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NOTES AND COMMENTS

GENERALIZED METHOD OF INTEGRATED MOMENTS
FOR HIGH-FREQUENCY DATA

BY JIA LI AND DACHENG XIU1

We propose a semiparametric two-step inference procedure for a finite-dimensional
parameter based on moment conditions constructed from high-frequency data. The
population moment conditions take the form of temporally integrated functionals of
state-variable processes that include the latent stochastic volatility process of an asset.
In the first step, we nonparametrically recover the volatility path from high-frequency
asset returns. The nonparametric volatility estimator is then used to form sample mo-
ment functions in the second-step GMM estimation, which requires the correction of a
high-order nonlinearity bias from the first step. We show that the proposed estimator
is consistent and asymptotically mixed Gaussian and propose a consistent estimator for
the conditional asymptotic variance. We also construct a Bierens-type consistent speci-
fication test. These infill asymptotic results are based on a novel empirical-process-type
theory for general integrated functionals of noisy semimartingale processes.

KEYWORDS: High-frequency data, semimartingale, spot volatility, nonlinearity bias,
GMM.

1. INTRODUCTION

IN THIS PAPER, we study a novel variant of the GMM (Hansen (1982)) for esti-
mating moment equalities using high-frequency intraday data in certain types
of derivative pricing and market microstructure models.2 The moment condi-
tions take the form of temporally integrated functionals of the sample paths
of state variables, such as time, the asset price, and, importantly, the latent
stochastic volatility. Volatility is the primary measure of risk in modern finance
(Engle (2004)), and its unobservability poses a substantial challenge for infer-
ence.

1This paper supersedes our working paper previously circulated under the title “Spot Vari-
ance Regressions,” containing substantially more general theoretical results. We are grateful
to four anonymous referees and a co-editor for many comments and suggestions that have
greatly improved the paper. We also thank Yacine Aït-Sahalia, Torben Andersen, Federico Bandi,
Alan Bester, Tim Bollerslev, Federico Bugni, Marine Carrasco, Chris Hansen, Michael Jansson,
Zhipeng Liao, Oliver Linton, Nour Meddahi, Ulrich Müller, Per Mykland, Andrew Patton, Eric
Renault, Jeff Russell, George Tauchen, Viktor Todorov, Lan Zhang, as well as many seminar
and conference participants at the University of Chicago, Brown University, Toulouse School of
Economics, the 2012 Triangle Econometrics Conference, the 2013 Financial Econometrics Con-
ference at Toulouse School of Economics, the 6th Annual SoFiE Conference, the 2013 workshop
on “Measuring and Modeling Financial Risk with High Frequency Data” at EUI, and the 2014
conference on Inference in Nonstandard Problems for their helpful comments. Li’s work was
partially supported by NSF Grants SES-1227448 and SES-1326819. Xiu’s work was supported in
part by the FMC and IBM Corporation Faculty Scholar Funds at the University of Chicago Booth
School of Business.

2Moment-based estimation can be dated back to Pearson (1894).
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The common solution to the latent volatility problem in the classical time-
series setting is to impose auxiliary parametric restrictions on volatility dynam-
ics; see Bollerslev, Engle, and Nelson (1994) and Ghysels, Harvey, and Renault
(1996) for reviews. However, Andersen, Bollerslev, and Lange (1999) found
that standard parametric volatility models are unsatisfactory for modeling as-
set return and its volatility at high frequencies. It is therefore prudent to con-
sider a nonparametric approach as a complement.3 Indeed, the last decade has
seen a large and burgeoning literature on nonparametric inference for volatil-
ity, which harnesses the rich information in high-frequency data.

We propose a semiparametric two-step estimation procedure based on in-
tegrated moment equalities. In the first step, we use a nonparametric high-
frequency spot volatility estimator (Foster and Nelson (1996), Comte and Re-
nault (1998)) to recover the volatility process. We then use it to form sample
moment functions in the second step, where we estimate the finite-dimensional
parameter of interest by minimizing a GMM criterion function. The inference
procedure is justified in an infill (nonergodic) asymptotic setting for general
semimartingales, which allows for an essentially unrestricted form of serial de-
pendence and nonstationarity for state variables.

While our infill asymptotic setting is nonstandard, the proposed two-step es-
timation procedure formally resembles the semiparametric two-step GMM. As
in conventional semiparametric settings, the resultant estimator for the finite-
dimensional parameter of interest attains the n1/2-rate of convergence (n is the
sample size), although it is built on the nonparametric volatility estimates that
converge at a slower rate.4 That noted, there is an additional novel aspect in
our analysis. On the one hand, it was common in prior work to consider suffi-
cient conditions that ensure the nonparametric ingredient converges at a rate
faster than n1/4, so that the semiparametric estimator depends asymptotically
linearly on the nonparametric ingredient, whereas the nonlinearity bias can
be tuned to be asymptotically negligible.5 On the other hand, it is well known
in high-frequency literature that the optimal convergence rate for (pointwise)
spot variance estimation is only n1/4. As a result, we need to explicitly correct
for the high-order nonlinearity bias term induced by the nonparametric volatil-
ity estimation. A bias-corrected sample moment function is hence used in our
second-step GMM estimation.

3Although it is subject to the risk of misspecification, a tight parametric specification may have
several advantages over a nonparametric approach, such as better statistical efficiency, better
finite and out-of-sample performance, simplicity of interpretation and real-time control, etc.

4See, for example, Newey (1994), Section 8 in Newey and McFadden (1994), and Section 4 in
Chen (2007), as well as many references therein, for results on semiparametric two-step estima-
tion.

5Correcting the nonlinearity bias has been emphasized by Cattaneo, Crump, and Jansson
(2013) in the study of estimators for weighted average derivatives with independent and iden-
tically distributed data.



GMM FOR HIGH-FREQUENCY DATA 1615

We show that the proposed estimator is consistent and has a mixed Gaussian
asymptotic distribution. Overidentification tests and Anderson–Rubin type
confidence sets (Stock and Wright (2000), Andrews and Soares (2010)) are also
discussed as by-products. We also construct a Bierens (1982)-type consistent
specification test based on testing a continuum of integrated moment equali-
ties, for which we develop a novel empirical-process-type asymptotic theory.

This paper extends the empirical scope of high-frequency econometrics on
volatility estimation in an important direction. Although prior work has fo-
cused on the inference for the volatility process per se, the current paper goes
one step further towards economic applications by proposing a general econo-
metric framework for studying the economic relationship between volatility
and other economic variables such as derivative prices and volume, all under
the guidance of economic theory. We model these dependent variables as semi-
martingales contaminated (possibly nonadditively) by noise, where the noise
terms are allowed to be conditionally weakly dependent. Technically speak-
ing, these complications set our empirical-process-type asymptotic theory for
general integrated functionals apart from other recent work such as that by
Jacod and Rosenbaum (2013). Our analysis for the functional heteroscedastic-
ity and autocorrelation consistent (HAC) estimation of the asymptotic covari-
ance function associated with the dependent noise terms is also new because
of the nonstandard infill asymptotic setting.

This paper is organized as follows. Section 2 presents the setting and Sec-
tion 3 presents the main theory. The Supplemental Material to this paper (Li
and Xiu (2016)) contains all proofs.

2. THE SETTING

Section 2.1 formalizes the probabilistic setting underlying our analysis. Sec-
tion 2.2 introduces the econometric model of interest. The following notations
are used in the sequel. The transpose of a matrix A is denoted by Aᵀ. The
(i� j) elements of A, At , An are denoted by Aij , Aij�t , and Aij�n, respectively.
Let λmin(·) denote the smallest eigenvalue. All vectors are column vectors. We
write (a�b) in place of (aᵀ� bᵀ)ᵀ for simplicity. We denote the d-dimensional
identity matrix and the d-vector of 1s by Id and Jd , respectively. The Euclidean
norm is denoted by ‖ · ‖. We use �·� to denote the largest smaller integer func-
tion. A function (x� y) �→ f (x� y) is said to be in Cj�k if it is j (resp. k) times
continuously differentiable in x (resp. y). The symbol ⊗ denotes the Kronecker
product and the product of σ-fields. The Hadamard product is denoted by �.
All limits are for n→ ∞. We write an 
 bn if for some c ≥ 1, bn/c ≤ an ≤ cbn
for all n. We use

P−→ and
L-s−→ to denote convergence in probability and sta-

ble convergence in law, respectively. We use MN to denote the mixed normal
distribution.
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2.1. The Underlying Processes

We observe a data sequence (XiΔn�ZiΔn�YiΔn) at discrete times iΔn, 0 ≤
i ≤ n ≡ �T/Δn�, within a fixed time span [0�T ], with the sampling interval
Δn → 0 asymptotically. In applications, X typically denotes the (logarithmic)
asset price, Z denotes observable state variables, and Y denotes dependent
variables such as prices of derivative contracts, trading volumes, etc. In the
analysis below, we assume that Zt includes time (i.e., t) as its first component
without loss of generality.

Formally, we consider a filtered probability space (Ω(0)�F� (Ft)t≥0�P
(0)) and,

without loss, set F = FT . We endow this probability space with càdlàg (i.e.,
right continuous with left limit) adapted processes Xt , Zt , and βt which, re-
spectively, take values in open sets X , Z , and B. The process βt is not observ-
able; instead, we observe its noisy transform YiΔn in discrete time.

In order to introduce the noise terms, we consider another probability space
(Ω(1)�G�P(1)) that is endowed with a stationary ergodic sequence (χi)i∈Z, where
Z denotes the set of integers and χi takes value in a Polish space with its
marginal law denoted by Pχ. We stress from the outset that we do not as-
sume the sequence (χi)i≥0 to be serially independent. Let Ω=Ω(0) ×Ω(1) and
P= P

(0)⊗P
(1). Processes defined in each space,Ω(0) orΩ(1), are extended in the

usual way to the product space (Ω�F ⊗ G�P), which serves as the probability
space underlying our analysis. For the sake of notational simplicity, we identify
the σ-field Ft with its trivial extension Ft ⊗ {∅�Ω(1)} in the product space. By
construction, the sequence (χi)i∈Z is independent of F .

We model YiΔn as a noisy transform of βiΔn given by

YiΔn = Y (βiΔn�χi)� i= 0� 	 	 	 � n�(2.1)

where Y (·) is a deterministic transform taking values in a finite-dimensional
real space Y . For example, if YiΔn is the observed price of a derivative contract,
(2.1) often has a location-scale form YiΔn = β1�iΔn + β2�iΔnχi, where β1�t repre-
sents the efficient price and β2�t captures the heteroscedasticity of the pricing
error component β2�iΔnχi in the observed price.

The basic regularity condition for the underlying processes is the following.

ASSUMPTION 1: For some constant r ∈ [0�1) and a sequence (Tm)m≥1 of stop-
ping times increasing to ∞, we have the following:

(i) The process Xt is a one-dimensional Itô semimartingale on (Ω(0)�F�
(Ft)t≥0�P

(0)) with the form

Xt =X0 +
∫ t

0
bs ds+

∫ t

0

√
Vs dWs +

∫ t

0

∫
R

δ(s�u)μ(ds�du)�

where the process bt is locally bounded and adapted; the spot variance process Vt
takes values in V ≡ (0�∞);Wt is a standard Brownian motion; δ :Ω×R+ ×R �→
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R is a predictable function and μ is a Poisson random measure with compen-
sator ν of the form ν(dt�du) = dt ⊗ λ(du) for some σ-finite measure λ on R.
Moreover, for a sequence (Jm)m≥1 of λ-integrable deterministic functions, we have
|δ(ω(0)� t� u)|r ∧ 1 ≤ Jm(u) for all ω(0) ∈Ω(0), t ≤ Tm, and u ∈R.

(ii) For a sequence (Km)m≥1 of convex compact subsets of V , Vt ∈ Km for all
t ≤ Tm. For a sequence (K′

m)m≥1 of compact subsets of B ×Z , (βt�Zt) ∈ K′
m for

all t ≤ Tm.
(iii) The process Z̃t ≡ (βt�Zt� Vt) is also an Itô semimartingale on (Ω(0)�F�

(Ft)t≥0�P
(0)) with the form

Z̃t = Z̃0 +
∫ t

0
b̃s ds+

∫ t

0
σ̃s dW̃s

+
∫ t

0

∫
R

δ̃(s�u)1{‖δ̃(s�u)‖≤1}(μ− ν)(ds�du)

+
∫ t

0

∫
R

δ̃(s�u)1{‖δ̃(s�u)‖>1}μ(ds�du)�

where b̃t and σ̃t are locally bounded adapted processes, W̃t is a (multivariate)
Brownian motion, and δ̃ is a predictable function such that for some deterministic
λ-integrable function J̃m :R �→ R, ‖δ̃(ω(0)� t� u)‖2 ∧ 1 ≤ J̃m(u) for all ω(0) ∈Ω(0),
t ≤ Tm, and u ∈ R.

Assumption 1 accommodates many models in finance and is commonly used
for deriving infill asymptotic results for high-frequency data; see, for example,
Jacod and Protter (2012) and many references therein. This assumption allows
for price and volatility jumps and imposes no restriction on the dependence
among various components of studied processes. In particular, the Brownian
shocks dWt and dW̃t can be correlated, which accommodates the leverage ef-
fect (Black (1976)). The constant r serves as an upper bound for the gener-
alized Blumenthal–Getoor index (i.e., the activity) of price jumps. Condition
(iii) says that the spot variance process Vt is an Itô semimartingale with gen-
eral forms of volatility-of-volatility and volatility jumps.6 Although this con-
dition admits many volatility models in finance, it does exclude an important
class of long-memory volatility models that are driven by fractional Brownian
motion; see Comte and Renault (1996, 1998). The generalization in this direc-
tion seems to deserve its own research. It is also important in future work to
allow X to be contaminated with microstructure noise, which is particularly
relevant for studying illiquid stocks; see, for example, Zhang, Mykland, and
Aït-Sahalia (2005), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008),

6Stochastic volatility models with multiple factors are also allowed, provided that each factor
is an Itô semimartingale.
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Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Xiu (2010) for ways
to handle such complications in the data in the context of volatility estima-
tion.

2.2. Integrated Moment Equalities and Examples

The primary interest of this paper is the asymptotic inference for a finite-
dimensional parameter θ∗ that satisfies the following conditional moment
equality:

E
[
ψ

(
YiΔn�ZiΔn� ViΔn;θ∗)|F] = 0 almost surely (a.s.),(2.2)

where ψ : Y ×Z × V �→ R
q1 , q1 ≥ 1, is a measurable function with its func-

tional form known up to the unknown parameter θ∗, and the conditional ex-
pectation integrates out the error term χi in YiΔn (recall (2.1)). We suppose
that the true parameter θ∗ is deterministic and takes value in a compact pa-
rameter space Θ⊂ R

dim(θ). In the sequel, we use θ to denote a generic element
in Θ.

We remark two differences between the conditional moment restriction (2.2)
and that in the classical GMM setting in time series.7 On the one hand, the con-
ditioning information set in (2.2) is the entire σ-field F =FT , instead of the
smaller information set FiΔn . Whereas conditional moment restrictions using
the latter often arise from Euler equations in structural asset pricing models,
(2.2) imposes a stronger exogeneity requirement on the state variables over the
time interval [0�T ]. It should be noted, however, that because the fixed sample
span of our high-frequency analysis is much shorter than that in the classical
long-span setting, the exogeneity requirement in the former is much weaker
than it would be in the latter. We further note that the exogeneity requirement
is quite standard in the literature on noisy high-frequency data.

On the other hand, in the high-frequency setting, we should and do allow
the state variable processesXt , βt , Zt , and Vt to exhibit essentially unrestricted
serial dependence, which is more general than the classical GMM setting for
weakly dependent data. Consequently, we do not use limit theorems for weakly
dependent data as in the classical setting.8 In our setting, the limiting distribu-
tions of sample moments and estimators are mixed Gaussian, which means that

7See Hansen and Singleton (1982); also see the recent extension in the asset pricing setting by
Gagliardini, Gouriéroux, and Renault (2011) and references therein.

8In this aspect, our setting can be related to the common-shock regression of Andrews (2005).
Andrews (2005) considered a setting where data are unconditionally strongly dependent, but
weakly dependent (indeed independent and identically distributed by Assumption 1 there) con-
ditional on a “common shock” σ-field, the role of which is played by F here. Andrews (2005) also
illustrated the necessity of exogeneity conditions, which are analogous to (2.2), for the asymptotic
validity of least-square estimators; see Assumptions CU and CMZ, as well as Corollary 1 in that
paper.
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their sampling variability depends on the realization of state variables, even in
the asymptotic limit.

For concreteness, we consider two empirical examples for model (2.2).

EXAMPLE 1—Derivative Pricing: Let Xt be the price process of an under-
lying asset and Yt be the price of a derivative contract written on it. We set
Zt = (t�Xt� rt� dt), where rt is the short interest rate and dt is the dividend
yield. If, under the risk-neutral measure, the process (Zt�Vt) is Markovian,9
then the theoretical price of the derivative can be written as a real-valued func-
tion f (Zt�Vt;θ∗), where θ∗ arises from the risk-neutral model for the dynamics
of the state variables. Empirically, it is common to model the observed deriva-
tive price Yt as the theoretical price plus a pricing error, that is,

YiΔn = f (ZiΔn� ViΔn;θ∗) + aiΔnχi� E[χi|F ] = 0� E
[
χ2
i |F

] = 1�(2.3)

where at is the stochastic volatility of the pricing errors and the condition
E[χ2

i |F ] = 1 is a scale normalization. Note that (2.3) can be written in the form
of (2.1) with βt ≡ (f (Zt�Vt;θ∗)�at). Settingψ(Yt�Zt�Vt;θ)= Yt−f (Zt�Vt;θ),
we can verify (2.2).

EXAMPLE 2—Volume-Volatility Relationship: Andersen (1996) proposed a
Poisson model for the volume-volatility relationship for daily data, in which
the conditional distribution of daily volume, given the return variance, is a
scaled Poisson distribution. Here, we consider a version of his model for in-
traday data. Let YiΔn denote the trading volume of an asset within the interval
[iΔn� (i+ 1)Δn). Suppose that YiΔn |ViΔn ∼ θ∗

1 · Poisson(θ∗
2 + θ∗

3ViΔn). To cast this
model in the form (2.1), we represent the Poisson distribution with a time-
varying mean in terms of a time-changed Poisson process: let χi = (χi(β))β≥0

be a standard Poisson process indexed by β and then set βt ≡ θ∗
2 + θ∗

3Vt and
YiΔn = θ∗

1χi(βiΔn). This model can be estimated by using the first two condi-
tional moments of Yt . This amounts to setting

ψ(Yt�Vt;θ)=
(

Yt − θ1(θ2 + θ3Vt)
Y 2
t − θ2

1(θ2 + θ3Vt)
2 − θ2

1(θ2 + θ3Vt)

)
�(2.4)

which readily verifies (2.2).

9Assuming that Vt is the only unobservable Markov state variable, this excludes derivative
pricing models with multiple volatility factors under the risk-neutral measure. That said, this
assumption does not imply that (Zt�Vt) is Markov under the physical measure (i.e., P), because
the equivalence between measures imposes little restriction on drift and jump components of
(Zt�Vt). Hence, it is useful to consider the general Itô semimartingale setting (Assumption 1)
under the physical measure even if one imposes additional restrictions under the risk-neutral
measure. See Garcia, Ghysels, and Renault (2010) for a review of empirical option pricing.
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As seen from these examples, empirical applications using high-frequency
data naturally involve the latent spot variance process Vt , but are agnostic re-
garding the precise form of its dynamics (under the probability measure P).
This reaffirms the relevance of including Vt in (2.2) and treating it nonpara-
metrically in our econometric theory. We also note that it is desirable to allow
the studied processes to be nonstationary in these empirical settings. For ex-
ample, option pricing usually includes time and the underlying asset price as
observed state variables, both of which render the process Zt nonstationary.
Moreover, although it may be reasonable to assume that the stochastic volatil-
ity process is stationary in the classical long-span setting for daily or weekly
data, the stationarity assumption is more restrictive for high-frequency data
because of intradaily seasonalities.

We now describe the integrated moment conditions. To simplify notations,
we define

ψ̄(β�z� v;θ)≡
∫
ψ

(
Y (β�χ)� z� v;θ)Pχ(dχ)�(2.5)

so that we can rewrite (2.2) as ψ̄(βiΔn�ZiΔn� ViΔn;θ∗)= 0. Under the mild main-
tained assumption that the process (ψ̄(βt�Zt� Vt;θ∗))t≥0 is càdlàg, the fact that
(2.2) holds for all n is equivalent to the (seemingly stronger) condition

ψ̄
(
βt�Zt�Vt;θ∗) = 0� t ∈ [0�T ]	(2.6)

In order to form integrated moment conditions, we consider a weight func-
tion ϕ : Z × V × Θ �→ R

q2 for some q2 ≥ 1. Let q = q1q2. We then set the
q-dimensional integrated moment function to be

G(θ)≡
∫ T

0
ψ̄(βs�Zs�Vs;θ)⊗ϕ(Zs�Vs;θ)ds	(2.7)

Clearly, (2.6) implies the integrated moment condition:

G
(
θ∗) = 0	(2.8)

Our two-step estimation procedure is to solve a sample version of (2.8).
In the first step, we nonparametrically estimate the latent spot variance pro-
cess Vt . In the second step, we use this nonparametric estimator to form a
sample moment function Gn(·) for G(·). As mentioned in the Introduction,
the nonparametric spot variance estimator converges at a rate no faster than
n1/4 and, hence, leads to a nonlinearity bias that needs to be corrected for ob-
taining asymptotic mixed normality.10 The construction and analysis of this

10The aggregated estimation error in spot variance affects the asymptotic variance (at the n1/2

convergence rate) in the second-step estimation through the first-order expansion term of the
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bias-corrected sample moment function is the key to our asymptotic theory;
see Section 3.1. With Gn(·) in hand, we then choose a sequence of positive
semidefinite weighting matrices Ξn and estimate θ∗ by minimizing the GMM
objective function

θ̂n ≡ argmin
θ∈Θ

Qn(θ)� where Qn(θ)≡Gn(θ)
ᵀΞnGn(θ)	(2.9)

Section 3.2 presents the asymptotic property of θ̂n, along with feasible infer-
ence procedures.

A further question, which we address in Section 3.3, is to conduct a specifi-
cation test for (2.6). Following the insight of Bierens (1982), we carry out this
test by examining whether a continuum of integrated moment conditions holds.
Indeed, by properly choosing a continuum of weight functions, we can rewrite
(2.6) equivalently as a continuum of integrated moment conditions. Our test is
based on their joint asymptotic distribution, for which we need an empirical-
process-type convergence result for the continuum of moment conditions.

We close this section with a few remarks on possible extensions in future
research. First, it is possible to improve the estimation efficiency by using a
continuum of weight functions in the spirit of Carrasco and Florens (2000).
A substantive complication in doing so is that it involves an ill-posed problem
and needs regularization (Carrasco, Florens, and Renault (2007)). Ill-posed
problems remain a very open question in the infill high-frequency setting. In
addition, since our setting also involves a nonparametric first-step estimation
with a convergence rate no faster than n1/4, the extension via Carrasco and Flo-
rens (2000) appears rather nontrivial. More generally, we note that the semi-
parametric efficient estimation in our setting is also an interesting but very
challenging problem. Indeed, semiparametric efficient estimation in the high-
frequency setting is well known to be nonstandard (cf. Bickel, Klaassen, Ritov,
and Wellner (1998)) because of the lack of locally asymptotically normal like-
lihood ratios.11 The efficient estimation of general integrated volatility func-
tionals has been recently studied by Clément, Delattre, and Gloter (2013) and
Renault, Sarisoy, and Werker (2014) under certain models, but these results

estimation equation. The nonlinearity bias arises from the second-order expansion term with
respect to the spot variance estimate, where the latter needs “undersmoothing” so as to ensure
that local diffusive and jump moves in volatility have asymptotically negligible effects; see Jacod
and Rosenbaum (2013) for further discussion.

11That noted, the insight of some recent work on GMM may shed light on future research. In
a setting with IID data, the semiparametric efficiency of the semiparametric two-step GMM is
established by a recent paper of Ackerberg, Chen, Hahn, and Liao (2014). Their efficiency result
is conditional on a given set of moments, which does not concern the optimal choice of instrument
function; see footnote 13 of that paper. For dependent data, Carrasco and Florens (2014) address
the semiparametric efficient GMM estimation in a Markovian setting, but they do not consider
the nonparametric first-step estimation.
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do not have direct implications in our setting because, here, the volatility pro-
cess plays the role of a nuisance component for estimating θ∗, rather than the
estimand of interest.

3. MAIN RESULTS

3.1. The Bias-Corrected Sample Moment Function and Its Asymptotic Properties

We now construct the sample moment function Gn(θ) associated with a
generic function g(y� z� v;θ); for example, in the setting of (2.9), g(·) has the
form g(y� z� v;θ)=ψ(y� z� v;θ)⊗ϕ(z�v;θ). We derive an empirical-process-
type stable convergence for Gn(θ). Because the results of this subsection are
also useful in other applications, we present them in a general form. In par-
ticular, we interpret θ as a generic index of a random function, which is not
necessarily the parameter that will be estimated in later applications (see Sec-
tion 3.3).

We first nonparametrically recover the spot variance ViΔn by using a spot
truncated realized variation estimator (Jacod and Protter (2012)). To this end,
we consider an integer sequence kn of block sizes and a real sequence un of
truncation threshold for eliminating jumps (Mancini (2001)). The spot vari-
ance estimator is then given as follows:12 for each 0 ≤ i≤Nn ≡ �T/Δn� − kn,

V̂iΔn ≡ 1
knΔn

kn∑
j=1

(
Δni+jX

)2
1{|Δni+jX|≤un}� where(3.1)

Δni+jX ≡X(i+j)Δn −X(i+j−1)Δn 	

We further set

ĝn�i(θ)≡ g(YiΔn�ZiΔn� V̂iΔn;θ)�(3.2)

ĝ′′
n�i(θ)≡ ∂2

vg(YiΔn�ZiΔn� V̂iΔn;θ)� i≥ 0	

We then define the bias-corrected sample moment function as

Gn(θ)≡ Δn
Nn∑
i=0

ĝn�i(θ)− Δn

kn

Nn∑
i=0

ĝ′′
n�i(θ)V̂

2
iΔn
	(3.3)

As shown below, the limiting counterpart of Gn(θ) is

G(θ)≡
∫ T

0
ḡ(βs�Zs�Vs;θ)ds�(3.4)

12The estimation of spot variance can be dated at least back to Foster and Nelson (1996) and
Comte and Renault (1998), in a setting without jumps; also see Kristensen (2010).
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where we denote

ḡ(β� z� v;θ)≡
∫
g
(
Y (β�χ)� z� v;θ)Pχ(dχ)	(3.5)

Comparing (3.3) with (3.4), we note that the first term on the right-hand side
of (3.3) is a natural sample-analogue estimator of G(θ). However, this “raw”
estimator does not admit a central limit theorem due to a high-order nonlin-
earity bias, which arises from the nonlinear dependency of g(y� z� v;θ) on v,
combined with the fact that the spot variance can be estimated at a rate no
faster than n1/4. The second term in (3.3) corrects this nonlinearity bias in its
closed form.

We now collect some regularity conditions for studying the asymptotic be-
havior of Gn(·). To this end, it is convenient to introduce a conditional norm
and a conditional semimetric as follows: for p≥ 1, we set⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ḡp(β�z� v;θ)≡
( 2∑
j=0

∫ ∥∥∂jvg(Y (β�χ)� z� v;θ)∥∥pPχ(dχ)
)1/p

�

ρp
(
(β�z� v)�

(
β′� z′� v′);θ)

≡
(∫ ∥∥g(Y (β�χ)� z� v;θ) − g(Y (

β′�χ
)
� z′� v′;θ)∥∥pPχ(dχ))1/p

	

(3.6)

In particular, ρp(·) is useful for quantifying the smoothness of F -conditional
moments (such as the autocovariance) of the sequence (g(Y (βiΔn�χi)�ZiΔn�
ViΔn;θ))i≥0 as functions of the state variables.

ASSUMPTION 2: The following conditions hold for some constants k > 2
and κ ∈ (0�1]: (i) g(y� z� v;θ) is twice continuously differentiable in v; (ii) the
function ḡ(·) : B ×Z × V × Θ �→ R

q is in C2�2�3�2; (iii) for each (β�z� v�θ),
∂θḡ(β�z� v;θ) = ∫

∂θg(Y (β�χ)� z� v;θ)Pχ(dχ) and ∂jvḡ(β� z� v;θ) =∫
∂jvg(Y (β�χ)� z� v;θ)Pχ(dχ) for j ∈ {0�1�2}; (iv) ḡ2k(·; ·) is bounded on

bounded sets; (v) for each bounded set K ⊆ B ×Z × V , there exists some fi-
nite K > 0 such that ρk(z̃� z̃′;θ) ≤ K‖z̃ − z̃′‖κ for all θ ∈ Θ and z̃� z̃′ ∈ K with
‖z̃− z̃′‖ ≤ 1, where z̃ ≡ (β�z� v) and z̃′ ≡ (β′� z′� v′); (vi)

∑2
j=0 ‖∂jvg(y� z� v;θ)−

∂jvg(y� z� v;θ′)‖ ≤ B(y� z� v)‖θ − θ′‖ for all θ, θ′ and (y� z� v) ∈ Y × Z × V
and the function (β�z� v) �→ B̄k(β�z� v) ≡ (

∫
B(Y (β�χ)� z� v)kPχ(dχ))

1/k is
bounded on bounded sets.

ASSUMPTION 3: kn 
 Δ−ς
n and un 
 Δ�n for some ς ∈ ( r2 ∨ 1

3 �
1
2) and � ∈

[ 1−ς
2−r �

1
2).

ASSUMPTION 4: The sequence (χi)i∈Z is stationary and α-mixing with mixing
coefficient αmix(·) such that

∑
j≥1 jαmix(j)

(k−2)/k <∞ for some k> 2.
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ASSUMPTION 5: We have (i) for some k′ ∈ [2�k) with dim(θ) < k′,∑
j≥1 αmix(j)

1/k′−1/k < ∞; (ii) either the process Vt is continuous or dim(θ) <
2(1 − ς)/ς.

Assumption 2 mainly concerns the smoothness of the function g(·), and it
is easy to verify in applications. Note that condition (iii) of Assumption 2 con-
cerns the interchangeability of integration and differentiation, for which suffi-
cient conditions are well known. Unlike in Jacod and Rosenbaum (2013), the
function g(·) is not restricted to having polynomial growth in the spot variance.
This generality is important in applied work. We achieve this by using a proof
technique which is notably different from that used by Jacod and Rosenbaum
(2013).

Assumption 5 is used only for proving the functional central limit theorem
(FCLT) (see Theorem 1(c)). Condition (i) is inspired by Hansen (1996) and is
used for establishing stochastic equicontinuity for α-mixing sequences. Condi-
tion (ii) is sufficient for the stochastic equicontinuity of aggregated error terms
that arise from spot variance estimation. While Assumption 5 restricts the di-
mension of the index θ, we actually only apply the FCLT in this paper with a
one-dimensional index (i.e., τ in Section 3.3), for which Assumption 5 holds
trivially (because ς < 1/2 and k′ ≥ 2). Nevertheless, we prove the FCLT under
this general setting, which may be useful in future work.

Theorem 1, below, shows that Δ−1/2
n (Gn(·) −G(·)) converges stably in law

to an F -conditionally centered Gaussian process.13 We now describe the
asymptotic conditional covariance function of the limiting process. We set, for
θ�θ′ ∈Θ,

S̄g
(
θ�θ′) ≡ 2

∫ T

0
∂vḡ(βs�Zs�Vs;θ)∂vḡ

(
βs�Zs�Vs;θ′)ᵀV 2

s ds�(3.7)

and, for (β�z� v) ∈ B ×Z × V ,

γg�l
(
β�z�v;θ�θ′)(3.8)

≡ Cov
(
g
(
Y (β�χi)� z� v;θ

)
� g

(
Y (β�χi−l)� z� v;θ′))� l ≥ 0�

γ̄g
(
β�z�v;θ�θ′)(3.9)

≡ γg�0
(
β�z�v;θ�θ′) +

∞∑
l=1

(
γg�l

(
β�z�v;θ�θ′) + γg�l

(
β�z�v;θ′� θ

)ᵀ)
	

13Stable convergence in law is stronger than the usual notion of weak convergence. It requires
that the convergence holds jointly with any bounded F -measurable random variable defined on
the original probability space. Its importance for our problem stems from the fact that the limiting
variable of our estimator is an F -conditionally Gaussian process, and stable convergence allows
for feasible inference using a consistent estimator for its F -conditional variance–covariance func-
tion. See Jacod and Shiryaev (2003) for further details on stable convergence.
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We then set

Γ̄g
(
θ�θ′) ≡

∫ T

0
γ̄g

(
βs�Zs�Vs;θ�θ′)ds	(3.10)

We note that γ̄g(β� z� v;θ�θ′) is the “long-run” covariance between the two
sequences g(Y (β�χi)� z� v;θ) and g(Y (β�χi)� z� v;θ′).14

With these notations, the F -conditional asymptotic covariance function of
Δ−1/2
n (Gn(·)−G(·)) can be written as

Σg
(
θ�θ′) ≡ S̄g

(
θ�θ′) + Γ̄g

(
θ�θ′)� for θ�θ′ ∈Θ	(3.11)

We note that the term S̄g(·� ·) captures the sampling variability due to the es-
timator V̂iΔn , and Γ̄g(·� ·) captures the sampling variability due to the serially
dependent random errors χi.

THEOREM 1: Under Assumptions 1–4, the following statements hold:
(a) Gn(θ)

P−→G(θ) uniformly in θ ∈Θ;
(b) for each θ ∈Θ, Δ−1/2

n (Gn(θ)−G(θ)) L-s−→MN (0�Σg(θ�θ));
(c) if Assumption 5 holds in addition, then the sequence Δ−1/2

n (Gn(·)−G(·))
converges stably in law under the uniform metric to a process which, conditional
on F , is centered Gaussian with covariance function Σg(·� ·) given by (3.11).

3.2. Asymptotic Inference for θ∗

In this subsection, we study the estimator θ̂n given by (2.9), where the sample
moment function Gn(·) is defined by (3.3) with

g(y� z� v;θ)=ψ(y� z� v;θ)⊗ϕ(z�v;θ)	
Hence, ḡ(β� z� v;θ) = ψ̄(β�z� v;θ) ⊗ ϕ(z�v;θ) and G(θ) in (3.4) coincides
with that in (2.7). Below, we maintain Assumption 6, where we denoteH(θ)≡∫ T

0 ∂θḡ(βs�Zs�Vs;θ)ds and H ≡H(θ∗).

ASSUMPTION 6: (i) ΞG(θ)= 0 a.s. only if θ= θ∗; (ii) Ξn
P−→Ξ, where Ξ is

an F -measurable (random) matrix that is positive semidefinite a.s.; (iii) θ∗ is in
the interior of the compact set Θ; (iv) the random matrix HᵀΞH is nonsingular
a.s.

14The process γ̄g(βt�Zt�Vt)may be more properly referred to as the local long-run covariance
matrix, in that it is evaluated locally at time t. It arises from a large number of adjacent obser-
vations that are serially dependent (through χi), but all these observations are sampled from an
asymptotically shrinking time window. In other words, γ̄g(βt�Zt�Vt) is long run in tick time, but
local in calendar time.
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Assumption 6 is essentially standard for GMM estimation, though it is
slightly modified so as to accommodate our pathwise inference setting. We
note that condition (i) ensures identification, but that it takes a somewhat non-
standard form because the population moment function G(·) is itself a ran-
dom function. It is instructive to illustrate the nature of this condition in a
linear regression setting. Consider Example 1 with f (z� v;θ) = θ1 + θ2v and
ϕ(v)= (1� v). In this case,

G(θ)=

⎛⎜⎜⎜⎝
T

∫ T

0
Vs ds

∫ T

0
Vs ds

∫ T

0
V 2
s ds

⎞⎟⎟⎟⎠
(
θ∗

1 − θ1

θ∗
2 − θ2

)
	(3.12)

It is easy to see that the identification of θ∗ is achieved as soon as the process
Vt does not remain constant on the interval [0�T ].

The asymptotic behavior of the estimator θ̂n is summarized by Theorem 2
below. With Theorem 1 in hand, we can derive the asymptotics of θ̂n by using
a linearization argument from the classical GMM literature. Indeed, it can be
shown that θ̂n has an asymptotically linear representation:

Δ−1/2
n

(
θ̂n − θ∗) = −(

HᵀΞH
)−1
HᵀΞGn

(
θ∗) + op(1)	(3.13)

From Theorem 1(b), it follows that Δ−1/2
n (θ̂n − θ∗)

L-s−→MN (0�Σ∗), where

Σ∗ ≡ (
HᵀΞH

)−1
HᵀΞΣg

(
θ∗� θ∗)ΞH(

HᵀΞH
)−1
	(3.14)

We now describe a consistent estimator of the F -conditional asymptotic co-
variance matrix Σ∗. We set, for i≥ 0,

m̂n�i(g�θ)≡ 1
kn

kn−1∑
j=0

g(Y(i+j)Δn�Z(i+j)Δn� V̂iΔn;θ)�

δ̂n�i(g�θ)≡ ĝn�i(θ)− m̂n�i(g�θ)�

m̂′
n�i(g�θ)≡ 1

kn

kn−1∑
j=0

∂vg(Y(i+j)Δn�Z(i+j)Δn� V̂iΔn;θ)	

The local estimates m̂n�i(g�θ) and m̂′
n�i(g�θ) are used to approximate the

processes ḡ(βt�Zt� Vt;θ) and ∂vḡ(βt�Zt� Vt;θ), respectively. The variable
δ̂n�i(g�θ) is the locally centered counterpart of ĝn�i(θ); removing the local
mean is useful for analyzing the asymptotic behavior of the HAC estimator
under misspecification, which is needed in Section 3.3. Under correct specifi-
cation, we can use ĝn�i(θ) in place of δ̂n�i(g�θ) without affecting our results.
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We also consider a sequence Bn of integers and a kernel function w(l�Bn) that
satisfy the following.

ASSUMPTION 7: (i) The kernel function w(·� ·) is uniformly bounded and, for
each l ≥ 1, limBn→∞w(l�Bn)= 1; (ii) Bn → ∞ and Bnk−κ/2

n → 0.

We estimate Σg(θ∗� θ∗) by using Σ̂g�n(θ̂n) defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ̂g�n(θ̂n)≡ Ŝg�n(θ̂n)+ Γ̂g�n(θ̂n)� where

Ŝg�n(θ̂n)≡ 2Δn
Nn∑
i=0

m̂′
n�i(g�θ)m̂

′
n�i(g�θ)

ᵀV̂ 2
iΔn
�

Γ̂g�n(θ̂n)≡ Γ̂g�0�n(θ̂n)+
Bn∑
l=1

w(l�mn)
(
Γ̂g�l�n(θ̂n)+ Γ̂g�l�n(θ̂n)ᵀ

)
�

Γ̂g�l�n(θ̂n)≡ Δn
Nn∑
i=l
δ̂n�i(g� θ̂n)δ̂n�i−l(g� θ̂n)ᵀ� l ≥ 0	

(3.15)

The estimator for Σ∗ is given by

Σ̂∗
n ≡ (

Hᵀ
nΞnHn

)−1
Hᵀ
nΞnΣ̂g�n(θ̂n)ΞnHn

(
Hᵀ
nΞnHn

)−1
� where(3.16)

Hn ≡ ∂θGn(θ̂n)	

THEOREM 2: Under Assumptions 1–4, 6, and 7, the following statements hold:
(a) Δ−1/2

n (θ̂n − θ∗)
L-s−→MN (0�Σ∗);

(b) Σ̂∗
n

P−→ Σ∗;
(c) ifΣg(θ∗� θ∗) is nonsingular a.s. andΞ=Σg(θ∗� θ∗)−1, thenΔ−1

n Qn(θ̂n)
L-s−→

χ2
q-dim(θ).

COMMENTS: (i) Part (a) shows the asymptotic mixed normality of the esti-
mator θ̂n at the n1/2-rate. Part (b) shows that the asymptotic F -conditional co-
variance matrix Σ∗ can be consistently estimated by Σ̂∗

n. An intermediate step

of the proof is to show Σ̂g�n(θ̃n)
P−→ Σg(θ

∗� θ∗) for any estimator θ̃n of θ∗ such
that θ̃n = θ∗ + op(B−1

n ). Since Bn = o(Δ−ςκ/2
n )= o(Δ−1/4

n ) under maintained as-
sumptions, any n1/4-consistent estimator of θ∗ is a valid choice for θ̃n. Part (c)
shows that Hansen’s (1982) J-statistic for the overidentification test has the fa-
miliar chi-squared asymptotic distribution in the current setting as well. This
test can be implemented by setting Ξn ≡ Σ̂g�n(θ̃n)−1.

(ii) The HAC estimator Γ̂g�n(θ̂n) is valid for weakly dependent error terms
(χi)i≥0. If it is known a priori that (χi)i≥0 are mutually independent, we can
instead define Γ̂g�n(θ̂n) simply as Γ̂g�0�n(θ̂n).
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Theorem 2, parts (a) and (b), justify constructing confidence sets for θ∗ in
the usual way. We further note that Anderson–Rubin type confidence sets for
θ∗ can also be constructed by inverting tests. This type of confidence sets is
known to be robust to weak identification issues (Stock and Wright (2000),
Andrews and Soares (2010)).15 For concreteness, we sketch the procedure
using the test statistic QCU

n (θ) ≡ Δ−1
n Gn(θ)

ᵀΣ̂−1
g�n(θ)Gn(θ), where CU stands

for continuous-updating (Stock and Wright (2000)). By Theorem 1(b) and
Σ̂g�n(θ

∗)
P→ Σg(θ

∗� θ∗), QCU
n (θ

∗) converges stably in law to a chi-squared distri-
bution with degree of freedom q. For α ∈ (0�1), let cv1−α denote the (1 − α)-
quantile of the limiting chi-squared distribution. It follows that the sequence of
confidence sets CSn ≡ {θ ∈Θ :QCU

n (θ)≤ cv1−α} has asymptotic level 1 −α, that
is, P(θ∗ ∈ CSn)→ 1 − α. Other test statistics can also be used (see Andrews
and Soares (2010) for many examples), but they generally have nonpivotal null
asymptotic distributions. In such cases, the critical values can be obtained via
simulation.

3.3. A Consistent Specification Test

In this subsection, we provide a consistent specification test for the restric-
tion (2.2). Since correct specification is no longer imposed, we now introduce
the pseudo-true parameter θ† through Assumption 8 below, which generalizes
Assumption 6.

ASSUMPTION 8: (i) For some Θ-valued F -measurable random variable θ†, the

function Q(θ) ≡G(θ)ᵀΞG(θ) is uniquely minimized at θ† a.s.; (ii) Ξn
P−→Ξ,

where Ξ is an F -measurable (random) matrix that is positive semidefinite a.s.;
(iii) under correct specification, θ† = θ∗ is in the interior of the compact set Θ;
(iv) the random matrix H(θ†)ᵀΞH(θ†) is nonsingular a.s.

Clearly, θ† coincides with the true parameter θ∗ under correct specification.
In the case of misspecification, θ† in general depends on the realization of the
paths of studied processes and the choice of the weight function ϕ(·). It can be
shown that θ̂n

P−→ θ† by using Theorem 1(a).
Formally, the specification testing problem is to decide in which of the fol-

lowing two sets the observed sample path falls:16

ΩH0 ≡ {
ψ̄

(
βt�Zt�Vt;θ†

) = 0 for all t ∈ [0�T ]}� ΩHa ≡Ω \ΩH0 	(3.17)

15Andrews and Soares (2010) showed that this type of confidence sets has a valid size uni-
formly over a large class of data generating processes under high-level conditions in the standard
long-span setting. The formal study of uniformity demands local asymptotics in the current non-
standard setting, which is beyond the scope of this paper.

16It is now standard in the high-frequency setting to form hypotheses in terms of collections of
sample paths; see Aït-Sahalia and Jacod (2014) for many examples.
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We construct a Bierens-type (Bierens (1982)) consistent specification test by
testing whether a continuum of integrated moment conditions holds.17 To this
end, we consider a family of R-valued weight functions on R of the form t �→
φ(τt), which is indexed by τ ∈ T and the function φ(·) satisfies the following
assumption.

ASSUMPTION 9: φ : R �→ R is a power series such that the set {k ∈ N :
(d/du)kφ(u)|u=0 = 0} is finite and T is a compact subset of R with nonzero
Lebesgue measure.

We set

M(θ�τ)=
∫ T

0
ψ̄(βs�Zs�Vs;θ)φ(τs)ds� τ ∈ T 	

Under Assumption 9, the set ΩH0 can be equivalently written as ΩH0 =
{M(θ†� τ)= 0 for all τ ∈ T }. Below, we carry out the specification test by test-
ing whether the process M(θ†� τ) is identically zero over τ ∈ T .

We consider a functional estimator for (M(θ†� τ))τ∈T given by

Mn(θ̂n� τ)≡ Δn

Nn∑
i=0

(
ψ(YiΔn�ZiΔn� V̂iΔn; θ̂n� τ)

− 1
kn
∂2
vψ(YiΔn�ZiΔn� V̂iΔn; θ̂n� τ)V̂ 2

iΔn

)
φ(iΔnτ)	

We note that Mn(θ̂n� τ) is a bias-corrected sample moment function like (3.3),
except that it also depends on the estimator θ̂n.

The asymptotic property of the process Mn(θ̂n� τ) can be derived by using
Theorem 1, after accounting for the sampling error in θ̂n. In the proof of
Theorem 3 below, we show that Mn(θ̂n� τ)

P→M(θ†� τ) uniformly in τ, so that
Mn(θ̂n� τ) can be used to detect violations of the null hypothesis. Furthermore,
in restriction to ΩH0 (i.e., under the null hypothesis of correct specification),
the sequence Δ−1/2

n Mn(θ̂n� τ) of τ-indexed processes converges stably in law
to a centered mixed Gaussian process ζ̃(·) with the F -conditional covariance
function

C
(
τ�τ′) ≡ [

Iq1

			−D(τ)]Σg̃(τ�τ′)[Iq1

			−D(
τ′)]ᵀ�

17In the standard statistical setting, an important alternative approach to consistent specifica-
tion testing was studied by Härdle and Mammen (1993). The extension in this direction involves
technical tools that are very distinct from ours and, hence, is left for future study.



1630 J. LI AND D. XIU

for which we set

D(τ)≡
(∫ T

0
∂θψ̄

(
βs�Zs�Vs;θ†

)
φ(τs)ds

)
× (
H

(
θ†

)ᵀ
ΞH

(
θ†

))−1
H

(
θ†

)ᵀ
Ξ

and define Σg̃(τ� τ′) as Σg(θ�θ′) in (3.11), but with g(y� z� v;θ) in the latter
replaced by g̃(y� z� v;τ)≡ h(y� z� v;θ†)��(tτ), where

h(y� z� v;θ)≡ (
ψ(y� z� v;θ)�g(y� z� v;θ))�(3.18)

�(tτ)≡ (
Jq1φ(tτ)�Jq

)
	

We estimate the F -conditional covariance function C(τ�τ′) using

Ĉn
(
τ�τ′) ≡ [

Iq1

			− D̂n(τ)
]
Σ̂g̃�n

(
θ̂n� τ� τ

′)[Iq1

			− D̂n

(
τ′)]ᵀ�

where we set

D̂n(τ)≡ ∂θMn(θ̂n� τ)
(
Hᵀ
nΞnHn

)−1
Hᵀ
nΞn

and, recalling (3.18), we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ̂g̃�n
(
θ̂n� τ� τ

′) ≡ Ŝg̃�n
(
θ̂n� τ� τ

′) + Γ̂g̃�n
(
θ̂n� τ� τ

′)�
Ŝg̃�n

(
θ̂n� τ� τ

′) ≡ 2Δn
Nn∑
i=0

(
m̂′
n�i(h� θ̂n)��(iΔnτ)

)
× (
m̂′
n�i(h� θ̂n)��(

iΔnτ
′))ᵀV̂ 2

iΔn
�

Γ̂g̃�n
(
θ̂n� τ� τ

′) ≡ Γ̂g̃�0�n
(
θ̂n� τ� τ

′)
+

Bn∑
l=1

w(l�Bn)
(
Γ̂g̃�l�n

(
θ̂n� τ� τ

′) + Γ̂g̃�l�n
(
θ̂n� τ

′� τ
)ᵀ)
�

Γ̂g̃�l�n
(
θ̂n� τ� τ

′) ≡ Δn
Nn∑
i=l

(
δ̂n�i(h� θ̂n)��(iΔnτ)

)
× (
δ̂n�i−l(h� θ̂n)��(

(i− l)Δnτ′))ᵀ	

(3.19)

Turning to the test, we consider a Kolmogorov-type test statistic of the form

K̂n ≡ sup
τ∈T

max
1≤j≤q1

Δ−1/2
n

∣∣Mj�n(θ̂n� τ)
∣∣√

Ĉjj�n(τ� τ)
	

At significance level α ∈ (0�1), we reject the null hypothesis of correct spec-
ification when K̂n is greater than a critical value cvαn that consistently esti-
mates the F -conditional (1 − α)-quantile of the asymptotic null distribution
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1 Simulate a centered Gaussian process (ζ̃Sim
n (τ))τ∈T with covariance

function Ĉn(·� ·).
2 Compute

K̂Sim
n = sup

τ∈T
max

1≤j≤q1

∣∣ζ̃Sim
j�n (τ)

∣∣√
Ĉjj�n(τ� τ)

	

3 Repeat step 1 and step 2 to generate a large Monte Carlo sample and set
cvαn to be the (1 − α)-quantile of K̂Sim

n in this simulated sample.
Algorithm 1: Critical value of the consistent specification test.

of K̂n. Since the asymptotic null distribution is nonstandard, cvαn does not have
a closed-form expression, but it can be constructed via simulation as detailed
in Algorithm 1. Theorem 3, below, summarizes the asymptotic properties of
the test.

THEOREM 3: Let α ∈ (0�1/2) be a constant. Suppose (i) Assumptions 1–4
and 7–9; (ii) the function ψ satisfies Assumption 2; (iii) infτ∈T λmin(C(τ�τ)) > 0
a.s.; (iv) θ̂n − θ† = op(B

−1
n ). Then the test associated with the critical region

{K̂n > cv
α
n} has asymptotic size α under the null hypothesis and is consistent under

the alternative hypothesis, that is,

P
(
K̂n > cv

α
n |ΩH0

) → α� P
(
K̂n > cv

α
n |ΩHa

) → 1	

COMMENT: Given the results developed in Sections 3.1 and 3.2, the key
additional technical component underlying Theorem 3 is the analysis of the
asymptotic behavior of the test, including that of the estimator Ĉn(·� ·), for pos-
sibly misspecified models. This analysis is done under the (mild) convergence-
rate condition that θ̂n − θ† = op(B

−1
n ), for which n1/4-consistency of θ̂n toward

θ† suffices.
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