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Success in many decision-making scenarios depends on the ability to maximize gains and minimize losses. Even if an agent knows which
cues lead to gains and which lead to losses, that agent could still make choices yielding suboptimal rewards. Here, by analyzing event-
related potentials (ERPs) recorded in humans during a probabilistic gambling task, we show that individuals’ behavioral tendencies to
maximize gains and to minimize losses are associated with their ERP responses to the receipt of those gains and losses, respectively. We
focused our analyses on ERP signals that predict behavioral adjustment: the frontocentral feedback-related negativity (FRN) and two
P300 (P3) subcomponents, the frontocentral P3a and the parietal P3b. We found that, across participants, gain maximization was
predicted by differences in amplitude of the P3b for suboptimal versus optimal gains (i.e., P3b amplitude difference between the least
good and the best gains). Conversely, loss minimization was predicted by differences in the P3b amplitude to suboptimal versus optimal
losses (i.e., difference between the worst and the least bad losses). Finally, we observed that the P3a and P3b, but not the FRN, predicted
behavioral adjustment on subsequent trials, suggesting a specific adaptive mechanism by which prior experience may alter ensuing
behavior. These findings indicate that individual differences in gain maximization and loss minimization are linked to individual
differences in rapid neural responses to monetary outcomes.

Introduction
In the last decade, individual differences in decision behavior
have been linked to neural responses to positive and negative
feedback (Frank et al., 2004; Klein et al., 2007). A common
method for probing these behavioral effects has been the analysis
of two hallmark event-related potentials (ERPs): the frontocen-
tral feedback-related negativity (FRN) and the P300 (P3). The
FRN is elicited by worse-than-expected outcomes (Holroyd and
Coles, 2002), and its magnitude after losing has been found to
predict whether participants will switch their choice on the sub-
sequent trial (Cohen and Ranganath, 2007). In contrast, the P3 is
thought to reflect attentional processes involved in stimulus eval-
uation and memory updating (Donchin and Coles, 1988;
Nieuwenhuis et al., 2005), and is composed of two distinguish-

able subcomponents: the early, frontally distributed P3a and the
late, parietally distributed P3b (Polich, 2007).

Across a number of studies, participants’ relative propensities
to learn to avoid losses versus learning to achieve gains are corre-
lated with the FRN amplitude difference between losses and gains
(Frank et al., 2005, Eppinger et al., 2008, Cavanagh et al., 2011).
However, loss avoidance and gain seeking do not necessarily im-
ply optimal behavior in complex scenarios. For example, online
poker players tend to adopt strategies that increase the frequency
of gains versus losses, although this results in decreased profits
overall since the average magnitude of their losses significatively
exceeds the average magnitude of their gains (Siler, 2010). Rather
than relying on a simple, binary distinction between gains and
losses, optimal decision-making probably relies on brain’s ability
to distinguish the best (optimal) gain from all other gains, and
similarly for losses. Although we hypothesized that this neural
discrimination is reflected in the FRN, we also analyzed the P3
since it has also been found to predict behavioral adjustment
(Chase et al., 2011). A previous study (Venkatraman et al., 2009)
reported brain activity associated with a strategy that maximized
gains and minimized losses versus a strategy that increased the
probability of winning, but no study has so far has reported brain
activity that independently predicts gain maximization and loss
minimization.

Participants performed a decision-making task in which they
selected the magnitude of their wager in response to a pair of
probabilistic outcome-predicting cues on each trial. Gain maxi-
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mization was defined as the ability to
choose the large bet on trials with �50%
probability of winning, and loss minimi-
zation as the ability to choose the small bet
on trials with �50% probability of win-
ning. We predicted that gain maximiza-
tion would correlate, across participants,
with the difference between the FRN elic-
ited by the smallest (worst) and largest
(best) gains, whereas loss minimization
would correlate with the difference be-
tween the FRN elicited by the largest
(worst) and smallest (best) losses. Finally,
to further advance our understanding of
the mechanisms underlying individual
differences in choice behavior, FRN and
P3 responses were assessed in terms of
their ability to directly predict trial-to-
trial behavioral adjustment.

Materials and Methods
Participants. Forty-five healthy, right-handed,
adult volunteers (22 male) participated in this
study (ages, 18 –31 years; mean, 23.05). Partic-
ipants gave written informed consent and were
financially compensated for their time ($15/h).
They received an extra bonus (mean, $12.21;
SD, $7.75) proportional to the points earned
during the experimental session. All proce-
dures were approved by the Duke University
Health System Institutional Review Board.
Four participants were excluded from further
data analysis due to technical difficulties dur-
ing their experimental sessions, leaving a final
sample of 41 participants (20 male).

Stimuli and task. We designed a probabilistic
decision-making task using elements from
the experimental designs of Gehring and
Willoughby (2002) and Frank et al. (2004).
Participants sat in front of a computer screen
and performed 800 trials over the course of a
single experimental session divided into 40
�1.7 min blocks. Subjects were told that each
trial would start with the presentation of two
symbols, and that some symbols tended to pre-
cede losses and other symbols tended to pre-
cede gains. They were instructed to try to learn which symbols were
associated with which outcomes and to use that information to bet either
two points or eight points on each trial. Also, they were told that the
probabilistic relationship between symbols and gains/losses would re-
main constant during the entire task. Subjects were also informed that
although a monetary bonus proportional to the points earned during the
session would be given, no information regarding the conversion from
points to money would be provided until the end of the experiment.
Before data collection, participants completed a 20-trial practice session
using a set of symbols different from that used during data collection.

The temporal sequence of the task as it unfolded over a single trial is
shown in Figure 1 A. Each trial started with the presentation of a pair of
symbols (Higrana characters) and a fixation cross, which were displayed
for 1500 ms. The pair of symbols presented on each trial was randomly
selected, without replacement, from the set of 20 possible pairings of five
unique symbols (Fig. 1 B). Considering that these were right–left coun-
terbalanced, these 20 pairs actually corresponded to 10 unique (non-
matching) combinations of symbols, so that each unique combination
was presented twice per block.

After an interstimulus interval (ISI) jittered between 100 and 300 ms,
two white squares with the numerals “8” and “2” depicting the wager

amount choices appeared randomly on the right and left of the fixation
cross. Participants chose their wager amount for the trial by pressing a
button with the hand corresponding to the side of the screen containing
their wager preference. Feedback concerning the outcome of the trial was
presented after an ISI jittered between 600 and 1000 ms and appeared as
a green box around the chosen number if the participant won on that trial
(i.e., gained that number of points) or as a red box around the chosen
number if the participant lost that number of points. If no response was
made within 1200 ms, the words “no response” and a box corresponding
to losing eight points were presented on the screen. The next trial started
after an intertrial interval jittered between 800 and 1200 ms. Participants
were instructed to maintain fixation on the fixation cross throughout the
experimental runs.

The outcome’s valence (win or loss) on each trial was probabilistically
determined according to the probability of winning [p(win)] associated
with the presented stimulus pair (Fig. 1 B). The p(win) associated with
each pair was calculated as an adjustment from 50% determined by each
symbol: p(win) � 0.5 � pL � pR, where pL and pR are the adjustments
associated with the symbol presented to the left and right of the screen,
respectively (Symbol labeled: A � �0.3, B � �0.15, M � 0, Y � �0.15,
and Z � �0.3). For example, the stimulus pair presented in Figure 1 A

Figure 1. Experimental design. A, In each trial, participants viewed a stimulus pair providing information about the probability
of winning [p(win)] on that trial. Then they chose between a large (8 points) and a small bet (2 points) by pressing a button
corresponding to the side of the screen containing their preference. Feedback was provided as a green box surrounding the wager
amount if the participants won the bet, and as a red box if the participant lost. B, The stimulus pair to be presented on each trial was
randomly selected from a set of 20 possible pairs formed from five different novel symbols, which are labeled A, B, M, Y, and Z here,
and which are referred to by these labels throughout the text. Each stimulus pair was associated with a probability of winning
[p(win)] for that trial as annotated and color coded in the figure, ranging from red to green as p(win) increases. The p(win)
associated with each pair was calculated as an adjustment from 50% determined by each symbol (�0.3, �0.15, 0, �0.15, and
�0.3 for A, B, M, Y, and Z, respectively; for details, see Materials and Methods). Over the course of a block of 20 trials, each symbol
was paired twice with each one of the other symbols, and symbols were never paired with themselves. C, As result of the design,
feedback conveyed information about the valence (gain vs loss) and magnitude (large vs small) of the outcome on the current trial.
Feedback also conveyed information about value of the feedback compared to the outcome that “would have been” if the
alternative decision had been made (relative outcome, worst vs best).
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corresponds to symbol labels A and Y, and following Figure 1 B, p(win)AY

� chance � p(win)A � p(win)Y � 0.5 � 0.3 � 0.15 � 0.65.
Most importantly for our research questions, participants could make

a choice that would influence the magnitude of outcomes, but they had
no control over the valence of the result. Optimal behavior entailed bet-
ting eight points each time that a likely winning pair [i.e., p(win) � 0.5]
was presented, and betting two points each time that a likely losing pair
[i.e., p(win) � 0.5] was presented.

Besides magnitude (small or large) and valence (win or loss), feedback
in the task also conveyed information about the relative value of the
feedback compared to the outcome that “would have been” if the alter-
native wager amount had been selected. This variable, which accords
roughly with intuitions of “rejoice” or “regret,” was labeled as “relative
outcome.” This can be seen in Figure 1C. Thus, the �8 and �2 outcomes
reflect the best possible gain and the best possible loss, respectively, given
that in each case the alternative outcome would be six points worse (i.e.,
�2 and �8, respectively).

Electroencephalogram recording and preprocessing. The electroenceph-
alogram (EEG) was recorded continuously from 64 channels mounted in
a customized, extended coverage, elastic cap (Electro-Cap International;
www.electro-cap.com) using a bandpass filter of 0.01–100 Hz at a sam-
pling rate of 500 Hz (SynAmps; Neuroscan). All channels were refer-
enced to the right mastoid during recording. The positions of all 64
channels were equally spaced across the customized cap and covered the
whole head from slightly above the eyebrows in front to below the inion
posteriorly (Woldorff et al., 2002). Impedances of all channels were kept
below 5 k�, and fixation was monitored with electrooculogram record-
ings. Recordings took place in an electrically shielded, sound-attenuated,
dimly lit, experimental chamber.

Offline, EEG data were exported to MATLAB (MathWorks) and pro-
cessed using the EEGLAB software suite (Delorme and Makeig, 2004)
and custom scripts. The data were low-pass filtered at 40 Hz using linear
finite impulse response filtering, downsampled to 250 Hz, and rerefer-
enced to the algebraic average of the left and right mastoid electrodes. For
each participant, we implemented a procedure for artifact removal based
on independent component analysis (ICA). This approach has been used
in a number of studies (Debener et al., 2005; Eichele et al., 2005; Scheibe
et al., 2010) to obtain EEG data with diminished contribution of ocular/
biophysical artifacts. First, we visually rejected unsuitable portions of the
continuous EEG data. This procedure resulted in the exclusion of 20
trials on average (�SD, 8.36 trials) from the original 800-trial-long data
set for each participant. Second, we separated the data into 1200 ms
feedback-locked epochs, spanning from 400 ms before to 800 ms after the
onset of the feedback stimulus, with a prestimulus baseline period of 200
ms. Third, we performed a temporal infomax ICA (Bell and Sejnowski,
1995). With this analysis, independent components with scalp topog-
raphies and signals that could be assigned to known stereotyped arti-
facts (e.g., blinks) based on their distribution across trials, their
component waveform, and/or their spectral morphologies were re-
moved from the data (Jung et al., 2000a,b; Delorme et al., 2007). The
remaining components were back-projected to the scalp to create an
artifact-corrected data set.

Previous studies have consistently found that the FRN has a fronto-
central distribution with a peak of amplitude over the standard 10 –20
FCz location at �250 ms after feedback onset (Miltner et al., 1997;
Gehring and Willoughby, 2002; Nieuwenhuis et al., 2004). On the other
hand, the P3 has been conceptualized as being formed by two subcom-
ponents: the P3a with a frontocentral distribution and a maximum am-
plitude between 300 and 400 ms following stimulus presentation, and the
P3b with a parietocentral distribution and a peak of amplitude occurring
between 60 and 120 ms later (Nieuwenhuis et al., 2005; Polich, 2007). To
assess the FRN and the P3a we used a region of interest (ROI) cluster of
seven sensors centered on the canonical channel FCz as a frontal ROI. To
assess the P3b we used a parietal ROI cluster of seven sensors centered on
channel Pz.

On frontal sites, the FRN appears superimposed on the P3a, and as
several studies have noted, the FRN peak can be shifted depending on the
amplitude of this frontal P3 (Yeung and Sanfey, 2004; San Martín et al.,
2010; Chase et al., 2011). This is consistent with the idea that scalp-

recorded neuroelectrical activity corresponds to the linear sum of the
activity of a discrete set of neural sources (Baillet et al., 2001). Thus, to
more effectively quantify the FRN amplitude accounting for differences
in the P3-induced baseline, we used a mean amplitude to mean am-
plitude approach. More specifically, the FRN amplitude for each trial
was calculated in the frontal ROI as the average potential across a
204 –272 ms window after feedback (i.e., relative to the feedback stim-
ulus onset) minus the average voltage potential from a short 188 –200
ms window preceding it. (Note that the effective sampling rate was
250 Hz, and thus these window lengths were all multiples of 4 ms.)
This approach accounts in part for the overlap between the FRN and
P3 (cf. Yeung and Sanfey, 2004; Frank et al., 2005; Bellebaum et al.,
2010; Chase et al., 2011).

In addition, given that differences between conditions were in fact
observed before the onset of the FRN, we decided to also include an
earlier window into our analyses. We refer to this activity as the P2,
noting that it may represent an early stage of the slower-wave P3a. We
measured the P2 amplitude on the frontal ROI as the average ERP voltage
potentials from a 152–184 ms postfeedback window. The P3a was quan-
tified as the average potential from a 284 – 412 ms window in the frontal
ROI, and the P3b as the average potential from a 416 –796 ms window in
the parietal ROI, both relative to the prestimulus baseline.

Overview of the data analysis. Through our analyses we wished to ex-
plore the relationship between individual differences in feedback-elicited
brain activity and individual differences in choice behavior, particularly
in gain maximization and loss minimization. However, our paradigm
has learning and choice components that are difficult to distinguish from
each other during the initial part of the experiment. To focus on the
choice components of the processing, we excluded from our analyses the
trials from the first quarter of the experimental session, using only the last
three-quarters of the session, which we took as representative of stable
learned behavior (Fig. 2 A; see below, Results, Behavioral results).

Using behavioral metrics derived from subjects’ choices, we tested the
hypothesis that neural differences between the worst gain (i.e., �2) and
the best gain (i.e., �8) would scale with gain maximization, while the
neural differences between the worst loss (i.e., �8) and the best loss (i.e.,
�2) would scale with loss minimization. In addition, we assessed the
association between the amplitude of ERP components and trial-to-trial
behavioral adjustment.

Behavioral data analysis. To extract individual scores in gain maximi-
zation and loss minimization, we characterized each subject by his/her
observed probability to bet the larger amount on likely winning trials
[p(win) � 0.5], neutral trials [p(win) � 0.5], and likely losing trials
[p(win) � 0.5]. We then expressed these probabilities on a logit-function
scale, � � log( p/1 � p), where p is the probability to bet the larger
amount on a given trial. This logit transform allows for better character-
izations of differences in probability at the low and high ends of the scale.
The � coefficients were estimated for each of the three types of trials for
each participant. For all of our subsequent analyses, the strength of gain
maximization was measured by the � estimate for likely winning pairs:
the more positive that value was for a participant, the more likely the
participant was to bet high on likely winning trials. On the other hand,
the strength of loss minimization was measured by the � estimate for
likely losing pairs multiplied by �1, such that the more positive this value
was for a participant, the more likely the participant was to bet low on
likely losing trials.

Gain maximization, loss minimization, and ERPs for worst versus best
outcomes. Our first ERP data analysis tested the hypothesis that the dif-
ference between the neural responses elicited by feedback stimuli indi-
cating the worst (�2) versus best (�8) gains would scale with gain
maximization, and that the difference between the neural responses elic-
ited by feedback stimuli indicating the worst (�8) versus best (�2) losses
would scale with loss minimization. As such, we computed four ERPs for
each participant, each ERP corresponding to averaged EEG activity time
locked to the presentation of each of the four feedback stimulus types.
After removing the first quarter of the data to minimize the effect of
learning (see above, Overview of the data analysis), 154 trials on average
went into the ERP for �8 (SD, 32.70), 139 into the ERP for �2 (SD,
39.18), 207 trials into the ERP for �2 (SD, 40.01), and 84 trials into the
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ERP for �8 (SD, 35.45). Then we computed the difference in the ERP
signal for conditions �2 minus �8 and �8 minus �2 for each partici-
pant. Finally, we performed a multiple linear regression using gain-
maximization and loss-minimization scores for each participant (i.e.,
�gain-max and �loss-min) as explanatory variables for such ERP differences,
according to the following equations: ERP difference (�2 � �8) �
constant � �gain-max * �gain-max � �loss-min * �loss-min � �, and ERP
difference (�8 � �2) � constant � �gain-max * �gain-max � �loss-min *
�loss-min � �, where � is a vector of error terms.

We performed this analysis separately for the P2, FRN, P3a, and P3b
components. For correction of multiple comparisons, we applied the
stepdown method described by Holm (1979).

ERPs correlates of behavioral adjustment. The last analysis was intended
to assess directly the association between each ERP component and the
behavioral adjustment on subsequent trials. We considered each trial t in
terms of the two cue symbols that were presented (S1t and S2t) and the
bet that was wagered. We then asked whether the wager choice (high or
low) was the same or different on the next trial that presented S1t and/or
S2t. This analysis was done separately for the next appearance of each one
of these symbols, regardless of whether they appeared paired together or
individually with other symbols; that is, a trial on which symbols labeled
A and Y were presented was compared both with the next trial to present
A and the next trial to present Y (which may have been the same trial). We
defined a switch variable that assumed the value 0 if the same bet was
chosen on each of these trials, 1 if the trial with one of the two cue symbols
involved the same bet and the other the opposite, and 2 if neither trial
resulted in the same bet. Note that this particular scoring ignores the
temporal delay between subsequent presentations of the stimuli and pre-
cludes any interaction between the elements of each pair.

Evoked responses corresponding to the P2, FRN, P3a, and P3b com-
ponents were each entered as dependent variables to fit a linear mixed
model using different levels of outcome and adjustment level as fixed
effects and a participant’s identifier (�) as a random effect: ERP � con-
stant � �outcome * �outcome � �adjustment * �adjustment � � � �, where
outcome was a categorical variable with three levels (�2, �2, and �8),
and adjustment level was likewise a categorical variable with two levels (1,
switching for one symbol; 2, switching for both symbols). We used the
�8 outcome and the not-switching condition as constants for the model.
In other words, the � estimates that we report below for the fixed effects
reflect expected deviations from the ERP components elicited by the best
gain (i.e., �8), when such a result was followed by the same choice (i.e.,
a large bet) on the immediately next trial(s) wherein the same cue sym-

bols were presented. For correction of multiple comparisons, we applied
the method described by Holm (1979).

After removing the data from the first quarter of the trials, 49 trials
went into each of these 12 ERPs on average for each subject (SD, 27.64).
The condition with the maximum number of trials across participants
was “not switching after �2” (mean, 93.23; SD, 38.85; range, 11–167),
and the condition with the minimum number of trials was “not switch-
ing after �8” (mean, 20.51; SD, 19.31; range, 8 –109). No condition was
associated with fewer than seven trials for any of the 41 participants
included in the analysis.

Results
Behavioral results
A visual inspection of choice behavior across blocks (Fig. 2A)
suggests that the participants quickly learned the contingencies of
the task. Indeed, an ANOVA on the probability of high bets on
the first block showed that, overall, participants’ choices already
distinguished between trial types within this block (F(2,80) �
5.3993, p � 0.01), with a greater proportion of high bets on positive
trials compared to both neutral (p � 0.02, Tukey’s range post hoc
tests) and negative trials (p � 0.01). However, to minimize the effect
of the early stages of learning, and to instead focus on the choice
behavior effects, all the analyses that we report below were restricted
to the last three-quarters of the experimental session (blocks 11 to
40), when learning had roughly converged on a stable pattern of
choice behavior (Fig. 2A, marking lines).

Gain maximization and loss minimization
As expected, � estimates for the tendency to bet high on likely
winning trials were positive (t(40) � 6.60, p � 0.0001; i.e., subjects
overall chose to bet high on likely winning trials), and � estimates
for the tendency to bet high on likely losing trials were negative
(t(40) � �13.37, p � 0.0001; i.e., subjects overall chose to bet low
on likely losing trials). Estimates of � reflecting the tendency to
bet high on neutral trials were also negative (t(40) � �4.11, p �
0.0005), revealing that subjects generally chose to bet low on
neutral trials (Fig. 2B).

Hereafter, values of the � estimate for the probability of bet-
ting high on likely winning trials will be referred as gain-

Figure 2. Behavioral results. A, Choice behavior for likely winning, neutral, and likely losing trials across blocks. All the analyses were restricted to the last three-quarters of the trials, indicated
here as the area between the vertical dashed lines (shaded areas indicate SEM for each trace). B, The presentation of likely winning pairs was positively associated with the probability of betting high.
Gain maximization was defined as the strength of this association for each participant. The presentation of neutral pairs was negatively associated with the probability of betting high. The
presentation of likely losing pairs was also negatively associated with the probability of betting high. Across participants, loss minimization scores corresponded to the strength of this association
multiplied by �1 (i.e., or, equivalently to the strength of the association between likely losing pairs and the probability of betting low). Error bars indicate SEM. C, Gain-maximization and
loss-minimization scores were positively correlated with each other and independently with the amount of points earned by each participant during the session. Earnings are coded by the size of each
bubble. Participants with low gain-maximization and low loss-minimization scores tend to be represented by smaller bubbles than participants with high scores in such dimensions. The dashed line
distinguishes between participants that were better in gain maximization than in loss minimization (above the line) and those who showed the opposite tendency (below).
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maximization scores for each participant. Similarly, the additive
inverse of the � estimates that reflect the probability of betting
high on likely losing trials (i.e., ��), will be referred to as loss-
minimization scores. Note that most of the participants were
better at loss minimization than gain maximization (Fig. 2C, 35
of the 41 below the dashed line).

By definition, high gain-maximization and high loss-
minimization scores should predict high earnings in our task,
and their net effects on earnings should not differ significantly. As
expected, we found that both gain maximization (r � 0.67, p �
0.0001) and loss minimization (r � 0.70, p � 0.0001) were cor-
related with participant’s earnings. We also found a positive cor-
relation between gain-maximization and loss-minimization
values across subjects (r � 0.37, p � 0.02). Importantly, the last
correlation suggests that we had success in differentiating our
behavioral measures from participants’ overall risk preferences.
Specifically, if gain maximization were referring to risk seeking
and loss minimization were referring to risk aversion, we should
have found a negative correlation between these measures, but
instead we observed a positive correlation.

Finally, to confirm that there was no difference between the
effects of gain maximization and loss minimization in earnings,
we compared the points earned by two groups of participants
identified through a median split procedure. The first group con-
sisted of those participants that had high gain-maximization and
low loss-minimization scores (n � 8), and the second groups
consisted of those participants (n � 8) who showed the opposite
pattern (i.e., low gain-maximization and high loss-minimization
scores). A t test revealed no significant difference in earnings
between these two groups (p � 0.69).

ERP results
ERP responses to monetary feedback
independently predict gain
maximization and loss minimization
across participants
Figure 3 presents the grand-average ERP
waveforms extracted for the four possible out-
comes on each trial. We asked whether indi-
vidual differences in neural responses to
different possible outcomes might correlate
with individuals’ gain-maximization and loss-
minimization scores. Indeed, gain maximi-
zation was positively associated across
subjects with the difference between the
P3b elicited by the worst gains (�2) and
that elicited by the best gains (�8; for sta-
tistics, see Table 1). On the other hand,
loss-minimization scores were positively
associated with the differences between
the amplitudes for the P2, the P3a, and the
P3b elicited by the worst (�8) and best
(�2) losses. In contrast, the amplitude of
the FRN did not significantly correlate
with any of these behavioral measures.

Strikingly, these results show that gain
maximization and loss minimization have
different patterns of association with the
P3b (Fig. 4). The contrast “worst � best”
between the two types of gains was signif-
icantly associated with gain maximization
(� � 2.34, p � 0.0001) but not with loss
minimization (� � �0.56, p � 0.24). The
contrast “worst � best” between the two

types of losses was significantly associated with loss minimization
(� � 3.66, p � 0.0001), but not with gain maximization (� �
�0.74, p � 0.38). To further support this finding, we performed
a stepwise regression procedure. First, we removed loss minimi-
zation as a predictor from our original model to predict the �2 �
�8 P3b differences across participants. We found that the per-
formance of this new model (which included only gain maximi-
zation and constant) was not statistically different from the
performance of the original one (F(1, 38) � 1.45, p � 0.1). How-
ever, when we removed gain maximization as a predictor from
the original model, the new model (which included only loss
minimization and a constant) was significantly outperformed by
the original one (F(1, 38) � 27.14, p � 0.00001). Then, we per-
formed the same procedure to evaluate the association between
loss minimization and the �8 � �2 P3b. We found the opposite
pattern of results. The performance of a model that excluded gain
maximization was not statistically different from the perfor-
mance of the original model (F(1, 38) � 0.79, p � 0.1), but the
original model significantly outperformed a model that excluded
only loss minimization (F(1, 38) � 21.46, p � 0.00005).

In sum, although gain maximization and loss minimization
were correlated at the behavioral level, gain maximization and
loss minimization were associated with different contrasts at the
neural level. Specifically, gain maximization was associated with
the differences in P3b amplitude between the worst (�2) and the
best gain (�8) across participants, while loss minimization was
associated with the differences in P3b amplitude between the
worst (�8) and the best loss (�2).

The results from our original models also suggest a temporal
difference between the neural processing associated with these

Figure 3. Feedback-locked ERPs and their distribution over the scalp. Left, ERP traces, Grand averages for each outcome from a
frontal ROI of seven electrodes centered on FCz and located over frontocentral cortex. Cream-colored rectangles show the time
windows defined for each of the ERP components. The thin rectangle in light green, immediately preceding the FRN time window,
represents the reference latencies for quantifying the FRN amplitude. Shadowed areas correspond to the contrasts presented in the
topographies above. Left, ERP topographies, Distribution of key effects for each ERP component over the scalp and location of the
frontal ROI. The topography of the P2 effect is presented in terms of the �8 minus �2 contrast, whereas the FRN and P3a are
presented in terms of the �8 minus �8 contrast. The topographies were constructed subtracting the average activity for the two
contrast conditions over the specified time window defined for each component. Right, ERP traces, Grand averages from each
outcome from a parietal ROI of seven electrodes centered on Pz and located over the parietal cortex. Right, ERP topographies,
Distribution of key effects for each ERP component over the scalp and location of the parietal ROI. The topography of the P3b effects
is presented in terms of the �8 minus �8 contrast.
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two types of choices, since the neural processing associated with
loss minimization was also found in earlier latencies (i.e., P2 and
P3a time windows), while the first index of neural processing
associated with gain maximization was found much later, in the
416 –796 ms postfeedback window (i.e., P3b).

ERP predictors of behavioral adjustment
Given the previously reported associations between the P3 and
behavioral adjustment (Chase et al., 2011), we asked whether
neural responses in our task predicted changes in behavior on a
trial-to-trial basis. Finding such a relationship would strengthen
the argument that the P3 activity reflects adjustment processes
aimed toward gain maximization and loss minimization. To test
this, we designed a linear mixed model (see Materials and Meth-
ods) using different levels of outcome (�8, �2, �2, �8) and
adjustment level (0, not switching; 1, switching for one symbol; 2,
switching for both symbols) as predictors of neural responses
corresponding to the P2, FRN, P3a, and P3b components.

We found that the P2 elicited by the �8 feedback stimuli was
statistically indistinguishable from the P2 elicited by the outcome
stimuli coded in the constant condition (i.e., �8). On the other
hand, the P2 for �2 and �2 was smaller than the constant P2
(Fig. 3; for statistics, see Table 2). This result is consistent with a
previous study by Goyer et al. (2008), who found that, compared
to small-magnitude outcomes, large-magnitude monetary out-
comes elicited a greater positive potential in pre-FRN latencies
(starting at �150 ms in their case). The FRN was larger (i.e., more

negative) for �8, �2, and �2, compared to the best possible
outcome (�8), which is consistent with previous studies showing
that the FRN responds to feedback along a general good– bad
dimension (for review, see San Martín, 2012). P3a and P3b am-
plitudes showed similar modulations as a function of outcome,
with larger responses to �8 and smaller responses to �2 com-
pared to �8, although the P3a was also smaller for �2 compared
with �8. Overall, these P3 results are consistent with previous
studies showing that the P3 is greater both for large- versus small-
magnitude outcomes, and for suboptimal versus optimal out-
comes (Yeung and Sanfey, 2004; Chase et al., 2011).

Most importantly, both the P3a and P3b amplitudes scaled
with adjustment level (Fig. 5). However, only the relationship
between P3a and the largest adjustment (2, switching for both
symbols) survived our rather conservative approach to multiple
comparisons (Table 2). Importantly, the FRN showed no signif-
icant association with behavioral adjustment, not even according
to uncorrected p values. In sum, the larger the P3a was on a given
trial, the more likely the subjects were to change their choice
behavior on the next appearance of the same symbols.

Discussion
When confronted by choices from among competing options,
simply avoiding losses and seeking gains may be an insufficient
strategy for generating optimal behavior. In other words, to
achieve long-term positive outcomes, decision makers must not
only be concerned with the relative frequency of gains and losses,
but also with the relative magnitude of gains and losses. Previous
behavioral studies have found that deficits in gain maximization
and loss minimization are associated with negative life outcomes
in gambling (Siler, 2010) and depression (Maddox et al., 2012).
Here, we contribute to the identification and functional charac-
terization of the neural mechanisms that may underlie such ef-
fects by showing that the amplitude of two P3 subcomponents
predicted individual differences in gain maximization and loss
minimization (P3b) and the subsequent behavioral adjustment
(P3a). These findings suggest the P3 may reflect brain activity
involved in adjusting choice behavior in support of maximizing
gains and minimizing losses.

Different neural signatures for gain maximization and
loss minimization
Previous studies (Frank et al., 2005; Eppinger et al., 2008;
Cavanagh et al., 2011) have suggested that the ability to learn to
avoid negative outcomes scales with the sensitivity of the FRN to
losses. We used a task in which losses could not be avoided, but
could be minimized, and in which gains could not be ensured,
but could be maximized. From this, we expected to find a disso-
ciation between gain maximization and loss minimization in-
volving the FRN: gain maximization would be associated with the
neural differentiation of gains, whereas loss minimization would

Table 1. Association between ERP contrasts and the variables of gain maximization and loss minimization

ERP contrasts

P2 FRN P3a P3b

�2 � �8 �8 � �2 �2 � �8 �8 � �2 �2 � �8 �8 � �2 �2 � �8 �8 � �2

R 2 0.15 0.31 0.19 0.11 0.24 0.37 0.38 0.37
Model predictors �, p �, p �, p �, p �, p �, p �, p �, p
Constants �0.08, 0.90 �0.65, 0.40 0.23, 0.69 �0.35, 0.67 �0.06, 0.96 0.53, 0.75 �0.89, 0.22 0.12, 0.92
Gain max. 0.52, 0.23 �0.53, 0.30 0.49, 0.21 �0.95, 0.09 2.54, 0.01 �0.66, 0.57 2.34, 2 (10 �5)a �0.74, 0.38
Loss min. �1.05, 0.01 2.00, 2 (10 �4)a �1.1, 0.01 �0.32, 0.54 �2.29, 0.01 4.94, 5 (10 �5)a �0.56, 0.24 3.66, 4 (10 �5)a

aSignificant with a Holm’s corrected alpha level set at 0.05 (for 24 tests).

Figure 4. Neural differentiation between gain maximization and loss minimization. Across
participants, the differential P3b amplitude derived from the contrast between feedback of
worst (least good) versus best gains was associated with the gain maximization scores but not
significatively with the loss minimization. In contrast, the differential P3b signal for worst
versus best (least bad) losses was associated with loss minimization, but not significantly with
gain maximization. This last effect was also found for the P2 and P3a (Table 1). Error bars
correspond to the SE of the � estimates.
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be associated with the neural differentiation of losses. We did
indeed find this pattern of results in the ERP activity, but in the
P3b rather than in the FRN. A possible reason for the discrepancy
between our results and those of the previous studies is that in
those studies, valence and relative outcome information (i.e., best
vs worst outcome relative to the outcome that “would have been”
if the alternative decision had been made) were always correlated,
and the FRN is known to be primarily sensitive to valence (Yeung
and Sanfey, 2004). In contrast, our task distinguished outcome
valence from relative outcome. Accordingly, this manipulation
was able to decouple valence evaluation from relative outcome
information, which thereby allowed us to distinguish the func-
tional processes reflected by the FRN and the P3b.

The differentiation between gain maximization and loss min-
imization that we found in the P3b is in many ways consistent
with the context-updating hypothesis for the P3 (Donchin, 1981;
Donchin and Coles, 1988), which proposes that the P3 reflects the
amount of cognitive resources used during the revision of an
internal model of the environment. Such a model would be re-
vised whenever discrepancies between a stimulus and model-
derived predictions bring the validity of the model into question.
This hypothesis is complemented by the context-updating/locus
coeruleus (LC)–P3 hypothesis (Nieuwenhuis et al., 2005;
Nieuwenhuis, 2011), which builds on the similarities between the
context-updating hypothesis and the role of the LC–norepineph-
rine (NE) system in learning (Aston-Jones and Cohen, 2005; Yu
and Dayan, 2005; Dayan and Yu, 2006), to propose that the P3
reflects cortical activity resulting from phasic modulation by the
LC–NE system.

In considering the application of this
model to the present study, it indeed
seems likely that the participants would
have been dynamically updating an inter-
nal model of the association between var-
ious symbols and the probability of
winning [p(win)] that informed decisions
on each trial. In this scenario, high gain-
maximization scores would be associated
with a strong tendency to modify repre-
sentations leading to future choices likely
to produce suboptimal gains while main-
taining representations leading to choices
that maximize gains. According to the
context-updating/LC–P3 hypothesis, this
would be reflected in a large P3b for sub-
optimal compared to optimal gains (i.e.,
�2 � �8), as was the case. On the other
hand, high loss-minimization scores
would be associated with a tendency to
modify representations leading to choices
likely to produce suboptimal losses, while

maintaining representations leading to choices that minimize
losses. According to the context-updating/LC–P3 hypothesis,
this would be associated with a large P3b for suboptimal com-
pared to optimal losses (i.e., �8 � �2), as was also the case.
Below we discuss the additional analyses that advance a mecha-
nistic explanation of these results.

P3 sensitivity to large magnitude and choice bias
The P3 response has been found previously to be an index of
attentional allocation (Schupp et al., 2004; Gao et al., 2011). In
our study, the findings of positive-polarity feedback-magnitude
effects starting rather early (P2) and lasting for a long period (P3a
and P3b, where large-magnitude outcomes were, overall, associ-
ated with large ERP amplitudes) suggests that people pay more
attention to large outcomes. Large outcomes probably induce
greater arousal than small ones because they have a greater impact on
cumulative earnings in economic scenarios. Neuroimaging studies
have identified a number of regions that are sensitive to outcome
magnitude, including the orbitofrontal cortex, insula, and ventral
striatum (Elliott et al., 2000; Knutson et al., 2000; Breiter et al., 2001;
Delgado et al., 2003). Although these frontal and subcortical regions
may not directly contribute to the outcome-sensitive P3 subcompo-
nents reported here (i.e., as generators), some of these regions may
be involved in allocating additional cognitive resources to the pro-
cessing of large outcomes, which may in turn be reflected by the P3
activity.

This additional allocation of attention to large-magnitude
outcomes may explain why participants were overall better at loss

Table 2. Association between ERP components and the variables outcome and behavioral adjustment

ERP components

P2 FRN P3a P3b

R 2 0.05 0.11 0.15 0.18
Model predictors �, p �, p �, p �, p
Constants 6.81, 4 (10 �47)a 1.95, 3 (10 �11)a 11.3, 1 (10 �35)a 5.90, 6 (10 �31)a

Outcome �2 �1.37, 7 (10 �8)a �1.16, 9 (10 �7)a �1.61, 5 (10 �5)a 0.18, 0.24
Outcome �2 �1.9, 3 (10 �13)a �1.53, 2 (10 �10)a �3.36, 1 (10 �15)a �1.51, 1 (10 �8)a

Outcome �8 0.01, 0.49 �2.70, 2 (10 �16)a 3.88, 1 (10 �17)a 3.29, 1 (10 �14)a

Adjustment 1 0.42, 0.0302 0.19, 0.18 0.75, 0.02 0.27, 0.12
Adjustment 2 0.32, 0.09 �0.10, 0.31 1.02, 0.002a 0.42, 0.03
aSignificant with a Holm’s corrected alpha level set at 0.05 for 24 tests.

Figure 5. Feedback-locked ERPs as a function sequential behavioral adjustment. The ERP traces show the effect of (future)
behavioral adjustment on the P2, FRN, and P3a (left) and P3b (right) amplitudes. The P3a subcomponent significantly predicted
whether participants would switch choice behavior on the subsequent trial(s) presenting the same symbols. For example, if the
current trial presented the symbols M and Z and the participant chose 8 as the wager amount, then the larger the P3a, the larger the
probability of choosing 2 on the next presentation of M and Z, either if M and Z are presented paired or unpaired on their subsequent
occurrences.
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minimization than gain maximization. Specifically, an increased
amount of cognitive resources marshaled in response to large
outcomes might benefit loss minimization by selectively enhanc-
ing the processing of large-magnitude outcomes that indicate the
need for behavioral adjustment (i.e., �8 is not just a negative
outcome but also a large-magnitude one). On the other hand,
gain maximization requires adjusting behavior after a small-
magnitude outcome (i.e., �2, the suboptimal gain) and thus
would not benefit from an attentional bias toward large-
magnitude outcomes.

P3 subcomponents predict behavioral adjustment
We found that the P3a, rather than the FRN, predicted behavioral
adjustment between trial occurrences in the trial sequence in
which the same symbols were presented. The P3b also tended to
distinguish between the absence of adjustment and the largest
adjustments, but such difference did not survive our conservative
method of correcting for multiple comparisons. We propose an
interpretation of these results that is also consistent with the con-
text-updating/LC–P3 hypothesis, namely, that decisions on each
trial were informed by an internal model of the symbol/p(win)
contingencies, and the P3 amplitude reflects the extent of the
feedback-triggered revision of such a model.

With respect to the roles of the FRN and the P3 in feedback-
guided decision making, our results suggest that the P3 is in-
volved in using outcome-predicting cues to adjust behavior when
the goal is maximizing gains and minimizing losses, whereas the
FRN might be involved in using such cues when the goal is ap-
proaching gains and avoiding losses (Frank et al., 2005). An issue
for future research will be to determine how the behavioral goals
and context of the task affect the relative involvement of different
brain signals in feedback-guided decision making.

Time course of feedback processing
The temporal resolution of ERPs allows us to propose a time
course of feedback processing. According to its distribution over
the scalp, and in line with previous studies (Yeung and Sanfey,
2004; Goyer et al., 2008; San Martín et al., 2010), we interpret the
P2 activity (�180 ms after feedback onset) as an early stage of the
P3, probably preceding stimulus awareness (Sergent et al., 2005;
Del Cul et al., 2007) and related to an implicit appreciation of the
task relevance of the stimulus (Potts et al., 2006). As our results
suggest, such appreciation can be biased (e.g., greater attentional
sensitivity toward large-magnitude outcomes), and according to
our interpretation it can selectively enhance later stages of feed-
back processing. The FRN (�250 ms) seems to index the evalu-
ation of outcome value (“how much value was acquired/lost”),
presumably in terms of a reward prediction error (Holroyd and
Coles, 2002). Such a mechanism might not directly adjust behav-
ior, but might rather inform subsequent processes that update
the representation of probabilistic contingencies. We interpret
the P3 amplitude as reflecting such revisions. Interestingly, recent
work has been able to accurately simulate the P3 under the as-
sumption that it is driven, in part, by precomputed prediction
errors (Feldman and Friston, 2010). In line with the context-
updating/LC–P3 hypothesis, the P3 amplitude may reflect the
amount of attention engaged during the feedback-induced revi-
sion of an internal model of the environment that informs choice
behavior. During the course of the P3, the P3a (�350 ms) may
serve as a link between a stimulus-driven attentional process that
recruits a frontal circuit initially indexed by the P2/early P3 and a
memory updating process that recruits a temporoparietal circuit
and that is indexed by the P3b (�450 ms) (Polich, 2007).

Overall, our results suggest that the P3 response to mone-
tary outcomes reflect an adaptive mechanism by which prior
experience may alter ensuing choice behavior. Moreover, our
results suggest that individual differences in this process, as
reflected in the P3, are linked to individual differences in gain
maximization and loss minimization during economic deci-
sion making.
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