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SUMMARY

Adaptive decision making in real-world contexts often
relies on strategic simplifications of decision prob-
lems. Yet, the neural mechanisms that shape these
strategies and their implementation remain largely
unknown. Using an economic decision-making task,
we dissociate brain regions that predict specific
choices from those predictingan individual’s preferred
strategy. Choices that maximized gains or minimized
losses were predicted by functional magnetic reso-
nance imaging activation in ventromedial prefrontal
cortex or anterior insula, respectively. However,
choices that followed a simplifying strategy (i.e.,
attending to overall probability of winning) were asso-
ciated with activation in parietal and lateral prefrontal
cortices. Dorsomedial prefrontal cortex, through
differential functional connectivity with parietal and
insular cortex, predicted individual variability in stra-
tegic preferences. Finally, we demonstrate that robust
decision strategies follow from neural sensitivity to
rewards. We conclude that decision making reflects
more than compensatory interaction of choice-related
regions; in addition, specific brain systems potentiate
choices depending on strategies, traits, and context.

INTRODUCTION

The neuroscience of decision making under risk has focused on

identifying brain systems that shape behavior toward or against

particular choices (Hsu et al., 2005; Kuhnen and Knutson, 2005;

Platt and Huettel, 2008). These studies typically involve compen-

satory paradigms that trade two decision variables against each

other, as when individuals choose between a safer, lower-value

option and a riskier, higher-value option (Coricelli et al., 2005; De

Martino et al., 2006; Huettel, 2006; Tom et al., 2007). Activation in

distinct regions reliably predicts the choices that are made:

increased activation in the anterior insula follows risk-averse

choices (Paulus et al., 2003; Preuschoff et al., 2008) and

increased activation in the ventromedial prefrontal cortex

(vmPFC) and striatum predicts risk-seeking choices (Kuhnen

and Knutson, 2005; Tobler et al., 2007). In contrast, prefrontal
and parietal control regions support executive control processes

associated with risky decisions, as well as the evaluation of risk

and judgments about probability and value (Barraclough et al.,

2004; Huettel et al., 2005; Paulus et al., 2001; Sanfey et al.,

2003). These and other studies have led to a choice-centric

neural conception of decision making: tradeoffs between deci-

sion variables, such as whether someone seeks to minimize

potential losses or maximize potential gains, reflect similar trade-

offs between the activation of brain regions (Kuhnen and Knut-

son, 2005; Loewenstein et al., 2008; Sanfey et al., 2003). Accord-

ingly, individual differences in decision making have been

characterized neurometrically by estimating parameters associ-

ated with a single model of risky choice and identifying regions

that correlate with individual differences in those parameters

(De Martino et al., 2006; Huettel et al., 2006; Tom et al., 2007).

Yet, following a purely compensatory approach to decision

making would require substantial computational resources,

especially for complex decision problems that involve multiple

decision variables. It has become increasingly apparent that

people employ a variety of strategies to simplify the representa-

tions of decision problems and reduce computational demands

(Camerer, 2003; Gigerenzer and Goldstein, 1996; Kahneman

and Frederick, 2002; Payne et al., 1992, 1988; Tversky and Kah-

neman, 1974). For example, when faced with a complex decision

scenario that could result in a range of positive or negative mone-

tary outcomes, some individuals adopt a simplifying strategy that

deemphasizes the relative magnitudes of the outcomes but maxi-

mizes the overall probability of winning. Other individuals empha-

size the minimization of potential losses or the maximization of

potential gains in ways consistent with more compensatory

models of risky choice such as expected utility maximization

(Payne, 2005). Adaptive decision making in real-world settings

typically involves multiple strategies that may be adopted based

on the context and computational demands of the task (Giger-

enzer and Goldstein, 1996; Payne et al., 1993). As noted above,

there has been considerable research on identifying brain

systems that shape behavior toward or against particular choices

(risky or safer gambles); however, much less is known about the

neural mechanisms that underlie inter- and intraindividual vari-

ability in decision strategies. We sought to address this limitation

in the present study by dissociating choice-related and strategy-

related neural contributors to decision making.

We usedan incentive-compatibledecision-making task (Payne,

2005) that contained economic gambles with five rank-ordered
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outcomes, ranging from large monetary losses to large monetary

gains (Figure 1). There were three types of choices: gain maxi-

mizing (Gmax), loss minimizing (Lmin), or probability maximizing

(Pmax). Making a Gmax choice increased the magnitude of the

largest monetary gain (i.e., the most money that could be won),

whereas making a Lmin choice reduced the magnitude of the

largest monetary loss (i.e., the most money that could be lost).

The gambles were constructed so that these two choices (Gmax

and Lmin) were generally consistent with a compensatory strategy

(see Supplemental Experimental Procedures for a discussion of

model predictions), such as following expected utility theory

and/or rank-dependent expectation models like cumulative pros-

pect theory (Birnbaum, 2008; Payne, 2005; Tversky and Kahne-

man, 1992). On the other hand, making a Pmax choice increases

the overall probability of winning money compared to losing

money. Therefore,suchchoiceswould beconsistentwitha simpli-

fying strategy (e.g., ‘‘maximize the chance of winning’’) that

ignores reward magnitude. Finally, we characterized our subjects’

strategic preferences according to their relative proportion of

simplifying (Pmax) versus compensatory (Gmax and Lmin) choices.

Such a definition positions the two strategies as the end points

of a continuum with a high value indicating an individual’s prefer-

ence for a simplifying strategy and a low value indicating a prefer-

ence for a compensatory strategy. We emphasize that, as defined

operationally here, strategies for decision making may be either

explicit or implicit.

To distinguish neural mechanisms underlying choices from

those underlying the strategies that generate those choices,

Figure 1. Experimental Task and Behavioral Results

(A) Subjects were first shown, for 4–6 s, a multiattribute mixed gamble consist-

ing of five potential outcomes, each associated with a probability of occur-

rence. Then, two alternatives for improving the gambles were highlighted in

red, whereupon subjects had 6 s to decide which improvement they preferred.

Finally, after two arrows identified the buttons corresponding to the choices,

subjects indicated their choice by pressing the corresponding button as

soon as possible. Here, the addition of $20 to the central, reference outcome

would maximize the overall probability of winning (Pmax choice), whereas the

addition of $20 to the extreme loss would reflect a Lmin choice. The next trial

appeared after a variable interval of 4, 6, or 8 s. In other trials, subjects could

have a chance to add money to the extreme gain outcome, reflecting a Gmax

choice.
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we collected several forms of behavioral and functional magnetic

resonance imaging (fMRI) data. Consistent with many previous

studies (De Martino et al., 2006; Sanfey et al., 2003), we charac-

terized brain regions as choice related if the magnitude of their

activation predicted a specific behavior (e.g., selecting the

option providing the largest gain) throughout our subject sample.

In contrast, we characterized brain regions as strategy related

based on their association with individual difference measures;

i.e., if the magnitude of their activation depended on whether

or not an individual engages in their preferred strategy, regard-

less of which of the choices that entails. Moreover, strategy-

related regions should exert a modulatory influence on choice-

related regions. A strong candidate for a strategy-related region

is the dorsomedial prefrontal cortex (dmPFC), which has been

shown to play an important role in tasks involving decision

conflict, as well as in making decisions that run counter to

general behavioral tendencies (De Martino et al., 2006; Pochon

et al., 2008). Moreover, this region exhibits distinct patterns of

functional connectivity to affective and cognitive networks (Mer-

iau et al., 2006), making it a candidate for shaping activation in

those networks based on context and computational demands

(Behrens et al., 2007; Kennerley et al., 2006).

Using large-sample behavioral experiments, we first demon-

strate systematic individual variability in decision making, with

a significant bias toward choices that maximize the overall prob-

ability of winning (i.e., toward a simplifying strategy). Then, using

fMRI, we show that distinct neural systems underlie choices

made on each trial and variability in strategic preferences across

individuals. Finally, we also demonstrate a striking relation

between neural sensitivity to monetary outcomes and individual

differences in strategic preferences, indicating that robust deci-

sion strategies may follow from the neural response to rewards.

These results demonstrate that decision making under uncer-

tainty does not merely reflect competition between brain regions

predicting distinct decision variables; in addition, the relation

between neural activation and subsequent decisions is medi-

ated by underlying strategic tendency.

RESULTS

We conducted two behavioral experiments (n1 = 128 and n2 = 71)

and one fMRI experiment (n = 23), all involving the basic para-

digm illustrated in Figure 1. Subjects were young adult volun-

teers from the Duke University community (see Supplemental

Experimental Procedures for details on the experiments).

Research was conducted under protocols approved by the Insti-

tutional Review Boards of Duke University and Duke University

Medical Center.

Across both behavioral experiments (details available in

Supplemental Experimental Procedures), we found a significant

bias toward the Pmax choices (Figure S1 available online), ex-

tending prior findings in the behavioral literature (Payne, 2005).

In addition to demonstrating the robustness of the preferences

toward the Pmax choices, the second experiment also indicates

that this bias can be reversed or accentuated by experimental

manipulations. The findings from these studies are also consis-

tent with Pmax choice representing a simplifying strategy (see

Supplemental Experimental Procedures). Finally, importantly
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for the goals of our imaging studies, we also found substantial

interindividual variability: some subjects nearly always preferred

a simplifying strategy (choosing the Pmax option in most trials);

others nearly always preferred a compensatory strategy

(choosing the Gmax or Lmin options in most trials), while still others

switched strategies on different trials resulting in both intra- and

intersubject variability in strategy (Figure S2).

Variability in Underlying Neural Mechanisms
We used high-field (4T) fMRI to evaluate the neural systems

associated with strategic decision making under uncertainty.

We adapted the basic design from our behavioral experiments

to the fMRI setting. Subjects first made a series of choices

without feedback. On each trial, subjects initially viewed the

decision options and then learned the assignment of choices

to responses, to eliminate any potential confounding effects of

response selection (Pochon et al., 2008). Then, following the

completion of all decision trials, we resolved a set of those trials

for real monetary rewards. This allowed us to measure reward-

related activation without altering subsequent decisions through

learning.

Consistent with our two behavioral experiments, fMRI subjects

made Pmax choices on approximately 70% of the trials when the

choices were matched for expected value. Moreover, the propor-

tion of Pmax choices was systematically modulated by the trade-

off in expected value between the choices, indicating that

subjects were not simply insensitive to expected value (Table

S1). We evaluated intrasubject choice consistency using split-

sample analysis. We split each subject’s choices into samples

from odd-numbered runs and from even-numbered runs. There

was a strong correlation between the proportion of Pmax choices

in each sample (r = 0.61; p < 0.01), even without considering other

factors like relative expected value. For comparison, we used

a similar split-sample approach to estimate subject-specific

Figure 2. Distinct Sets of Brain Regions

Predict Choices

(A) Increased activation in the right anterior insula

(peak MNI space coordinates: x = 38, y = 28, z = 0)

and in the vmPFC (x = 16, y = 21, z = �23) pre-

dicted Lmin and Gmax choices, respectively, while

increased activation in the lateral prefrontal cortex

(x = 44, y = 44, z = 27) and PPC (x = 20, y =�76, z =

57) predicted Pmax choices. Activation maps show

active clusters that surpassed a threshold of z >

2.3 with cluster-based Gaussian random field

correction.

(B–D) Percent signal change in these three regions

to each type of choice. Error bars represent ± 1

standard error of the mean for each column.

parameters for canonical expected utility

and cumulative prospect theory models

of decision making (see Supplemental

Experimental Procedures). We found

that model parameters estimated from

one half of the experimental data did not

significantly classify choices within the

other runs (Figure S3). Finally, the propor-

tion of Pmax choices decreased with increasing self-reported

tendency to maximize (r = �0.67, p < 0.001; Figure S4).

Neural Predictors of Choices
Our initial analyses identified brain regions whose activation was

driven, across subjects and trials, by the selected choice. There

was greater activation in anterior insular cortex (aINS) and vmPFC

(Figure 2A) for the compensatory magnitude-sensitive choices

(combined across Gmax and Lmin). These regions are typically

associated with emotional function,particularly the affectiveeval-

uation of the outcome of a choice in decision-making tasks

(Bechara et al., 2000; Dalgleish, 2004; Paulus et al., 2003; Sanfey

et al., 2003). We subsequently performed a region of interest (ROI)

analysis to explore specifically the differences in activation

between Gmax and Lmin. Note that this analysis was restricted,

a priori, to a subset of 15 subjects with a sufficient number of

choices in each condition of interest. We found a clear double

dissociation between aINS and vmPFC: Gmax choices were asso-

ciated with greater activation within vmPFC, whereas Lmin

choices were associated with increased activation in aINS

(Figures 2B and 2C). Conversely, Pmax choices resulted in

increased activation in the dorsolateral prefrontal cortex (dlPFC)

and posterior parietal cortex (PPC; Figure 2A and Table S2),

regions typically associated with executive function and decision

making under risk and uncertainty (Bunge et al., 2002; Huettel

et al., 2005, 2006; Paulus et al., 2001). These regions showed

greater activation for Pmax choices compared to both Gmax and

Lmin, but no difference between Gmax and Lmin options (Figure 2D).

Neural Predictors of Strategic Variability
across Individuals
We next investigated whether there were brain regions whose

activation varied systematically with individual differences in

strategic preferences. To do this, we entered each subject’s
Neuron 62, 593–602, May 28, 2009 ª2009 Elsevier Inc. 595
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strategic preference as a normalized regressor into the across-

subjects fMRI analyses of the contrast between choices. Stra-

tegic variability predicted individual differences in activation in

two clusters (Figures 3A and 3B): the dmPFC and the right infe-

rior frontal gyrus (rIFG). Within these regions, there was no signif-

icant difference in activation between the choices. However,

there was a significant interaction: activation increased when

an individual with preference for the more compensatory

strategy made a simplifying Pmax choice and vice versa. We

focus on the dmPFC in the rest of this manuscript, based on

our prior hypothesis about the role of this region as well as the

fact that only this region significantly predicted trial-by-trial

choices (as discussed later).

We next evaluated whether dmPFC activation might shape

activation in those regions that predicted specific choices (i.e.,

Pmax: dlPFC and PPC; Lmin: aINS; Gmax: vmPFC), using seed-

voxel-based whole-brain functional connectivity analyses. This

would provide additional converging evidence for the role of this

region in determining choice behavior, contingent on preferred

strategies. We found a double dissociation in the functional

connectivity of dmPFC depending on the choice made by the

subject (Figures 3C and 3D). When subjects made Pmax choices,

connectivity with dmPFC increased in dlPFC and PPC, whereas

when subjects made more magnitude-sensitive compensatory

Figure 3. dmPFC Predicts Strategy Use

during Decision Making

(A and B) Activation in dmPFC (x = 10, y = 22, z =

45; indicated with arrow) and the rIFG exhibited

a significant decision-by-trait interaction, such

that the difference in activation between compen-

satory and simplifying choices was significantly

correlated with preference for simplifying strategy

(mean-subtracted) across individuals.

(C and D) Functional connectivity of dmPFC varied

as a function of strategy: there was increased

connectivity with dlPFC (and PPC) for simplifying

choices and increased connectivity with aINS

(and amygdala) for compensatory choices. Error

bars represent ± 1 standard error of the mean for

each column.

choices, connectivity increased in the

aINS (and amygdala, but not in vmPFC).

Moreover, the relative strength of the

connectivity between dmPFC and these

regions was significantly associated with

individual differences in strategy prefer-

ences across subjects (Figure S5). Finally,

we also conducted additional analyses to

rule out the possibility that dmPFC activa-

tion was related to response conflict, as

has been found in several previous studies

(Botvinick et al., 1999; Kerns et al., 2004;

details can be found in Supplemental

Experimental Procedures).

Thus, we provide a broad range of

converging results, drawn from overall

activation, functional connectivity, factor

analysis of behavioral data (see Supplemental Experimental

Procedures), association with individual differences in strategy,

and trial-by-trial analysis (below), that together indicate that

dmPFC supports strategic considerations during decision mak-

ing by shaping behavior toward or against individual strategic

preferences.

Integrating Choices and Strategies to Predict Behavior
We used the brain regions implicated above as choice related

(aINS, vmPFC, dlPFC, and PPC) or strategy related (rIFG and

dmPFC) to predict choices on individual trials. We extracted,

for every trial for every subject, the activation amplitude in

each of these ROIs, along with the decision made on that trial.

We used a hierarchical logistic regression approach to evaluate

which of these regions were significant and independent predic-

tors of trial-to-trial decisions (Table 1).

We first entered into the model subjects’ overall preference for

the simplifying strategy (proportion of Pmax choices). We found,

unsurprisingly, that this was a highly significant predictor of

trial-to-trial choices. Next, we used activation values from our

brain ROIs, considering them both in isolation and with strategic

preference already entered into the model. We found that activa-

tion in insular cortex was a significant predictor of magnitude-

sensitive choices, while parietal activation was a significant
596 Neuron 62, 593–602, May 28, 2009 ª2009 Elsevier Inc.
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Table 1. Predicting Trial-by-Trial Choices from Trait and Neural Data

Model Variables Coefficient (SE) Wald (Significance) Model Significance (c2) Model Fit (Nagelkerke R2)

Trait 76.09 0.069

Constant �0.14 (0.05) 6.19 (0.13)

Proportion of Pmax choices 1.02 (.12) 70.79 (0.000)

Brain 18.05 0.017

Constant �0.21 (0.06) 13.10 (0.000)

Right PPC 32.41 (8.43) 14.80 (0.000)

Right anterior insula �40.52 (13.28) 9.31 (0.002)

Trait (+ Brain) 90.26 0.081

Constant �0.22 (0.06) 13.38 (0.000)

Proportion of Pmax choices 1.00 (0.12) 67.23 (0.000)

Right PPC 30.54 (8.62) 12.56 (0.000)

Right anterior insula �33.32 (13.69) 5.93 (.012)

Trait + Brain + (Trait*Brain) 97.66 0.088

Constant �0.23 (0.06) 13.78 (.000)

Proportion of Pmax choices 1.10 (0.13) 71.75 (.000)

Right PPC 31.96 (8.70) 13.49 (.000)

Right anterior insula �33.00 (13.77) 5.74 (.017)

dMPFC * strategic variability �70.58 (26.28) 7.21 (.007)

All c2 values were highly significant (p < 10�4). We used stepwise logistic regression to evaluate the contributions of trait effects (i.e., overall proportion

of choices) and brain effects (i.e., activation of a given region on a given trial) to the specific choices (coded as a binary variable of Pmax choice) made by

subjects. As expected, subjects’ overall preference for simplifying strategy was a good predictor of Pmax choices on individual trials. An independent

logistic regression analysis revealed that two brain regions, the PPC and anterior insula, were significant positive and negative predictors of Pmax

choices and that these regions remained significant predictors even when the behavioral data were included in the model. Note that the dmPFC

activation, when not weighted by strategy, did not significantly improve the model fit at any stage. However, when weighted by strategy, the resulting

brain * strategy variable was a highly significant predictor of choices, even when the strategy itself was already included in the model. Regions not

indicated in this table were not significant predictors of choice behavior.
predictor of Pmax choices. Critically, activation in these brain

regions improved the fit of the model even when the behavioral

data had already been included. None of the other regions,

including dmPFC, predicted either type of choice. Yet, when

we weighted dmPFC activation with each subject’s strategy

preference, the resulting variable became a significant and

robust predictor of behavior and overall model error was

reduced (Table 1). Thus, dmPFC activation does not predict

either type of choice, but instead predicts choices that are incon-

sistent with one’s preferred decision strategy.

We emphasize that the brain-behavior relations reported here

were highly significant even though the behavioral choice data

across trials for each subject (an indicator of behavioral strategy)

were already included in the logistic regression model. That is,

we could use the fMRI activation evoked within key brain regions

to improve our predictions of subjects’ decisions on individual

trials over what was predicted from behavioral data alone.

Neural Reward Sensitivity Predicts Individual
Differences in Strategy
Finally, we evaluated whether an independent neural measure of

reward sensitivity could predict the strategic preferences out-

lined in the previous sections. At the end of the scanning session,

each subject passively viewed a subset of their improved

gambles, which were each resolved to an actual monetary gain

or loss. While subjects were anticipating the outcome of each
gamble, there was increased activation in the ventral striatum

(vSTR), a brain region commonly implicated in learning about

positive and negative rewards (Schultz et al., 1997; Seymour

et al., 2007; Yacubian et al., 2006). Then, when the gamble

was resolved, vSTR activation increased to gains but decreased

to losses (Figures 4A and 4B). Moreover, there were striking and

significant correlations between strategic variability and vSTR

activation: those individuals who showed the greatest vSTR

increases to gains and decreases to losses both preferred the

simplifying Pmax strategy (Figure 4C) and scored low on a behav-

ioral measure of maximizing (Figure S6). These results suggest

that the use of a simplifying strategy that improves one’s overall

chances of winning (Pmax) may result from increased neural

sensitivity to reward outcomes.

DISCUSSION

When facing complex decision situations, many individuals

engage in simplifying strategies, such as choosing based on

the overall probability of a positive outcome, to reduce computa-

tional demands compared to compensatory strategies. Here, we

demonstrated two neural predictors of strategic variability in

decision making. First, during the decision process, the dmPFC

shapes choices (in a manner depending on strategic tendency)

through changes in functional connectivity with insular and

prefrontal cortices. Second, independent neurometric responses
Neuron 62, 593–602, May 28, 2009 ª2009 Elsevier Inc. 597
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Figure 4. Ventral Striatal Sensitivity to Rewards Predicts Strategic Variability

At the end of the experiment, some gambles were resolved to monetary gains or losses.

(A and B) Activation in the vSTR (x = 14, y = 16, z = �10) increased when subjects were waiting for gambles to be resolved (anticipation) and, after resolution,

increased to gains but decreased to losses. Error bars represent ± 1 standard error of the mean for each column.

(C) Notably, the difference between gain-related and loss-related activation in the vSTR correlated with variability in strategic preferences across subjects, with

subjects who were most likely to prefer the Pmax exhibiting the greatest neural sensitivity to rewards.
to rewards predicted strategic preferences: those individuals

with the greatest striatal sensitivity to reward valence are most

likely to use a simplifying strategy that emphasizes valence, but

ignores magnitude. These results provide clear and converging

evidence that the neural mechanisms of choice reflect more

than competition between decision variables; they additionally

involve strategic influences that vary across trials and individuals.

A large literature suggests that decisions between simple

gambles can be predicted by compensatory models like ex-

pected utility and Cumulative Prospect Theory (Fennema and

Wakker, 1997; Huettel et al., 2006; Preuschoff et al., 2008; Wu

et al., 2004). Individual differences in sensitivity to the parame-

ters within these models lead to distinct patterns of choices,

even when the same model is applied to all individuals (Huettel

et al., 2006; Tom et al., 2007). As decision problems become

more complex, however, the assumption of a single canonical

decision strategy becomes more and more problematic. As sug-

gested by Tversky and Kahneman (1992) and Payne et al. (1993),

people employ a variety of strategies to represent decision prob-

lems and evaluate options. Some of those strategies will be

consistent with traditional models like expected utility maximiza-

tion, whereas other strategies will be more heuristic or simpli-

fying. Further, depending on the decision context, people shift

among multiple strategies to maintain a balance between mini-

mizing cognitive effort or maximizing decision accuracy, among

other goals (Payne et al., 1993). Finally, strategy use to solve the

same decision problem differs across individuals, perhaps re-

flecting trait differences such as a tendency toward satisficing

versus maximizing. Our findings, from both behavioral and neu-

roimaging experiments, provide evidence in favor of intra- and

intersubject variability in the use of strategies across partici-

pants. Importantly, we show that the parameters estimated

using traditional economic models of risky choice were poor

predictors of choices in our paradigm, providing possible

evidence for differences in decision strategy within and across

participants.

One influential conjecture in decision making is that people

frequently use a variety of simplifying heuristics that reduce effort
598 Neuron 62, 593–602, May 28, 2009 ª2009 Elsevier Inc.
associated with the decision process (Shah and Oppenheimer,

2008; Simon, 1957). Pmax choices in the current task are consis-

tent with such an effort-reduction framework, given that they

were associated with faster response times in the behavioral

experiments (note that we do not have accurate estimates of

response times in the imaging experiment as we sought to

explicitly separate the decision and response phases in our

design) and that the proportion of Pmax choices decreased adap-

tively with increasing cost in terms of expected value in all exper-

iments. We suggest, therefore, that strategic preferences in the

current task reflect tradeoffs, resolved differently by individual

subjects and over trials, between one strategy that simplifies

a complex decision problem by using a simple heuristic of maxi-

mizing the chances of winning (Pmax) and another, more

compensatory strategy that involves consideration of additional

information as well as the emotions associated with extreme

gains (Gmax) or losses (Lmin).

To the extent that the Pmax choices reflect a more simplifying

strategy, the pattern of activations seen in this study seems

counterintuitive: the regions conventionally associated with

automatic and affective processing (aINS and vmPFC) predicted

magnitude-sensitive choices that were more consistent with

traditional economic models such as expected utility maximiza-

tion, whereas the regions conventionally associated with execu-

tive functions (dlPFC and PPC) predicted choices more consis-

tent with a simplifying strategy. The lateral prefrontal cortex

has been shown in previous studies to be active during probabi-

listic decision making (Heekeren et al., 2004, 2006) as well as

sensitive to individual differences in the processing of probability

(Tobler et al., 2008). Neurons within this region have also been

shown to track reward probabilities (Kobayashi et al., 2002)

and process reward and action in stochastic situations (Barra-

clough et al., 2004). Similarly, the parietal cortex also plays an

important role in tracking outcome probabilities (Dorris and

Glimcher, 2004; Huettel et al., 2005). Given that Pmax choices

are based on the overall probability of winning, activation in

dlPFC and PPC could be associated with tracking subjective

probabilities in these gambles.
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Conversely, the Gmax and Lmin choices increase the chances of

an aversive outcome, relative to a neutral aspiration level (Lopes

and Oden, 1999). Supporting this interpretation, we found a clear

double dissociation with activation in vmPFC predicting Gmax

choices and activation in aINS predicting Lmin choices. The

contributions of vmPFC to gain-seeking behavior (at the expense

of potential losses) have been documented in both patient

(Bechara et al., 2000) and neuroimaging studies (Tobler et al.,

2007). Conversely, there has been substantial recent work

demonstrating the importance of aINS for aversion to negative

consequences, even to the point of making risk-averse mistakes

in economic decisions (Kuhnen and Knutson, 2005; Paulus et al.,

2003; Preuschoff et al., 2008; Rolls et al., 2008). Together, these

findings suggest that the conventional notion that decisions

reflect compensatory balancing of decision variables is an over-

simplification. In addition, different brain regions bias how

people approach decision problems, which may in turn lead to

one form of behavior or another depending on the task context.

Furthermore, the balance between cognitive and affective

brain regions did not, by itself, explain individual differences in

strategy preferences. Activation in another region, dmPFC, pre-

dicted variability in strategic preferences across subjects. We

note that the role of dmPFC in complex decision making remains

relatively unknown. One very recent experiment found increased

activation in this region when subjects faced greater decision-

related conflict (Pochon et al., 2008), as dissociable from the

more commonly reported response conflict (Botvinick et al.,

2001). A similar region of dmPFC was implicated by De Martino

et al. (2006), again when subjects made decisions counter to

their general behavioral tendency (i.e., against typical framing

effects). However, it is important to note that all subjects in their

study exhibited a bias toward using the framing heuristic, while in

the current study subjects varied in their relative preference for

two different strategies. Therefore, a parsimonious explanation

for the function of this region of dmPFC is that it supports

aspects of decision making that are coded in relation to an

underlying strategic tendency, not effects specific to framing.

Further support for this hypothesis is provided by the differential

functional connectivity of the dmPFC to dlPFC and anterior in-

sula for simplifying and compensatory choices, respectively.

These findings are consistent with the interpretation that activa-

tion differences of the dmPFC shape behavior by modulating

choice-related brain regions, with the strength of this modulatory

effect dependent on an individual’s preferred strategy.

We additionally observed a striking relationship between neu-

rometric sensitivity to reward and strategic biases across indi-

viduals. Our initial analyses found that activation of the vSTR

increased when anticipating the outcome of a monetary gamble,

increased further if that gamble was resolved to a gain, but

decreased if that gamble was resolved to a loss. This pattern

of results was consistent with numerous prior studies using

human neuroimaging (Breiter et al., 2001; Delgado et al., 2000;

Seymour et al., 2007) and primate electrophysiology (Schultz

et al., 1997). However, we additionally observed the result that

the magnitude of the vSTR response was a strong predictor of

individual strategic preferences. Specifically, the sensitivity to

gains and losses in the vSTR is greatest for individuals who

prefer the Pmax choices, consistent with their strategy of
maximizing their chances of winning. We emphasize that the

gambles were not resolved until after all decisions were made,

so this effect could not be attributed to learning from outcomes.

Although our design does not allow determination of the direc-

tion of causation, these results suggest that an increased sensi-

tivity to reward valence may lead to simple decision rules that

overemphasize the probability of achieving a positive outcome.

Depending on the circumstances, organisms may adopt strat-

egies that emphasize different forms of computation, whether to

obtain additional information (Daw et al., 2006), to improve

models of outcome utility (Montague and Berns, 2002), or to

simplify a complex decision problem. Accordingly, the activation

of a given brain system (e.g., dlPFC) may sometimes lead to

behavior consistent with economic theories of rationality (Sanfey

et al., 2003) and in other circumstances (such as the present

experiment) predict a nonnormative choice consistent with

a simplifying strategy. Our results demonstrate that decision

making reflects an interaction among brain systems coding for

different sorts of computations, with some regions (e.g., aINS

and vmPFC) coding for specific behaviors and others (e.g.,

dmPFC) for preferred strategies.

EXPERIMENTAL PROCEDURES

Subjects

We conducted two behavioral experiments (n1 = 128 and n2 = 71) and one fMRI

experiment (n = 23). All subjects were young adults who participated for mone-

tary payment. All subjects gave written informed consent as part of protocols

approved by the Institutional Review Boards of Duke University and Duke

University Medical Center. Details of the procedures for the behavioral exper-

iments can be found in the Supplemental Experimental Procedures.

Twenty-three healthy, neurologically normal young-adult volunteers

(13 female; age range 18–31 years; mean age 24 years) participated in the

fMRI session. No subject was repeated from the behavioral pilot session. All

subjects acclimated to the fMRI environment using a mock MRI scanner and

participated in two short practice runs consisting of six trials each, one inside

and one outside of the fMRI scanner. Three subjects were excluded from some

analyses involving strategy effects due to lack of variability in their response

(two subjects always chose the Pmax option while the third subject never chose

the Pmax option), leaving a total of 20 subjects in the complete analyses of

the decision-making trials. One additional subject was excluded from the

outcome-delivery trials due to a computer error in saving the timing associated

with the trials.

At the outset of the experiment, subjects were provided detailed instructions

about the payment procedures (see Supplemental Experimental Procedures

for details). They were then given a sealed envelope that contained an endow-

ment to offset potential losses; this envelope was sufficiently translucent that

they could see that there was cash inside, even though the quantity could not

be determined. Subjects were also told that there was no deception in the

study and were given an opportunity to question the experimenter about any

procedures before entering the scanner. All subjects expressed that they

understood and believed in the procedures.

Experimental Stimuli

In the fMRI experiment, all subjects were presented with a total of 120 five-

outcome mixed gambles in a completely randomized order. Each of the

gambles comprised two positive outcomes (an extreme outcome of $65 to

$80 and an intermediate outcome of $35 to $50), two negative outcomes (an

extreme outcome of �$65 to �$85 and an intermediate outcome of �$35 to

�$50), and a central, reference outcome. The reference outcome was $0 in

half the trials and a negative value ranging from�$10 to�$25 in the remaining

half of the trials. Probabilities of each of the five outcomes varied between 0.1

and 0.3 in units of 0.05 and always summed to 1 across the five outcomes. We
Neuron 62, 593–602, May 28, 2009 ª2009 Elsevier Inc. 599
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describe the similar stimuli and methods for the behavioral experiments in the

Supplemental Experimental Procedures.

On each trial, subjects could choose between two options for adding money

to one of the outcomes. Adding to the reference outcome increased the overall

chance of winning money compared to losing money and hence was called

the Pmax choice. Alternatively, adding money to an extreme option either

increased the magnitude of the best monetary outcome or decreased the

magnitude of the worst monetary outcome and hence were referred to as

Gmax and Lmin choices, respectively. The amount of money that subjects could

add to the outcomes ranged between $10 and $25 and could differ between

the two outcomes. For trials with negative reference values, one of the options

for adding money always changed the reference option to $0. All outcome

values used in this experiment were multiples of $5.

Expected value relations between the two choices were systematically

manipulated by changing the amount and/or probabilities associated with

each of the options (See Supplemental Experimental Procedures). Only trial

types that placed the two choices in maximal conflict (72 gambles per subject)

were included in the primary imaging analyses; other trials were included in the

model as separate regressors, but not further analyzed. Note that the trials

were counterbalanced for valence of the extreme outcome (i.e., gain or loss)

and for valence of the reference outcome (i.e., neutral or loss).

Experimental Design

Each trial began with the display of a five-outcome gamble for 4 or 6 s

(Figure 1). Subjects were instructed to examine each gamble as it was pre-

sented. Subsequently, subjects were given a choice between two ways of

improving the gamble. The amount that could be added and the resulting

modified outcome values were displayed in red for both choices, to minimize

individual differences resulting from calculation or estimation biases. The

modified gamble remained on the screen for 6 s, whereupon two arrows ap-

peared to specify which button corresponded to which choice. The associa-

tion of the buttons to choice was random. Subjects then pressed the button

corresponding to their choice. Response times were coded as the time

between the appearance of arrows and the button press response (note that

this may not be a true representation of the actual decision times in this

task). Subjects were instructed to arrive at their decision during the 6 s interval

and to press the button corresponding to their choice as soon as the arrows

appeared. The decision and response phases were explicitly separated to

prevent the contamination of decision effects with response-preparation

effects. During the intertrial interval of 4–8 s, a fixation cross was displayed

on the screen. Notice that no feedback was provided at the end of each trial

and hence there was no explicit learning during the decision phase of the task.

Subjects participated in six runs of this decision task, each containing 20

gambles and lasting approximately 6 min. Before those runs, subjects had

the opportunity to practice the experimental task (without reward) in two six-

gamble blocks, one presented outside the MRI scanner and the other pre-

sented within the MRI scanner but prior to collection of the fMRI data. All

stimuli were created using the Psychophysics Toolbox (Brainard, 1997; Pelli,

1997) for MATLAB (Mathworks, inc.) and were presented to the subjects via

MR-compatible LCD goggles. Subjects responded with the index fingers of

each hand via a MR-compatible response box.

After completion of the decision phase, there was a final 6 min run in which

40 of the improved gambles were resolved to an actual monetary gain or loss.

These gambles were selected randomly from the gambles presented during

the decision phase and were presented in modified form based on that

subject’s choices. On each trial, subjects passively viewed one of these

improved gambles on the screen for 2 s (anticipation phase), during which

time random numbers flashed rapidly at the bottom of the screen before stop-

ping at a particular value. A text message corresponding to the amount won or

lost was then displayed for 1 s, followed by an intertrial fixation period of 3–7 s

before the onset of the next trial.

Imaging Methods

We acquired fMRI data on a 4T GE scanner using an inverse-spiral pulse

sequence (Glover and Law, 2001; Guo and Song, 2003) with the following

parameters: TR = 2000 ms; TE = 30 ms; 34 axial slices parallel to the AC-PC

plane, with voxel size of 3.75 3 3.75 3 3.8 mm. High-resolution 3D full-brain
600 Neuron 62, 593–602, May 28, 2009 ª2009 Elsevier Inc.
SPGR anatomical images were acquired and used for normalizing and core-

gistering individual subjects’ data.

Analysis was carried out using FMRI Expert Analysis Tool (version 5.63),

which is part of FMRIB’s Software Library (www.fmrib.ox.ac.uk/fsl) package

(Smith et al., 2004). The following pre-statistics processing steps were applied:

motion correction using MCFLIRT, slice-timing correction, removal of non-

brain voxels using BET, spatial smoothing with a Gaussian kernel of FWHM

8 mm, and high-pass temporal filtering. Registration to high-resolution and

standard images was carried out using FLIRT. All statistical images presented

were thresholded using clusters determined by z > 2.3 and a whole-brain cor-

rected cluster significance threshold of p < 0.05.

We used separate first-level regression models to analyze decision effects

and outcome effects. The decision model comprised two regressors modeling

the magnitude-sensitive compensatory choices (Gmax and Lmin were

combined for additional power) and simplifying Pmax choices in the conflict

conditions, one regressor modeling the responses in the remaining conditions,

one regressor for the initial presentation of the gamble, and one regressor to

model the subject responses. (An additional post-hoc analysis on a subset

of 15 subjects separated the magnitude-sensitive choices according to

whether they were Gmax or Lmin.) Analysis for the outcome phase consisted

of three regressors: one to model the anticipation phase (as subjects were

waiting for the corresponding outcome to be revealed), one for positive

outcomes (gain), and one for negative outcomes (loss). All regressors were

generated by convolving impulses at the onsets of events of interest with

a double-gamma hemodynamic response function. Second-level analysis

for condition and decision effects within each subject was carried out using

a fixed-effects model across runs. Random-effects across-subjects analyses

were carried out using FLAME (stage 1 only). When evaluating the effects of

behavioral traits (transformed into z scores) on brain function, we included

our subjects’ trait measures as additional covariates in the third-level analysis.

Logistic Regression Models of Trial-by-Trial Choices

For obtaining the parameter estimates from individual trials for trial-by-trial

prediction analysis, we used data that were corrected for motion and differ-

ences in slice scan timing but were not smoothed. The data were also trans-

formed into standard space on which the individual ROIs were defined. We

used seven different ROIs for this analysis: the right anterior insula and vmPFC,

which show greater activation for Lmin and Gmax choices respectively; the right

PPC, the right precuneus, and right dlPFC, which show greater activation for

Pmax choices; and finally the dmPFC and rIFG, which track strategic variability

across subjects. All ROIs were defined functionally based on the third-level

activation maps. Activation amplitude was defined as the mean signal change

(in percent) over the 6 s time interval from 4 s to 10 s after the onset of decision

phase (i.e., when subjects are shown the two alternative choices). This time

window was chosen to encompass the maximal signal change of the fMRI

hemodynamic response. A summary measure was obtained for each ROI by

averaging over all constituent voxels.

We then performed a hierarchical logistic regression using SPSS to predict

the choices made by subjects on each individual trial based on strategic pref-

erence (proportion of Pmax choices), brain activation, and interactions between

trait and activation. The complete model included a total of 1440 trials (72 trials

for each of 20 subjects). Parameters were entered into the model in a stepwise

manner, starting with just the behavioral trait measure, then brain activations

from the seven ROIs, and finally an interaction term consisting of activation

in dmPFC multiplied by strategic tendency. All parameters that significantly

improved the model at each stage are summarized in Table 1. The results

were consistent regardless of whether forward selection or backward elimina-

tion was used in the hierarchical regression.

Functional-Connectivity Analyses

We used a modified version of the decision model described above to perform

task-related connectivity analysis. A seed region was defined using activation

in the dmPFC that covaried with the strategic variability across subjects

(Figure 3). For each run for each subject, we then extracted the time series

from this region. A box-car vector was then defined for each condition of

interest, with the ‘‘on’’ period defined from 4 s to 10 s after the onset of the

decision phase for each trial in that condition. These box-car vectors were

http://www.fmrib.ox.ac.uk/fsl
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then multiplied with the extracted time series to form the connectivity regres-

sors. This allowed us to examine brain connectivity as a function of strategy,

specific to the decision phase. These regressors were then used as covariates

in a separate GLM analysis, which included the original variables of interest,

from the decision model described above (Cohen et al., 2005). Group activa-

tion maps were then obtained in the same way as the traditional regression

analysis. A positive activation for the connectivity regressors indicates that

the region correlates more positively with the seed region during the experi-

mental condition of interest.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, two

tables, and eight figures and can be found with this article online at http://

www.cell.com/neuron/supplemental/S0896-6273(09)00288-8.
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