Σ̂n − Σn

∥∥∥
S

= Op(δ3,n + δ4,n). (A.74)

By Assumption 6(ii), this estimate further implies that, with probability approaching one,

λ−1min(Σ̂n) ≤ K, λmax(Σ̂n) ≤ K. (A.75)

We then observe

sup
x∈X

|σn (x)− σ̂n (x)|
σ̂n (x)

= sup
x∈X

∣∣σ2n (x)− σ̂2n (x)
∣∣

σ̂n (x) (σn (x) + σ̂n (x))

= sup
x∈X

∣∣∣P (x)> (Σ̂n − Σn)P (x)
∣∣∣

σ̂n (x) (σn (x) + σ̂n (x))

≤

∥∥∥Σ̂n − Σn

∥∥∥
S

(λmin(Σ̂n)λmin(Σn))1/2 + λmin(Σ̂n)

= Op(δ3,n + δ4,n) (A.76)

where the last line follows from Assumption 6(ii), (A.74) and (A.75).

By the Cauchy–Schwarz inequality

sup
x∈X

∣∣∣∣∣P (x)>Q−1n
σn (x)

n−1/2
n∑
t=1

utP (Xt)

∣∣∣∣∣ ≤
∥∥n−1/2P>n Un∥∥
λmin(Qn)

sup
x∈X

‖P (x)‖
σn (x)

= Op(m
1/2
n ) (A.77)

where the equality is due to Assumption 6(ii), (A.66) and (A.70). By (A.65) and (A.77),

sup
x∈X

∣∣∣∣∣n1/2P (x)>(b̂n − b∗n)

σn (x)

∣∣∣∣∣ = Op(m
1/2
n ). (A.78)

Combining (A.76) and (A.78), we deduce

sup
x∈X

∣∣∣∣∣n1/2P (x)>(b̂n − b∗n)

σ̂n (x)
− n1/2P (x)>(b̂n − b∗n)

σn (x)

∣∣∣∣∣
≤ sup

x∈X

|σn (x)− σ̂n (x)|
σ̂n (x)

sup
x∈X

∣∣∣∣∣n1/2P (x)>(b̂n − b∗n)

σn (x)

∣∣∣∣∣ = Op(m
1/2
n (δ3,n + δ4,n)),
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which finishes the proof of (A.73).

Step 3. In this step, we show the assertion in part (a) of the theorem. It suffices to show that,

n1/2
(
ĥn(x)− h(x)

)
σ̂n(x)

=
P (x)>S̃n
σn (x)

+Opu(δn), (A.79)

where S̃n ≡ Q−1n Ñn is N (0,Σn) distributed.

By (A.65) and (A.73),

n1/2P (x)>(b̂n − b∗n)

σ̂n (x)
=
n−1/2P (x)>Q−1n P>n Un

σn (x)
+Opu(δ1,n +m1/2

n (δ3,n + δ4,n)). (A.80)

By Assumption 6(ii) and (A.66),

sup
x∈X

∥∥P (x)>Q−1n
∥∥

σn (x)
≤ K. (A.81)

Hence, by Assumption 6(iii), (A.80) and (A.81),

n1/2P (x)>(b̂n − b∗n)

σ̂n (x)
=
P (x)>Q−1n Ñn

σn (x)
+Opu(δ1,n + δ2,n +m1/2

n (δ3,n + δ4,n)). (A.82)

By Assumption 6(i) and (A.66)

sup
x∈X

∣∣n1/2(h(x)− P (x)>b∗n)
∣∣

σn (x)
= sup

x∈X

‖P (x)‖
σn (x)

∣∣n1/2(h(x)− P (x)>b∗n)
∣∣

‖P (x)‖
= O(δ1,n), (A.83)

which combined with (A.76) yields

sup
x∈X

∣∣n1/2(h(x)− P (x)>b∗n)
∣∣

σ̂n (x)
≤ sup

x∈X

|σ̂n (x)− σn (x)|
σ̂n (x)

∣∣n1/2(h(x)− P (x)>b∗n)
∣∣

σn (x)

+ sup
x∈X

∣∣n1/2(h(x)− P (x)>b∗n)
∣∣

σn (x)

= Op(δ1,n). (A.84)

From (A.82) and (A.84), the assertion (A.79) readily follows.

Step 4. Given the result in part (a), the assertion of part (b) can be shown by using similar

arguments in the proof of Theorem 5.6 in Belloni, Chernozhukov, Chetverikov, and Kato (2015).

We omit the proof for brevity. Q.E.D.

S.A.7 Proof of Theorem 6

We first introduce some notations and a preliminary estimate; see Lemma A6, below. Recall that

the feasible estimator b̂n is given by

b̂n ≡

(
n∑
t=1

P (Xt)P (Xt)
>

)−1( n∑
t=1

P (Xt) g (Y ∗t ; γ̂n)

)
.
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We denote the corresponding infeasible estimator by

b̂†n ≡

(
n∑
t=1

P (Xt)P (Xt)
>

)−1( n∑
t=1

P (Xt) g (Y ∗t ; γ0)

)
.

Lemma A6. Let δ6,n ≡ supx∈X ‖P (x)‖−1. Under Assumption 8,

sup
x∈X

n1/2P (x)>(b̂n − b̂†n)

σn(x)
= Op(δ3,n + δ5,n + δ6,n).

Proof of Lemma A6. Step 1. In this step, we show that

sup
x∈X

n1/2P (x)>(b̂n − b̂†n)

σn(x)
= sup

x∈X

n1/2P (x)>Q−1n Gn(γ̂n − γ0)
σn(x)

+Op(δ3,n + δ5,n). (A.85)

By definition,

b̂n − b̂†n =
(
P>n Pn

)−1 n∑
t=1

P (Xt)(g(Y ∗t , γ̂n)− g(Y ∗t , γ0)). (A.86)

Applying the second-order Taylor expansion, we further deduce

b̂n − b̂†n =
(
P>n Pn

)−1 n∑
t=1

P (Xt)gγ(Y ∗t , γ0)
>(γ̂n − γ0)

+
1

2

(
P>n Pn

)−1 n∑
t=1

P (Xt)(γ̂n − γ0)>gγγ(Y ∗t , γ̃n)(γ̂n − γ0),
(A.87)

where γ̃n is a mean value between γ̂n and γ0 that may vary across rows. By Assumption 8(iv,vi),

n−1
n∑
t=1

∣∣∣(γ̂n − γ0)>gγγ(Y ∗t , γ̃n)(γ̂n − γ0)
∣∣∣2 = Op(n

−2). (A.88)

Since Pn
(
P>n Pn

)−1
P>n is a projection matrix,∥∥∥∥∥(P>n Pn)−1

n∑
t=1

P (Xt)(γ̂n − γ0)>gγγ(Y ∗t , γ̃n)(γ̂n − γ0)

∥∥∥∥∥
2

≤ λ−1min(Q̂n)n−1
n∑
t=1

∣∣∣(γ̂n − γ0)>gγγ(Y ∗t , γ̃n)(γ̂n − γ0)
∣∣∣2 = Op(n

−2),

(A.89)

where the rate statement follows from (A.88) and Assumption 7. Collecting the results in (A.87)

and (A.89), we get

b̂n − b̂†n =
(
P>n Pn

)−1 n∑
t=1

P (Xt)gγ(Y ∗t , γ0)
>(γ̂n − γ0) +Op(n

−1). (A.90)
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By Assumptions 7 and 8(ii,vi),(
P>n Pn

)−1 n∑
t=1

P (Xt)gγ(Y ∗t , γ0)
>(γ̂n − γ0) = Q̂−1n Gn(γ̂n − γ0) +Op(δ5,nn

−1/2). (A.91)

For 1 ≤ j ≤ d, let gγ,j(Y
∗
t , γ0) denote the jth component of gγ(Y ∗t , γ0) and let Gn,j denote jth

column of Gn. We note that

G>n,jQ
−1
n Gn,j ≤ n−1

n∑
t=1

E
[
gγ,j(Y

∗
t , γ0)

2
]

, (A.92)

because the left-hand side is the squared L2-norm of the projection of gγ,j(Y
∗
t , γ0) onto the column

space of P (Xt) under the product measure P⊗ Pn, with Pn being the empirical measure. Hence,

for any 1 ≤ j ≤ d,

‖Gn,j‖2 ≤
λmax(Qn)

n

n∑
t=1

E
[
gγ,j(Y

∗
t , γ0)

2
]
≤ λmax(Qn) sup

t
E
[
‖gγ(Y ∗t , γ0)‖

2
]
. (A.93)

By Assumptions 6(ii) and 8(iv), we further deduce

‖Gn‖2 ≤ K. (A.94)

By Assumption 7, Assumption 8(iii) and (A.94),∥∥∥(Q̂−1n −Q−1n )Gn(γ̂n − γ0)
∥∥∥2

=
∥∥∥Q̂−1n (

Q̂n −Qn
)
Q−1n Gn(γ̂n − γ0)

∥∥∥2
≤ ‖γ̂n − γ0‖

2

(λmin(Q̂n)λmin(Qn))2

∥∥∥Q̂n −Qn∥∥∥2 ‖Gn‖2 = Op(n
−1δ23,n)

which further implies that (
Q̂−1n −Q−1n

)
Gn(γ̂n − γ0) = Op(n

−1/2δ3,n). (A.95)

Combining the results in (A.91) and (A.95), we get

b̂n − b̂†n = Q−1n Gn(γ̂n − γ0) +Op((δ3,n + δ5,n)n−1/2). (A.96)

With an appeal to the Cauchy–Schwarz inequality, we deduce (A.85) from (A.96) and (A.66).

Step 2. We now prove the assertion of Lemma A6. For j ∈ {1, . . . , d}, let φ∗n,j denote the jth

column of φ∗n; recall the definition of φ∗n from Assumption 8. By definition,

P (x)>Q−1n Gn,j − P (x)>φ∗n,j

= P (x)>Q−1n
(
Gn,j −Qnφ∗n,j

)
= n−1

n∑
t=1

P (x)>Q−1n
(
E
[
P (Xt)

(
Hj(Xt)−H∗j (Xt)

)])
,

(A.97)
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where Hj(Xt) = E [gγ,j(Y
∗
t , γ0)|Xt] and H∗j (Xt) = P (Xt)

>φ∗n,j (we suppress the dependence of

these functions on n for notational simplicity). Using similar arguments that lead to (A.92), we

can show that∥∥∥∥∥E
[
n−1

n∑
t=1

P (Xt)
(
Hj(Xt)−H∗j (Xt)

)]∥∥∥∥∥
2

≤ λmax(Qn)E

∣∣∣∣∣n−1
n∑
t=1

(
Hj(Xt)−H∗j (Xt)

)∣∣∣∣∣
2
 ,

which together with Assumption 7 and Assumption 8(iii) implies that∥∥∥∥∥E
[
n−1

n∑
t=1

P (Xt)
(
Hj(Xt)−H∗j (Xt)

)]∥∥∥∥∥ = O(m−ρn ). (A.98)

By (A.98) and the Cauchy–Schwarz inequality,

sup
x∈X

∣∣∣∣∣n−1
n∑
t=1

P (x)>Q−1n E
[
P (Xt)

(
Hj(Xt)−H∗j (Xt)

)]∣∣∣∣∣
2

≤ sup
x∈X
‖P (x)‖2 (λmin(Qn))−2

∥∥∥∥∥E
[
n−1

n∑
t=1

P (Xt)
(
Hj(Xt)−H∗j (Xt)

)]∥∥∥∥∥
2

≤ Km1−2ρ
n ζ2n = O(1)

where the last line is by (A.98), Assumption 7 and Assumption 8(v). By (A.97), we further deduce

that

sup
x∈X

∥∥∥P (x)>Q−1n Gn − P (x)>φ∗n

∥∥∥ ≤ K. (A.99)

From Assumption 8(iii,iv), it is easy to see that P (·)> φ∗n is uniformly bounded. Hence, by (A.99),

sup
x∈X

∥∥∥P (x)>Q−1n Gn

∥∥∥ ≤ K. (A.100)

Using the Cauchy–Schwarz inequality, we deduce from (A.100), Assumption 7 and Assumption

8(vi) that

sup
x∈X

∣∣n1/2P (x)>Q−1n Gn(γ̂n − γ0)
∣∣

σn(x)

≤ λmax(Qn)(λmin(An))−1/2
∥∥∥n1/2(γ̂n − γ0)∥∥∥ sup

x∈X

∥∥P (x)>Q−1n Gn
∥∥

‖P (x)‖
= Op(δ6,n).

The assertion of Lemma A6 then follows from this estimate and (A.85). Q.E.D.

Proof of Theorem 6. By Assumption 7, we can invoke (A.76) in the proof of Theorem 5 to get

sup
x∈X

|σn (x)− σ̂n (x)|
σ̂n (x)

= Op(δ3,n + δ4,n), (A.101)
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which together with Lemma A6 implies that

sup
x∈X

∣∣∣∣∣n1/2P (x)>(b̂n − b̂†n)

σ̂n (x)
− n1/2P (x)>(b̂n − b̂†n)

σn(x)

∣∣∣∣∣
≤ sup

x∈X

|σn (x)− σ̂n (x)|
σ̂n (x)

sup
x∈X

∣∣∣∣∣n1/2P (x)>(b̂n − b̂†n)

σn(x)

∣∣∣∣∣
= Op((δ3,n + δ5,n + δ6,n)(δ3,n + δ4,n)).

(A.102)

Therefore,

sup
x∈X

n1/2P (x)>(b̂n − b̂†n)

σ̂n (x)
= Op(δ3,n + δ5,n + δ6,n). (A.103)

Let ĥ†n(x) = P (x)>b̂†n. Applying (A.79) with ĥ†n(x) replacing ĥn(x),

n1/2
(
ĥ†n(x)− h(x)

)
σ̂n(x)

=
P (x)>S̃n
σn (x)

+Opu(δn).

Then, by Lemma A6,

n1/2
(
ĥn(x)− h(x)

)
σ̂n(x)

=
P (x)>S̃n
σn (x)

+Opu(δn + δ5,n + δ6,n). (A.104)

Under the null hypothesis (3.18) with h(x) = 0,

sup
x∈X

∣∣∣∣∣n1/2ĥn(x)

σ̂n(x)

∣∣∣∣∣ = sup
x∈X

∣∣∣∣∣P (x)>S̃n
σn (x)

∣∣∣∣∣+Opu(δn + δ5,n + δ6,n). (A.105)

Note that (δn + δ5,n + δ6,n) (logmn)1/2 = o(1) under maintained assumptions. The first assertion

in Theorem 6 then follows from (A.105) and the argument in the proof of Theorem 5.6 in Belloni,

Chernozhukov, Chetverikov, and Kato (2015).

We now turn to the second assertion. By the triangle inequality, (A.101) and (A.104),

sup
x∈X

∣∣∣∣∣n1/2ĥn(x)

σ̂n(x)

∣∣∣∣∣ ≥ sup
x∈X

∣∣∣∣∣n1/2h(x)

σ̂n(x)

∣∣∣∣∣− sup
x∈X

∣∣∣∣∣∣
n1/2

(
ĥn(x)− h(x)

)
σ̂n(x)

∣∣∣∣∣∣
= sup

x∈X

∣∣∣∣∣n1/2h(x)

σn (x)

σn (x)

σ̂n(x)

∣∣∣∣∣− sup
x∈X

∣∣∣∣∣∣
n1/2

(
ĥn(x)− h(x)

)
σ̂n(x)

∣∣∣∣∣∣
≥ sup

x∈X

∣∣∣∣∣n1/2h(x)

σn (x)

∣∣∣∣∣
(

1− sup
x∈X

∣∣∣∣σn (x)

σ̂n(x)
− 1

∣∣∣∣)− sup
x∈X

∣∣∣∣∣∣
n1/2

(
ĥn(x)− h(x)

)
σ̂n(x)

∣∣∣∣∣∣
= sup

x∈X

∣∣∣∣∣n1/2h(x)

σn (x)

∣∣∣∣∣ (1 + op(1))− sup
x∈X

∣∣∣∣∣P (x)>S̃n
σn (x)

∣∣∣∣∣+ op(1). (A.106)
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By the Cauchy–Schwarz inequality and Assumption 7,

sup
x∈X

∣∣∣∣∣P (x)>S̃n
σn (x)

∣∣∣∣∣ ≤ λmax(Qn)
∥∥∥S̃n∥∥∥

(λmin(An))1/2
= Op(m

1/2
n ). (A.107)

Since E [g(Y ∗t , γ0)|Xt = x] 6= 0 for some x ∈ X , there exists some constant c0 > 0 such that

supx∈X |h(x)| > c0. Moreover, by Assumption 8(v), supx∈X ‖P (x)‖ ≤ ζnm1/2
n . Therefore,

sup
x∈X

∣∣∣∣∣n1/2h(x)

σn (x)

∣∣∣∣∣ ≥ n1/2λmin(Qn)c0

(λmax(An))1/2ζnm
1/2
n

, (A.108)

which together with (A.106) and (A.107) implies that (recalling ζnmn � n1/2 from Assumption

8(vii)),

sup
x∈X

∣∣∣∣∣n1/2ĥn(x)

σ̂n(x)

∣∣∣∣∣ ≥ n1/2λmin(Qn)c0

(λmax(An))1/2ζnm
1/2
n

(1 + op(1)) . (A.109)

Like (A.73) in Belloni, Chernozhukov, Chetverikov, and Kato (2015), we can show that the critical

value cvn,α satisfies cvn,α = Op((log(mn))1/2), which together with Assumptions 7(ii) and 8(vii)

implies that

(λmax(An))1/2cvn,αζnm
1/2
n

λmin(Qn)(1 + op(1))n1/2
= op(1). (A.110)

Combining the results in (A.109) and (A.110), we deduce that

Pr
(
T̂n ≤ cvn,α

)
≤ Pr

(
n1/2λmin(Qn)c0 (1 + op(1))

(λmax(An))1/2ζnm
1/2
n

≤ cvn,α

)

= Pr

(
c0 ≤

(λmax(An))1/2cvn,αζnm
1/2
n

λmin(Qn)(1 + op(1))n1/2

)
→ 0

as n→∞. From here, the second assertion readily follows. Q.E.D.

S.B Additional technical results

This section collects additional technical results that are mentioned in the main text. Section S.B.1

provides examples for the strong approximation result under primitive conditions. Section S.B.2

provides primitive conditions for Assumption 6 in the main text. Section S.B.3 provides details on

how to verify the high-level conditions in Chernozhukov, Lee, and Rosen (2013) for the purpose of

extending the inference for intersection bounds to time-series applications. S.B.4 provides details

on how to derive the conditional moment restriction used in our empirical analysis.
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S.B.1 Examples for Theorem 2 under primitive conditions

Condition (ii) of Theorem 2 in the main text is high-level in nature in that it is stated for the

approximating martingale difference X∗n,t instead of for the underlying mixingale Xn,t directly. In

this subsection, we provide two examples so as to illustrate how to verify this high-level condition

under primitive conditions. The first example concerns linear processes and is relatively simple to

describe.

Example 1 (Martingale Approximation for Linear Processes). Let (εn,t,Fn,t) be a

martingale difference array such that ‖ε(j)n,t‖q ≤ c̄nk
−1/2
n uniformly for some q ≥ 3. Suppose

that Xn,t is a linear process with the form Xn,t =
∑
|j|<∞ θjεn,t−j , where the coefficients (θj)

satisfy
∑
|j|<∞ |jθj | < ∞. Then (Xn,t) is an Lq-mixingale that satisfies Assumption 2 with

ψk =
∑
|j|≥k |θj | (see, e.g., Example 16.2 in Davidson (1994)); in particular, the summability

condition
∑∞

k=0 ψk < ∞ is implied by
∑
|j|<∞ |jθj | < ∞. In this case, the martingale difference

component X∗n,t has a closed-form expression X∗n,t = (
∑
|j|<∞ θj)εn,t, which verifies the conditions

in Theorem 2 if and only if εn,t satisfies Assumption 1. In the simple case when εn,t has constant

covariance matrix Σε, the pre-asymptotic covariance matrix of S∗n is (
∑
|j|<∞ θj)

2Σε, which is ex-

actly the long-run covariance matrix of Xn,t; consequently, the third error term on the right-hand

side of (3.8) is absent. �

The second example, which concerns mixing-type primitive conditions, is slightly more compli-

cated. In this example, we suppose that Xn,t = k
−1/2
n εt, where (εt)

∞
t=−∞ is an mn-dimensional zero

mean strictly stationary (strong or uniform) mixing sequence with mixing coefficients (ϕs)
∞
s=0. Let

the filtration be defined as Fn,t ≡ σ(εs : s ≤ t). We consider the following regularity condition.

Assumption B1. (i) supt,j ||ε
(j)
t ||κ ≤ cκ,n where the sequence cκ,n is bounded away from zero,

κ > 5 for the strong mixing case and κ > 4 for the uniform mixing case; (ii)
∑∞

s=0 ϕ
(κ−4)/(5κ)
s <∞

for the strong mixing case and
∑∞

s=0 ϕ
1/2
s < ∞ for the uniform mixing case; (iii) the eigenvalues

of Σn ≡ E
[
SnS

>
n

]
are bounded from above and away from zero; and (iv) cκ,nm

5/6
n k

−1/6
n = o(1).

Assumption B1(i) imposes uniform moment bounds on (εt)
∞
t=−∞. Assumption B1(ii) restricts

the level of dependence. Assumption B1(iii) requires that the covariance matrix Σn is non-

degenerate. Assumption B1(iv) mainly restricts the rate at which the dimension of εt grows

to infinity. Under this assumption, we can verify the conditions in Theorem 2 and obtain a strong

approximation for Sn, as stated by the following proposition.

Proposition B1. Under Assumption B1, we have∥∥∥Sn − S̃n∥∥∥ = Op(cκ,nm
5/6
n k−1/6n )

where S̃n is an mn-dimensional random vector with distribution N (0,Σn).
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Comment. We can compare this strong approximation result with Theorem 1 of Dehling (1983).

For example, assuming that the strong mixing coefficient converges to zero sufficiently fast and

cκ,n = O(1), (1.13) in Dehling (1983) implies that the strong approximation error converges at a

rate that is slower than m
11/6
n k

−1/900
n (this is the best-case scenario obtained by setting d = mn,

δ = 2/3, ε = 1 and ρ2+δ = mn in that paper). Evidently, the m
5/6
n k

−1/6
n rate implied by Proposition

B1 improves significantly the rate derived in Dehling (1983).

Proof of Proposition B1. Step 1. In this step, we verify the conditions of Theorem 2.

Condition (iii) of Theorem 2 coincides with Assumption B1(iii). It remains to verify conditions (i)

and (ii) of that theorem.

We first show that Assumption 2 holds for the Xn,t array (i.e., condition (i) of Theorem 2).

Let q = 5κ/(κ + 1) and q = 4 for the strong and the uniform mixing case, respectively. Then

by Assumption B1(i) and the mixing inequality (see, e.g., Theorem 14.2 and Theorem 14.4 in

Davidson (1994)), ∥∥∥E [X(j)
n,t |Fn,t−s

]∥∥∥
q
≤ 6cκ,nk

−1/2
n ϕ1/q−1/κ

s (B.1)

in the strong mixing case, and∥∥∥E [X(j)
n,t |Fn,t−s

]∥∥∥
q
≤ 2cκ,nk

−1/2
n ϕ1−1/κ

s (B.2)

in the uniform mixing case. Therefore, (Xn,t)
∞
t=−∞ is an Lq-mixingale array with c̄n = 6cκ,n and

ψs = ϕ
1/q−1/κ
s for the strong mixing case, and c̄n = 2cκ,n and ψs = ϕ

1−1/κ
s for the uniform mixing

case. It remains to check the summability condition
∑∞

s=0 ψs < ∞; this holds under Assumption

B1(ii) because 1/q − 1/κ = (κ − 4)/(5κ) for the strong mixing case and 1 − 1/κ > 1/2 for the

uniform mixing case.

We now verify condition (ii) of Theorem 2, that is, the approximating martingale difference

X∗n,t satisfies Assumption 1. Note that X∗n,t = k
−1/2
n ε∗t where

ε∗t ≡
∞∑

s=−∞
{E [εt+s|Fn,t]− E [εt+s|Fn,t−1]} . (B.3)

We denote the conditional covariance matrix of X∗n,t by

V ∗n,t = E
[
X∗n,tX

∗>
n,t |Fn,t−1

]
= k−1n v∗t ,

where v∗t ≡ E
[
ε∗t ε
∗>
t |Fn,t−1

]
. Since εt is stationary, (ε∗t )t≥1 is also stationary. In particular,

knE
[
V ∗n,t

]
= E [v∗t ] = Σ∗n. (B.4)

Like (A.34), we can show that

‖Σn − Σ∗n‖S = Op(cκ,nm
1/2
n k−1/2n + c2κ,nmnk

−1
n ) = o(1), (B.5)
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where the second equality is due to Assumption B1(iv). Hence, Assumption B1(iii) implies that

the eigenvalues of Σ∗n is bounded away from zero and from above. In view of (B.4), we see that

X∗n,t satisfies Assumption 1(i). Finally, we can verify that X∗n,t satisfies Assumption 1(ii) by using

Proposition 1, with

rn = c2κ,nmnk
−1/2
n . (B.6)

Step 2. By the derivations in step 1, we can apply Theorem 2 to show that∥∥∥Sn − S̃n∥∥∥ = Op(cκ,nm
1/2
n k−1/2n ) +Op(m

1/2
n r1/2n + (B∗nmn)1/3)

+Op(cκ,nmnk
−1/2
n + c2κ,nm

3/2
n k−1n ).

Following the same argument as in Corollary 1, we deduce B∗n = O(c3κ,nm
3/2
n k

−1/2
n ). Using this

estimate and (B.6), we can simplify the error bound above as∥∥∥Sn − S̃n∥∥∥ = Op(cκ,nm
5/6
n k−1/6n + cκ,nmnk

−1/4
n + c2κ,nm

3/2
n k−1n ).

Under the maintained assumptions, mn � k
1/5
n and cκ,n � k

1/6
n m

−5/6
n , which further imply that

‖Sn − S̃n‖ = Op(cκ,nm
5/6
n k

−1/6
n ) as asserted. Q.E.D.

S.B.2 Primitive conditions for Assumption 6

In this subsection, we illustrate how to verify Assumption 6 under the following primitive condition.

Assumption B2. (i) (X>t , ut)t is a strictly stationary strong mixing process with mixing coeffi-

cient (ϕs)
∞
s=0 satisfying

∑∞
s=1 s

r2ϕ
(κ−4)/(5κ)
s for some finite constants κ > 5 and r2 > 0; (ii) the

eigenvalues of Qn and An are bounded from above and away from zero; (iii) E [|ut|κ |Xt] ≤ C <∞
almost surely for any t; (iv) max1≤k≤mn supx∈X |pk(x)| ≤ ζn where ζn is a non-decreasing positive

sequence and log(ζLn ) = O(log(mn)); (v) there exist ρh > 0 and b∗n ∈ Rmn such that

sup
x∈X

∣∣∣P (x)>b∗n − h(x)
∣∣∣ = O(m−ρhn );

(vi) infx∈X ‖P (x)‖ ≥ c for all mn and some constant c > 0; (vii) (ζn + m
1/2
n )Mnζnmnn

−1/2 +

n1/2m−ρhn + ζ6nm
5
nn
−1 = o(1) and ζ2nmnM

−r1∧r2
n = o(1) where r1 is the constant defined in As-

sumption 3.

Assumption B2(i) imposes restrictions on the serial dependence of the data. Assumption B2(ii)

is the same as Assumption 6(ii), which is a standard regularity condition in the series estimation

literature (see, e.g., Andrews (1991), Newey (1997), Chen (2007) and Belloni, Chernozhukov,

Chetverikov, and Kato (2015)). Assumption B2(iii) imposes moment bound on the residual ut,

which is also standard. Assumption B2(iv) defines a uniform upper bound of the series basis

functions pk(·). Assumption B2(v) assumes that the unknown function h(·) can be approximated
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by P (x)>b∗n with approximation error O(m−ρhn ) under the uniform metric. Assumption B2(vi)

holds trivially if the basis functions include the constant function. Assumption B2(vii) specifies

the growth rate of mn and the bandwidth Mn in the HAC estimation.

Lemma B1. Under Assumption B2, Assumption 6(iii) holds with δ2,n = ζnm
5/6
n n−1/6.

Proof of Lemma B1. We use Proposition B1 to prove this Lemma. For this purpose, it is

sufficient to verify Assumption B1 with εt = utP (Xt) and kn = n. By Assumptions B2(iii) and

B2(iv),

sup
t,j

∥∥∥ε(j)t ∥∥∥
κ

= sup
t,j
‖utpj(Xt)‖κ ≤ ζn sup

t
‖ut‖κ ≤ C

1/κζn,

which verifies Assumption B1(i) with cκ,n = C1/κζn. Assumptions B1(ii), B1(iii) and B1(iv) are

implied by Assumptions B2(i), B2(ii) and B2(vii), respectively. The assertion of Lemma B1 then

follows from Proposition B1. Q.E.D.

Lemma B2. Under Assumption B2, Assumption 6(iv) holds with δ3,n = mnζ
2
nn
−1/2.

Proof of Lemma B2. Denote ηt(j, k) ≡ pj (Xt) pk(Xt)− E[pj (Xt) pk(Xt)]. By definition,

E
[∥∥∥Q̂n −Qn∥∥∥2] = E

∥∥∥∥∥n−1
n∑
t=1

(
P (Xt)P (Xt)

> − E
[
P (Xt)P (Xt)

>
])∥∥∥∥∥

2


=

mn∑
j=1

mn∑
k=1

E

(n−1 n∑
t=1

ηt(j, k)

)2


= n−2
mn∑
j=1

mn∑
k=1

n∑
t=1

E
[
η2t (j, k)

]
+2n−2

mn∑
j=1

mn∑
k=1

n∑
t=2

t−1∑
s=1

E [ηt(j, k)ηs(j, k)] . (B.7)

By Assumptions B2(iv),

n−2
mn∑
j=1

mn∑
k=1

n∑
t=1

E
[
η2t (j, k)

]
≤ n−2

mn∑
j=1

mn∑
k=1

n∑
t=1

E
[
pj (Xt)

2 pk(Xt)
2
]
≤ m2

nζ
4
nn
−1. (B.8)

Since (Xt) is strong mixing by Assumption B2(i), (pj(Xt)pk(Xt)) is also strong mixing with the

same mixing coefficient (ϕs)
∞
s=0 for any (j, k). Therefore, by the covariance inequality of the strong

mixing process (see, e.g., Corollary 14.3 of Davidson (1994)) and Assumptions B2(iv),

|E [ηt(j, k)ηs(j, k)]| ≤ Kϕ1−2/κ
t−s ‖pj(Xt)pk(Xt)‖κ ‖pj(Xs)pk(Xs)‖κ ≤ Kϕ

1−2/κ
t−s ζ4n. (B.9)
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By (B.9) and the summability condition of the mixing coefficients in Assumption B2(i),

n−2
mn∑
j=1

mn∑
k=1

n∑
t=2

t−1∑
s=1

|E [ηt(j, k)ηs(j, k)]|

≤ Km2
nζ

4
nn
−2

n∑
t=2

t−1∑
s=1

ϕ
1−2/κ
t−s = O(m2

nζ
4
nn
−1).

(B.10)

From (B.7), (B.8) and (B.10), we deduce E[‖Q̂n−Qn‖2] = O(m2
nζ

4
nn
−1), which readily implies the

assertion of Lemma B2. Q.E.D.

Lemma B3. Under Assumptions 3 and B2, Assumption 6(v) holds with

δ4,n = ζ2nmn(Mnn
−1/2 +M−r1∧r2n ) +Mnζnm

1−ρh
n +Mnζnm

3/2
n n−1/2.

Proof of Lemma B3. Step 1. We use Theorem 4 to prove this lemma. In order to cast the

setting into that of Theorem 4, we set kn = n, Zt = (Yt, X
>
t ), θ0 = h (·), θ̂n = ĥn(·) and

Xn,t = n−1/2P (Xt)ut, X̂n,t = n−1/2P (Xt)
(
Yt − ĥn(Xt)

)
. (B.11)

In this step, we verify that the Xn,t array satisfies Assumption 4. Under Assumption B2, we can

use the same arguments in the proof of Proposition B1 to show that the array (Xn,t) satisfies

Assumption 2 with c̄n = 6C1/κζn, q = 5κ/(κ + 1) and ψs = ϕ
(κ−4)/(5κ)
s . It remains to verify

conditions (i)–(iv) in Assumption 4.

By (3.14), E [Xn,t] = 0 for any t and any n. Moreover, by Assumption B2(i), E [Xn,tXn,t+j ] =

n−1E
[
utut+jP (Xt)P (Xt+j)

>] only depends on n and j. Therefore, Assumption 4(i) holds. Let

Fn,t be the σ-field generated by {Xs, us−1}s≤t. We can use the same argument in the proof of

Theorem 14.2 of Davidson (1994) to deduce that∥∥∥E [X(l)
n,tX

(k)
n,t+j

∣∣∣Fn,t]− E
[
X

(l)
n,tX

(k)
n,t+j

]∥∥∥
2
≤ 6ϕ1/2−2/κ

s

∥∥∥X(l)
n,tX

(k)
n,t+j

∥∥∥
κ/2

. (B.12)

By the definition of X
(l)
n,t and X

(k)
n,t+j , and Assumptions B2(iii) and B2(iv),∥∥∥X(l)

n,tX
(k)
n,t+j

∥∥∥
κ/2
≤ ‖utut+j‖κ/2 ζ

2
nn
−1 ≤ C2/κζ2nn

−1 ≤ c̄2nn−1, (B.13)

which verifies Assumption 4(iii). Furthermore, this estimate and (B.12) imply that∥∥∥E [X(l)
n,tX

(k)
n,t+j

∣∣∣Fn,t]− E
[
X

(l)
n,tX

(k)
n,t+j

]∥∥∥
2
≤ 6C2/κζ2nϕ

1/2−2/κ
s n−1 ≤ c̄2nn−1ϕ(κ−2)/(2κ)

s . (B.14)

Since (κ− 4) /(5κ) ≤ (κ−2)/(2κ), this estimate implies Assumption 4(ii) with ψs defined as above.

Finally, we verify Assumption 4(iv). Under Assumption B2(i), ψs is summable. Hence, there

exists a finite s̄ such that ψs ≤ s−1 for any s ≥ s̄; otherwise, we could extract a subsequence from

ψs that is not summable. Therefore,

sup
s≥0

sψ2
s ≤ 1 + max

0≤s≤s0
sψ2

s <∞.
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Further note that
∑∞

s=0 s
r2ψs <∞ holds by Assumption B2(i). This verifies Assumption 4(iv).

Step 2. In this step, we finish the proof of Lemma B3 by verifying Assumption 5 for which

we note from (B.11) that the g (·) function is defined implicitly as g(Zt, h) = (Yt − h(Xt))P (Xt).

Hence, by Assumption B2(iv),

n−1
n∑
t=1

∥∥∥g(Zn, ĥn)− g(Zt, h)
∥∥∥2 = n−1

n∑
t=1

(
ĥn(Xt)− h(Xt)

)2
P (Xt)

>P (Xt)

≤ ζ2nmnn
−1

n∑
t=1

(
ĥn(Xt)− h0(Xt)

)2
. (B.15)

By Lemma B2 and Assumption B2(vii), ‖Q̂n −Qn‖ = op(1). Hence,

λ−1min(Q̂n) + λmax(Q̂n) ≤ K, with probability approaching one. (B.16)

Define Pn, Un, Hn and H∗n as in the proof of Theorem 5. Like (A.68) and (A.70), we can show

that

b̂n − b∗n = (P>n Pn)−1
(
P>n Un

)
+ (P>n Pn)−1P>n (Hn −H∗n), (B.17)

and n−1/2P>n Un = Op(m
1/2
n ). Then, by (B.16),∥∥∥(P>n Pn)−1
(
P>n Un

)∥∥∥ ≤ λ−1min(Q̂n)
∥∥∥n−1P>n Un∥∥∥ = Op(m

1/2
n n−1/2). (B.18)

By Assumption B2(v) and (B.16),∥∥∥(P>n Pn)−1P>n (Hn −H∗n)
∥∥∥2 ≤ λ−1min(Q̂n)n−1 ‖Hn −H∗n‖

2 = Op(m
−2ρh
n ). (B.19)

By (B.17), (B.18) and (B.19), ∥∥∥b̂n − b∗n∥∥∥ = Op(m
1/2
n n−1/2 +m−ρhn ). (B.20)

By Assumption B2(v), (B.16) and (B.20),

n−1
n∑
t=1

(
ĥn(Xt)− h(Xt)

)2
≤ 2n−1

n∑
t=1

(
ĥn(Xt)− P (Xt)

>b∗n

)2
+ 2n−1

n∑
t=1

(
P (Xt)

>b∗n − h(Xt)
)2

≤ 2λmax(Q̂n)
∥∥∥b̂n − b∗n∥∥∥2 + 2 sup

x∈X

∣∣∣P (x)>b∗n − h(x)
∣∣∣2

= Op(m
−2ρh
n +mnn

−1).

(B.21)

Combined with (B.15), this estimate further implies that

n−1
n∑
t=1

∥∥∥g(Zt, ĥn)− g(Zt, h)
∥∥∥2 = Op(ζ

2
nm

1−2ρh
n + ζ2nm

2
nn
−1), (B.22)
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which verifies Assumption 5(i) with δθ,n = ζnm
1/2−ρh
n + ζnmnn

−1/2. By Assumption B2(ii,iii),

‖g(Zt, h)‖22 = E
[
u2tP (Xt)

>P (Xt)
]
≤ C2/κTr (Qn) ≤ Kmn,

which implies Assumption 5(ii). This finishes the proof. Q.E.D.

Proposition B2. Assumption 6 holds under Assumptions 3 and B2.

Proof of Proposition B2. First, log(ζLn ) = O(log(mn)) is maintained in Assumption B2(iv).

By Assumption B2(v,vi),

sup
x∈X

n1/2
∣∣h(x)− P (x)>b∗n

∣∣
‖P (x)‖

≤ O(n1/2m−ρhn ). (B.23)

Therefore, Assumption 6(i) holds with δ1,n = n1/2m−ρhn , where δ1,n = o(1) under Assumption

B2(vii). Assumption 6(ii) is directly assumed in Assumption B2(ii). Assumptions 6(iii), 6(iv)

and 6(v) have been verified in Lemma B1, Lemma B2 and Lemma B3, respectively; δj,n = o(1),

j ∈ {2, 3, 4}, holds because of Assumption B2(vii). Q.E.D.

S.B.3 Time-series inference for intersection bounds

As mentioned in footnote 16 of the main text, we can verify the high-level conditions in Lemma 5 of

Chernozhukov, Lee, and Rosen (2013), so as to extend their series-based inference for intersection

bounds to the time-series setting. Proposition B3, below, provides the details. Note that we only

need to verify Conditions NS(i)(a) and NS(ii) in Chernozhukov, Lee, and Rosen (2013), because

the other conditions do not involve further complications resulted from the time-series extension.

Proposition B3. Suppose Assumption 6 holds. If we futher have

δ1,n + δ2,n +m1/2
n δ3,n = o(1/ log(n)) (B.24)

and

m1/2
n (δ3,n + δ4,n) = n−b (B.25)

where b > 0 is a constant, then Conditions NS(i)(a) and NS(ii) in Chernozhukov, Lee, and Rosen

(2013) hold.

Proof of Proposition B3. By (A.65), (A.81) and Assumption 6(ii,iii),

n1/2P (x)>(b̂n − b∗n)

σn (x)
=
P (x)>Q−1n Ñn

σn (x)
+Opu(δ1,n + δ2,n +m1/2

n δ3,n), (B.26)
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where Ñn ∼ N (0, An) and Opu (·) denotes a uniformly (in x) stochastically bounded sequence. By

(A.83) and (B.26),

n1/2(ĥn(x)− h(x))

σn (x)
=

P (x)>Q−1n Ñn

σn (x)
+Opu(δ1,n + δ2,n +m1/2

n δ3,n)

=
P (x)>Σ

1/2
n Ñ∗n

σn (x)
+Opu(δ1,n + δ2,n +m1/2

n δ3,n),

where Ñ∗n ≡ A
−1/2
n Ñn is an mn-dimensional standard normal random vector. Condition NS(i)(a)

in Chernozhukov, Lee, and Rosen (2013) then follows from (B.24).

By (A.74) and the relation between the spectral norm and the Frobenius norm of matrices,∥∥∥Σ̂n − Σn

∥∥∥ ≤ m1/2
n

∥∥∥Σ̂n − Σn

∥∥∥
S

= Op(m
1/2
n (δ3,n + δ4,n)).

Condition NS(ii) in Chernozhukov, Lee, and Rosen (2013) then follows from (B.25). Q.E.D.

S.B.4 Technical derivations of the conditional moment restriction in the search

and matching model

In this appendix, we derive the conditional moment restriction (4.9) in the main text. Recall that

the equilibrium is characterized by the following Bellman equations:

Jp = p− wp + δ (1− s)Ep
[
Jp′
]
, (B.27)

Vp = −cp + δq (θp)Ep
[
Jp′
]
, (B.28)

Up = z + δ
{
f (θp)Ep

[
Wp′

]
+ (1− f (θp))Ep

[
Up′
]}
, (B.29)

Wp = wp + δ
{

(1− s)Ep
[
Wp′

]
+ sEp

[
Up′
]}
, (B.30)

the free entry condition Vp = 0 and the Nash bargaining solution

Jp = (Wp − Up) (1− β)/β. (B.31)

Taking a difference between (B.29) and (B.30) yields

Wp − Up = wp − z + δ (1− s− f (θp))Ep
[
Wp′ − Up′

]
. (B.32)

Combining (B.32) with (B.31), we derive

Jp =
1− β
β

(wp − z) + δ (1− s− f (θp))Ep
[
Jp′
]
. (B.33)

From (B.27) and (B.33), we can solve for the wage function

wp = βp+ (1− β) z + βδf (θp)Ep
[
Jp′
]
. (B.34)
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Note that the free entry condition implies

δq (θp)Ep
[
Jp′
]
− cp = 0. (B.35)

Since f (θ) /q (θ) = θ, we can rewrite (B.34) as

wp = βp+ (1− β) z + βθpcp. (B.36)

We can rewrite (B.35) as δEp
[
Jp′
]

= cp/q (θp). Plugging this and (B.36) into (B.27), we deduce

Jp = (1− β) (p− z)− βθpcp + (1− s) cp
q (θp)

. (B.37)

Finally, plugging (B.37) into (B.35) yields

δq (θp)Ep

[
(1− β)

(
p′ − z

)
− βθp′cp′ + (1− s)

cp′

q
(
θp′
)]− cp = 0,

as claimed in (4.8) of the main text. The conditional moment restriction (4.9) is then obtained by

replacing θ and p with observed data.
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