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ABSTRACT

Fluorescence is widely used in biological imaging and biosensing. Rich information can be revealed from the fluorescence spectrum of flu-
orescent molecules, such as pH, viscosity and polarity of the molecule’s environment, and distance between two FRET molecules. However,
constructing the fluorescence spectrum of a single fluorescent molecule typically requires a significant number of photons, which can suffer
from photobleaching and, therefore, limit its potential applications. Here, we propose a deep learning-enhanced single-molecule spectrum
imaging method (SpecGAN) for improving the single-molecule spectrum imaging efficiency. In SpecGAN, the photon flux required to extract
a single-molecule fluorescence spectrum can be reduced by 100 times, which enables two orders of magnitude higher temporal resolution
compared to the conventional single-molecule spectrometer. The concept of SpecGAN was validated through numerical simulation and
single Nile Red molecule spectrum imaging on support lipid bilayers (SLBs). With SpecGAN, the super-resolution spectrum image of the
COS-7 membrane can be reconstructed with merely 12 000 frames of single-molecule localization images, which is almost half of the previ-
ously reported frame count for spectrally resolved super-resolution imaging. The low photon flux requirement and high temporal resolution
of SpecGAN make it a promising tool for investigating the molecular spectrum dynamics related to biological functions or biomolecule
interactions.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156793

I. INTRODUCTION In recent years, various spectrum imaging methods have
been developed. The fluorescence spectrum can provide additional
information that cannot be acquired by intensity imaging, such
as molecular structure,”'’ membrane potential,'! spatial arrange-
ment of biomolecules, ”'’ and the microenvironment surround-

ing molecules.""'® Spectrum imaging has been applied to various

Since the invention of optical microscopy, it has become
an essential tool in life science research due to its non-invasive
nature and specificity. Over the past several decades, the emerg-
ing super-resolution fluorescence microscopy has overcome limits
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of optical diffraction and pushed the spatial resolution up to sev-
eral nanometers,’ * which can reveal unprecedented fine structure
details of organelles in cells. In fluorescence microscopy, the fluo-
rescence intensity, i.e., fluorescence photon emission rate, is usually
used to build a morphology image of the sample. Aside from
the intensity information, the fluorescence signal also has many
other characteristics, such as fluorescence spectrum,’ fluorescence
lifetime,” and fluorescence polarization.® These characteristics indi-
cate the microenvironment biophysical properties of the fluorescent
molecules, such as pH, viscosity, and polarity.

APL Photon. 8, 096102 (2023); doi: 10.1063/5.0156793
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research fields. For instance, with fluorescence spectrum imaging,
the stereoisomers of borondipyrromethene (BODIPY) can be well
resolved and their photophysical properties and excitation dynamics
can be further investigated."” Combining the pH-sensitive pho-
tochromic dye and spectrum imaging is able to disclose the alterna-
tive route of nanoparticles reaching lysosomes and to observe the pH
changes in real-time.'° The surface hydrophobicity of a-synuclein
(aS), a Parkinson’s disease-related protein, can also be charac-
terized with the fluorescence spectrum of solvatochromic dyes.'”
Usually, the fluorescence spectrum is measured using a fluorescence
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spectrophotometer. However, the fluorescence spectrophotometer is
not applicable to cellular experiments, which precludes its further
cellular applications.

To acquire the morphological and spectral information of
cells simultaneously, spectrally resolved super-resolution micro-
scopy (SR-SRM) has been proposed in recent years.'”'*'"” This
method has been applied to reveal the nanoscale spectral features of
different dyes on cell membranes.'”'® In addition, the polarity het-
erogeneity of the plasma membrane and organelle membranes with
different cholesterol levels was revealed with Nile Red labeling.”” On
the other hand, owing to the limited fluorescence emission rate and
total emission photons of a single molecule, obtaining a highly pre-
cise fluorescence spectrum of a single molecule in a short collection
time period is challenging. In particular, in intracellular imaging,
the presence of autofluorescence further deteriorates the spectrum
imaging. To obtain an accurate fluorescence spectrum, multiple
spectra are usually collected and averaged. For SR-SRM imaging
of mammalian cells, reconstructing a spectral mapping image typ-
ically requires 15000-30 000 frames of localization image, resulting
in a poor temporal resolution and precluding the spectral dynamics
analysis.”!

Deep learning technology has become increasingly popular
in the realm of microscopic imaging, with a broad range of
applications, including denoising,””* modal conversion,”** resolu-
tion enhancement,”® downstream task analysis,”*”’ and high-speed
imaging.” " In single-molecule spectral imaging, deep learning has
also been employed to address the problem of spectral noise. Con-
volution neural networks (CNNs) have been found to be highly
effective in feature extraction, enabling the accurate classification of
three-color labeled cell samples with low rates of molecular misiden-
tification.”’ However, this approach was specifically designed for
classifying different dyes and cannot be applied to identify the
continuous spectral changes in different environments. In image
generation tasks, the generative adversarial network (GAN)’” has
emerged as a popular generative model. While originally proposed
for unsupervised learning, GAN has been shown to be effec-
tive in supervised tasks, such as super-resolution and semantic
segmentation. o

In this paper, we propose a novel deep learning-based single-
molecule spectrum imaging method called SpecGAN, which is
tailored to denoise single-molecule spectra and accurately iden-
tify the spectral characteristics of environment-sensitive fluorescent
dyes. The SpecGAN is validated with simulation, support lipid
bilayers (SLBs) imaging, and cell membrane super-resolution spec-
trum imaging. Notably, implementing SpecGAN does not require
modifications to the current spectrally resolved super-resolution
microscopy (SR-SRM) system, and it holds promising potential for
real-time investigations of single-molecule spectral dynamics owing
to its low photon flux requirement to construct the spectrum. The
single molecule spectral denoising processes is shown in Fig. S14.

Il. RESULTS
A. Workflow of SpecGAN

Generative Adversarial Networks (GANs) consist of two main
components: a generator and a discriminator. The generator is
responsible for creating synthetic data instances by learning the
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underlying distribution of the real dataset, while the discrimina-
tor, on the other hand, is a neural network designed to distinguish
between real and synthetic data instances. Similar to the GAN
model, SpecGAN contains a generator and discriminator. The gen-
erator of SpecGAN takes the 1D spectral data with noise into a
UNet-based network and outputs clean spectrum data. The UNet
is a convolutional neural network (CNN) architecture designed
for semantic segmentation tasks. The network architecture con-
sists of a contracting path that captures context and a symmetric
expanding path that enables pixel-to-pixel mapping.”> In UNet,
the encoder uses convolution layers and maximum pooling layers
for feature extraction, while the decoder uses binary linear inter-
polation and convolution layers for upsampling and information
recovery, respectively. For the discriminator of SpecGAN, auxil-
iary classification tasks™ are adopted to enhance the model’s focus
on environmental information. In addition to determining whether
the spectral curve is generated from the generator, the discrim-
inator is also responsible for classifying the environments repre-
sented by the spectrum. More details about SpecGAN can be found
in Sec. I'V.

To validate the performance of SpecGAN, we built a single-
molecule spectrum imaging microscopy [Figs. 1(a) and S1]. The
fluorescence is directed to two paths using a beam splitter. The fluo-
rescence in path 1 is used for recording the location information of
molecules, while path 2 is used for recording the fluorescence spec-
trum. An example of fluorescent bead spectrum imaging is shown
in Fig. 1(a). As previously mentioned, to obtain the fluorescence
spectrum of single molecules, it is necessary to average multiple
spectral data from the same environment to counteract the influence
of noise. As a demonstration, we simulated the average fluores-
cence spectrum with a different amount of fluorescent spectrum data
[Fig. 1(b)]. It can be seen that several hundred single-molecule spec-
tra data are required to produce a well-resolved averaged spectrum.
In this study, we choose Nile Red as a fluorescence probe to evaluate
the performance of SpecGAN. Nile Red is a widely used fluores-
cent marker to monitor the changes of polarity in spectrally resolved
super-resolution imaging because it exhibits a significant blue shift
in the lipid order (Lo) phase compared to the lipid disorder (Ld)
phase,’” as shown in Fig. 1(c).

The flowchart of spectrum imaging with SpecGAN is illustrated
in Fig. 1(d). Due to the low signal-to-noise ratio (SNR) of the raw
spectrum of a single molecule, it is challenging for the SpecGAN
model to reach stabilization gradually during training. Thus, before
feeding the raw spectral data into SpecGAN, the variational modal
decomposition (VMD) algorithm is used to adaptively decompose
a spectral curve into several intrinsic mode functions (IMFs) and
a residual item.’® The residual item of VMD, which contains the
inherent feature of the raw spectral curve and is always smooth due
to the removal of high-frequency noise components, is used as the
input for the SpecGAN. For the construction of training datasets, the
average of all spectral curves is taken as the ground truth. The work-
flow of data preprocess is illustrated in Fig. S4. To further validate
whether the main information of the ground truth is contained in
the residual item after VMD decomposition, we reconstructed the
averaged spectral curve with raw data and residual item in differ-
ent solvents. It can be seen that the average curve calculated using
the residual data is similar that calculated using the original data, as
shown in Fig. S13. This workflow aims to generate a fluorescence
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FIG. 1. Experimental setup and data process overview. (a) Schematic diagram of the single-molecule spectrum imaging microscopy setup. The inset shows the spectra and
position images of the fluorescent bead. (b) Averaged spectra with different amounts of recorded molecules. (c) Schematic of Nile Red in different lipid environments. The
emission spectra peak of Nile Red (NR) change with the lipid orders. Lo: lipid order; Ld: lipid disorder. (d) Overview of the SpecGAN structure, where the residual item is
extracted from the raw spectrum by the VMD algorithm, and the SpecGAN outputs the denoised spectral curve of the fed residual one.

spectrum similar to the ground truth spectrum using the fewest
single-molecule spectral data.

B. SpecGAN performance evaluation with simulated
data

To assess the effectiveness of SpecGAN, we conducted experi-
ments on three different types of datasets, namely simulation data,
SLBs data, and cellular data. The VMD decomposition-based pre-
process is applied to all datasets before inputting to the SpecGAN
model. We trained our proposed SpecGAN on the simulation and
SLBs datasets. The performance of SpecGAN is first tested with
the simulation data based on the spectral shifts of Nile Red in
different solvents.”” The Nile Red spectra in different solvents (ace-
tone, CHCI3, C3H80O, MeOH, and EtOH) are measured with a
fluorescence spectrophotometer (Lumina, Thermo Scientific) and
used as the ground truths during the training stage [Fig. 2(a)]. The
fluorescence centroid in different solvents show different spectral
characters, with the blue shift being most pronounced in chloro-
form and the red shift in MeOH [Fig. 2(b)]. In addition, these
solvent categories are further labeled as the environmental classes for
the supervision of the auxiliary discriminator. During the imaging
process, noise is inevitable. To reduce the differences between simu-
lation and real-world acquisition conditions, these ground truths are
added with Gaussian, Poisson, and salt and pepper noises (Fig. S15).
The simulation dataset comprises ~50 000 spectral curves with vary-
ing noise levels and spectral centroids. In deep learning, the division
of the dataset is important because it determines the effectiveness of
model learning and generalization capabilities. The simulation and

APL Photon. 8, 096102 (2023); doi: 10.1063/5.0156793
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SLBs datasets are randomly divided into three subsets according to
the convention of deep learning method. In this paper, 80% of the
data are used for training, 10% of the data are used for validation,
and 10% of the data are used for testing. As for the generalization
validation, all results shown in this paper are based on the test dataset
rather the training dataset.

As shown in Fig. 2(c), the averaged spectrum of ten raw fluo-
rescence spectra significantly deviated from the ground truth and
the centroid histogram is dispersed. This result indicates that the
random noise in the simulation data may interfere with the analy-
sis of the molecular fluorescence spectrum, resulting in an incorrect
spectral centroid measurement. In contrast, the average spectrum
of SpecGAN outputs is closer to the ground truth, and the cen-
troid of the spectrum can be easily identified. Correspondingly, the
outputs of SpecGAN show smaller variances, indicating that Spec-
GAN can give a centroid prediction with high confidence [Fig. 2(d)].
We then compared the fluorescence spectrum maxima identification
accuracy of SpecGAN output data and raw data. We found that the
identified centroids with SpecGAN nearly 100% deviate less than
5 nm from the ground truth. Compared with raw data, SpecGAN
output data show a significant accuracy improvement, specifically,
with a maximum of 20% accuracy improvement for the spectra in
acetone solvent measurement [Fig. 2(e)].

C. Evaluation of specGAN'’s performance in spectral
imaging of SLBs

To demonstrate the biological compatibility of SpecGAN,
the SLBs spectrum imaging was conducted. SLBs are artificially
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FIG. 2. Performance evaluation of SpecGAN with simulated data. (a) Spectra of
Nile Red in different solvents measured using a fluorescence spectrophotometer.
(b) The spectral centroids of Nile Red spectra in different solvents. (c) Compari-
son of raw spectrum with noise and the spectrum output from SpecGAN. Solvent:
MeOH. (d) Fluorescence spectrum centroid of Nile Red in different solvents calcu-
lated with raw spectra and SpecGAN outputs. (€) Fluorescence spectrum maxima
identification accuracy comparison.

constructed, two-dimensional lipid structures that mimic the
properties of natural cell membranes. SLBs serve as valuable
tools for studying the biophysical and biochemical properties of
cell membranes, as well as for investigating processes such as
membrane-protein interactions, lipid organization, and the dynam-
ics of membrane components.” We made the SLBs by mixing
the lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sph-
ingomyelin (SM), and cholesterol (Chol) in chloroform in different
proportions. These proportions were selected to induce the emis-
sion spectrum shift of Nile Red. We utilized five distinct mixing
ratios of DOPC, SM, and Chol in this study, namely 1:0:1, 1:1:0,
1:1:1, 1:3:1, and 0:1:1, representing the respective proportions of the
DOPC, SM, and Chol components. These mixtures are abbreviated
as DC, DS, DSC, DSC311, and SC, respectively. To prepare the SLBs,
we employed the bicelle adsorption and fusion method (Fig. S2),
which facilitates the formation of stable bilayer structures on glass
surfaces.”’

APL Photon. 8, 096102 (2023); doi: 10.1063/5.0156793
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To keep the imaging system consistent, the spectra of Nile
Red in five different SLBs compositions were collected using single-
molecule spectrum imaging microscopy. Approximately 60000
single-molecule spectral data points for each category are averaged
to create the ground truths [Figs. 3(a) and S6]. For the SLBs Nile
Red spectra dataset recorded by single-molecule spectrum imaging
microscopy, we found that the noise has a non-negligible effect on
signal processing, which may make the deep learning model hard
to converge during training. Therefore, it is necessary to exclude
the spectral data with significant noise. In the training of SpecGAN,
the SLBs dataset is manually pre-screened to exclude poor-quality
spectra data. The parameters were empirically selected to produce
a stably converged training loss. Specifically, a signal is consid-
ered usable if the difference between the centroid of the residual
item and the average spectrum is smaller than +15 nm or the
root mean square error (RMSE) is smaller than 0.3. Compared
with raw spectra data, the fluorescence spectral centroid localiza-
tion accuracy of SpecGAN outputs is improved by up to 62% and
the variance of the SpecGAN outputs is reduced by about four times
(Figs. S7 and S8). Moreover, using SpecGAN, the Nile Red spectrum
can be reconstructed with just ten molecular spectral data points,
whereas ~500 to 1000 molecules were necessary for reconstructing
a similar Nile Red spectrum in raw data. This indicates that Spec-
GAN can potentially reduce the photon flux requirements by up
to 100 times.

SpecGAN has demonstrated strong denoising capabilities
when applied to manually screened data. To automate the data
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tra of Nile Red in SLBs with different components acquired by single-molecule
spectrum imaging microscopy. (b) Normalized confusion matrix of ResNet-based
classification model. (c) The comparison between raw spectrum and the output
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screening process, we trained a ResNet-based classifier as a replace-
ment. This classifier can automatically determine the signal quality,
and the screened data are then fed to the SpecGAN, which has
already been trained on manually screened datasets. The normalized
confusion matrix of the ResNet-based classification model is dis-
played in Fig. 3(b). After 150 training iterations, the model achieves
a precision and recall rate of 68% and 81%, respectively. Then, we
test its denoising capabilities with ten single-molecule spectra data
points [Figs. 3(c) and 3(d)]. In the raw SLBs dataset, the centroid
cannot be identified from the limited numbers of single molecule
spectrum, and the variance is much higher than that of the Spec-
GAN outputs. Moreover, the wavelength of DSC centroid shows a
slight red shift compared to DSC311, which is not consistent with
the ground truth. As a comparison, SpecGAN achieves 81% identifi-
cation accuracy, showing an improvement of 56% over the raw data
analysis (Figs. S9-S11). It should be noted that the centroid deter-
mined by SpecGAN for the SC category deviates slightly from the
average fluorescence spectrum but still has a lower variance com-
pared with raw data. The deviation may be caused by the poor
performance of the classifier in the SC dataset.

D. SpecGAN enhanced super-resolution spectrum
imaging

The super-resolution spectrum imaging technique or spec-
trally resolved stochastic optical reconstruction microscopy
(SR-STORM) has been developed in recent years.™'®"” In
SR-STORM, the wavelength corresponding to the extreme point
of the spectral curve is color-coded to each pixel and then mapped
to the image reconstructed by the single molecule localization
algorithm. Incorporating spectral information into super-resolution
imaging not only adds an additional dimension for analysis but also
enhances localization precision. The SpecGAN has the capability
to further improve super-resolution spectrum imaging. Here, we
performed a super-resolution spectrum imaging of Nile Red labeled
COS-7 cells to demonstrate the performance of SpecGAN. Com-
pared to super-resolution spectral imaging reconstructed using raw
data (raw SR-STORM), SpecGAN significantly improves spectral
precision [Figs. 4(a) and 4(b) and S12]. The spectral distribution in
COS-7 cells appears discontinuous and noisy for raw SR-STORM

APL Photon. 8, 096102 (2023); doi: 10.1063/5.0156793
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[Fig. 4(a)], while the SpecGAN output image displays a more
continuous and concentrated spectral distribution [Fig. 4(b)]. In
addition, we compared the spectrum of a pixel for raw SR-STORM
and SpecGAN output and observed that the spectrum in raw
SR-STORM is heavily affected by noise, ultimately impacting the
accuracy of spectrum maxima localization [Fig. 4(c)]. In contrast,
the SpecGAN output yields a smoother spectrum curve, facilitating
more precise spectrum maxima localization. In a set of 12000
localization images, the majority of pixels have fewer than ten
localizations [Fig. 4(d)]. As a result, addressing noise interference is
crucial for fast spectrally resolved super-resolution imaging. Herein,
SpecGAN provides a novel approach to analyze spectral features at
the single-molecule level.

1ll. DISCUSSION AND CONCLUSION

In this study, we presented a novel deep learning-enhanced
single-molecule fluorescence spectrum imaging technique called
SpecGAN, which allows for the effective extraction of single-
molecule spectra with significantly improved signal-to-noise ratio
and accuracy. Compared to conventional spectral super-resolution
imaging methods, SpecGAN has a high temporal resolution of spec-
trum imaging. The spectrum imaging speed improvement can be
reflected on two aspects. First, for reconstructing a fluorescence
spectrum, SpecGAN can considerably decrease the photon flux
requirements—by as much as 100 times when compared to con-
ditions that do not utilize SpecGAN. This significant reduction
translates to less time required to gather photons for creating a
fluorescence spectrum, thereby yielding a higher temporal resolu-
tion. Second, in a super-resolution spectrum imaging experiment,
SpecGAN only takes 12000 frames of single-molecule localization
images to construct a super-resolution spectrum image, which is
almost half of the previously reported frame count. Therefore, Spec-
GAN has twofold temporal resolution improvement and enables
fast spectrum imaging. Due to the improvement of the temporal
resolution, we believe that SpecGAN has the potential to monitor
real-time biochemical interaction processes when combined with
the single molecule tracking technology, such as changes in the
tumor microenvironment during drug delivery.""** On the other
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hand, the spectral information of single photon localization has been
proven to be useful for spatial resolution enhancement.'” In future
work, it is possible to further improve the temporal and spatial reso-
lution of single-molecule localization microscopy when considering
the correlations of the associated emission spectrum and the location
of centroids. Overall, this work introduces a promising approach for
fast spectrum imaging for weak fluorescence signals, which holds
significant potential for a wide range of applications in the study of
biological interaction dynamics.

IV. METHODS
A. Pixel shifts and wavelength mapping

A bandpass filter (FF01-591/6-25, Semrock) is used to collect
at least six paired points for calculating the mapping matrix. The
code implementation is based on the work of Xu et al.** The map-
ping matrix can transform the pixel coordinates in the position
channel to the position of 591 nm in the spectral channel. Fur-
thermore, to establish the mapping relationship between the pixel
shifts and wavelength, fluorescent beads (BangsLab FSDG003 and
FSSY002) are imaged and the pixel coordinates of three specific
wavelengths in the spectral channel are recorded using bandpass fil-
ters (FF01-532/3-25, LL02-561-12.5, and LL01-638-12.5, Semrock).
The pixel-wavelength calibrated curve is fitted by a third-order
polynomial finally, as shown in Fig. S3 and Table S1. The center
coordinates of single molecules in each frame are detected using
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the ThunderSTORM plugin.** Therefore, the spectral curve of each
molecule and the average value that is considered the ground truth
can be obtained.

B. The VMD-based pre-processing

In order to enhance the performance of our model by reduc-
ing the impact of noise, we propose a data pre-processing method
based on VMD. As a signal process method without prior knowl-
edge, VMD has been applied to various signal tasks.”” It assumes
that a signal is composed of a series of sub-signals with specific
center frequencies and limited bandwidths. The solution to this vari-
ational problem involves using the Weiner filter and the Hilbert
transform.”® Utilizing the VMD algorithm, the spectral informa-
tion corrupted by noise can be separated into different IMFs and a
residual item. The residual signal is relatively smoother and partially
removes the interference of high-frequency noise. Thus, we use the
residual component derived from VMD as the input of the SpecGAN
model, which can lead to superior performance. More details about
the VMD algorithm can be found in Fig. S5 and supplementary
material, Note 4.

C. ResNet-based data screening

In this work, a two-stage network is proposed to identify the
accurate centroid of the spectrum collected by the SR-SRM sys-
tem at the single-molecule level. The structure of the SpecGAN is
shown in Fig. 5. The presence of environmental noise results in a
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FIG. 5. Workflow of SpecGAN. (a) A two-stage network model for filtering low-SNR spectral signals. The ResNet-based classification model is employed to judge whether
the inputs are valid signals or noise and only the valid signals are fed to the subsequent SpecGAN training and testing in SLBs and cell data. (b) Discriminator of SpecGAN
with the task of determining whether the data are real or fake and the corresponding environmental category of the current Nile Red molecular spectrum. (c) Generator of
SpecGAN based on a simplified UNet architecture, with details of the feature extraction block (FEB) and the upsampling and convolution block (UCB) shown in (d) and (e).
The FEB extracts abstract features and maps them to a lower-dimensional representation, while the UCB uses a bilinear interpolation layer to upsample the lower-dimensional

representation.
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low SNR in single-molecule spectrum images, which precludes the
precise single-molecule spectral features analysis. To address this
issue, a classifier, as depicted in Fig. 5(a), is proposed to exclude
signals with a too low SNR from the SpecGAN training and test-
ing processes. The traditional 2-D convolution layer is adapted
to the 1D spectral data by converting the number of parameters
from 120 to 4096 using a fully connected network and reshaping
it to 64 x 64 x 1. Subsequently, feature extraction is performed
through a simplified ResNet.”* The output of the classification
model is a binary result indicating whether the current signal is
useful or not. This model is trained using a binary cross-entropy
loss function.

D. Details of the SpecGAN

SpecGAN aims to produce a pure spectral curve that can iden-
tify environmental features from the VMD residual component of
the raw signal. It contains a discriminator and a generator. The gen-
erator in Fig. 5(c) is based on the UNet architecture and is composed
of eight sub-blocks. The encoder uses convolution layers and max-
imum pooling layers for feature extraction, while the decoder uses
binary linear interpolation and convolution layers for upsampling
and information recovery. The corresponding sub-blocks between
the encoder and decoder are concatenated for information interac-
tion. The output of the UNet is then passed through a linear layer
to ensure that it has the same dimensions as the input spectral data
and is then added to the original input to produce the final denoised
spectral curve. In particular, the LeakyReLu activation layer and
batch normalization (BN) layer are utilized in the feature extraction
block (FEB).

In the discriminator depicted in Fig. 5(b), auxiliary classifica-
tion tasks are designed to further improve the performance. The
discriminator needs to determine the confidence of the pure spec-
tral curve and classify the environments represented by it. The labels
have been previously described in detail. For other environment-
sensitive dye molecules, changes in environmental conditions, such
as pH, viscosity, and microenvironment can also be encoded as
labels. The discriminator initially extracts features using three con-
volution layers with the spectral normalization (SN) method.*” Sub-
sequently, a global average pooling and a global maximum pooling
layer reduce the feature map to a size of 1 x 1 x 128. Finally, the
downscaled pooling features are processed using linear layers based
on the requirements, and the corresponding averages are used for
auxiliary classification or GAN tasks.

E. Loss function

In terms of the loss function of SpecGAN, we use the Wasser-
stein GAN loss function®® to improve the stability during training,
while the L1 loss is introduced to determine the distance between
the input spectrum and the average spectrum. The auxiliary classi-
fication loss is employed to measure the accuracy of category clas-
sification. In addition, the 1D total variation (TV) regular term loss
function is included to promote output spectral curves smoother.
During training, the generator and discriminator parameters are
updated in an alternating manner. The overall loss function of the
network can be expressed as follows:
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L= argmGin mgn [ao Lwan (G, D) + a1 L11(G)
+ 02 Laux(G, D) + a3 L1v(G)], (1)

where G and D represent the generator and discriminator, respec-
tively. The WGAN loss Lwean(G,D) is divided into two parts
according to Ref. 48. The L1 (G) is the mean absolute error (MAE)
loss between the generator and the ground truth. The auxiliary loss
L 4ux(G, D) is a multi-classification cross-entropy loss that measures
the accuracy of category classification, as described in the following
equation:

N N
Laux = —Z}i:}l} i log i, ()

where y, is the one-hot coding label, N is the number of categories,
and J; represents the probability predicted by the network. The 1D
TV loss is defined as follows:

£rv(G) =X, (6(x) 1, - 6(),) (3)

where G(x) ; is the jth intensity value of the spectral curve. During
training, the generator and discriminator parameters are updated
in an alternating manner with the coefficients of the four loss
components set to 1.0, 1.0, 1.0, and 2.0, respectively.

SUPPLEMENTARY MATERIAL

See the supplementary material for more results and details of
experiments.
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