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In the brain, the formation of complex neuronal networks

amenable to experience-dependent remodeling is complicated

by the diversity of neurons and synapse types. The

establishment of a functional brain depends not only on

neurons, but also non-neuronal glial cells. Glia are in

continuous bi-directional communication with neurons to direct

the formation and refinement of synaptic connectivity. This

article reviews important findings, which uncovered cellular

and molecular aspects of the neuron–glia cross-talk that

govern the formation and remodeling of synapses and circuits.

In vivo evidence demonstrating the critical interplay between

neurons and glia will be the major focus. Additional attention

will be given to how aberrant communication between neurons

and glia may contribute to neural pathologies.
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Overview
The mammalian brain is a complex organ comprised of

numerous cell types and greater than 1 � 1014 synapses.

In broad classifications, two main cell types encompass

the neural parenchyma: neurons and glia. Neurons are a

heterogeneous group of electrically active cells, which

form the framework of the complex circuitry of the brain.

Glia comprise a class of non-neuronal cells including

astrocytes, microglia, oligodendrocytes, and oligodendro-

cyte progenitor cells (OPCs) of the mammalian central

nervous system (CNS). Schwann cells and satellite cells

of the peripheral nervous system (PNS) also play analo-

gous roles to CNS glia. Each glial cell type occupies a

discrete role in the development and function of the

CNS. Astrocytes and microglia, in particular, arise from

separate cell lineages (neural and immune, respectively)
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and regulate distinct aspects of synaptic development and

circuit connectivity.

The intricate communication between neurons and glia

and their cooperative roles in synapse formation are now

coming to light due in large part to advances in genetic

and imaging tools. This article will examine the progress

made in our understanding of the role of mammalian

perisynaptic glia (astrocytes and microglia) in synapse

development, maturation, and plasticity since the previ-

ous Current Opinion article [1]. An integration of past and

new findings of glial control of synapse development and

plasticity is tabulated in Box 1.

Glia control the formation of synaptic circuits
In the CNS, glial cells are in tight association with

synapses in all brain regions [2]. In particular, astrocytes

and microglia are ramified cells that extend numerous

small processes that associate with synapses (Figure 1).

These perisynaptic glial processes are proposed to active-

ly participate in regulation of synaptic transmission [3].

This recognition gave rise to the ‘tripartite’ and ‘quad-

partite’ synapse models, which include perisynaptic glial

processes as integral parts of the synapse in addition to the

neuronal pre and postsynaptic compartments [4,5]. Thus,

glial cells are in prime position to monitor and influence

local synaptic activity in response to synaptic signals and/

or physiological states.

Studies using purified neuron and astroglial cultures

revealed that neurons form few and weak synapses in

the absence of glia [6] and mice in which gliogenesis is

inhibited genetically display rampant neuron loss, dimin-

ished motor output [7], and altered synaptogenesis [8].

Nearly three decades of research has provided a frame-

work whereby glia-derived secreted factors promote the

formation and maturation of excitatory synapses [1,9].

Among the first identified proteins were the astrocyte-

secreted thrombospondins 1–5 (TSP1–5), which induce

the formation of structurally intact, but postsynaptically

silent, excitatory synapses in vitro and in vivo [10]. TSPs

induce excitatory synapse formation by their interaction

with the neuronal Gabapentin receptor a2d-1 [11]. Other

glial secreted factors have since been identified to regu-

late various aspects of excitatory synapse formation in-

cluding: cholesterol with apolipoprotein E (APOE) [12],

glypicans 4 and 6 [13], TGF-b [14,15], chondroitin sulfate

proteopglycans (CSPGs) [16,17] and TNF-a [18] (see

Box 1: Tables 1 and 2 for more details). In vitro studies

also showed that inhibitory synapses are induced when
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Box 1 Summary of past and recent findings

Summary of findings related to glial control of synapse formation and synaptic plasticity.

Table 2

Glial molecules that regulate synaptic plasticity.

Molecule Cell type Finding Reference

CSPGs Astrocyte Determines surface AMPAR mobility and synaptic strength. [16,17]

TNF-alpha Astrocyte and

microglia

Regulates AMPARs-dependent synaptic plasticity; Suppresses synaptic

plasticity during chronic substance abuse.

[18,66,67]

Hevin Astrocyte Required for Ocular Dominance Plasticity (ODP) in the visual cortex. [23��]

P2Y12 Microglia Required for ODP in the visual cortex. [40]

CX30 Astrocyte Regulates synaptic contact of astrocyte processes thus controls glutamate uptake. [32��]

D-serine Astrocyte Controls NMDAR-dependent synaptic integration of adult-born neurons. [33,34,36��]

CX3CR1 Microglia Controls synaptic pruning; activity-dependent. [42]

CR3 and CR4 Microglia Controls synaptic pruning; activity-dependent. [53]

MEGF10 & MERTK Astrocyte Regulates engulfment of unwanted synapses by astrocytes; activity-dependent. [45]

Table 1

Glial molecules that control synapse formation.

Molecule Cell type Finding Reference

Thrombospondin Astrocyte Induces the formation of post-synaptically silent excitatory synapses;

Functions through neuronal Gabapentin receptor a2d-1.

[10,11]

Hevin Astrocyte Controls retinocollicular and thalamocortical excitatory synapse formation

via bridging synaptic Nrxn1a and NL1.

[21,22,23��]

SPARC Astrocyte & microglia Inhibits the synaptogenic function of hevin; Inhibits synaptic recruitment of

GluA1 and GluA2 AMPARs.

[21,65]

Glypicans Astrocyte Increases synaptic levels of GluA1 AMPARs and induces excitatory synapse

formation.

[13]

TGF-beta Astrocyte Controls excitatory synapse formation in the CNS; Regulates NMJ formation

in the PNS.

[14,15]

BDNF Astrocyte &

microglia

Controls excitatory synapse formation. [25�,68]

Gamma-protocadherins Astrocyte Regulates excitatory and inhibitory synapse formation through direct

contact with neurons.

[20]
astroglial cells are present; however the identities of these

factors remain to be elucidated [19,20].

Another astrocyte-secreted synaptogenic protein is

hevin (a.k.a. SPARCL1), which induces postsynaptical-

ly silent excitatory synapses similar to the thrombos-

pondins in vitro [21]. In the developing mouse cortex

hevin specifically controls the formation of thalamocor-

tical (thalamic neuron-to-cortical neuron) glutamatergic

synapses. Hevin knockout mice display a significant

loss of these thalamocortical synapses with a concordant

increase in the number of intracortical (cortical neuron-

to-cortical neuron) synapses [22]. Hevin functions by

bridging two neuronal cell adhesion molecules, neur-

exin 1a (Nrxn1a) and neuroligin 1B (Nlgn1B), across

the synapse and promotes the formation of both pre and

postsynaptic specializations [23��]. There are numerous

isoforms of Nrxns and Nlgns, which are thought to be

the basis for the diversity of neuronal synaptic connec-

tions [24]. However, these findings show that astrocytes

are capable of promoting the formation of select sub-

classes of excitatory connections in the brain by modi-

fying this molecular code.
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Microglia have also been shown to regulate synapse de-

velopment in the brain. Compared to controls, mice with

genetically ablated microglia show reduced dendritic

spine formation, reduced motor-learning dependent syn-

apse formation, and reduced excitatory postsynaptic cur-

rents. Many of these anomalies are recapitulated with Cre-

mediated microglia specific elimination of Brain Derived

Neurotrophic Factor (BDNF), indicating a specific role for

microglia-secreted BDNF in the formation and/or main-

tenance of proper synaptic connectivity [25�]. However,

not all microglia ablation phenotypes are recapitulated

with microglial BDNF loss, indicating the presence of

other molecular mechanisms whereby microglia regulate

synapse formation. BDNF is also released from astrocytes

and neurons to regulate synaptic functions; future studies

are needed to determine the significance of the precise

source and timing of BDNF-signaling coming from each

of these CNS cell types.

A looming question in the glial field is whether glial cells

control where synapses are formed and whether glia can

discriminate between synapses to provide specific machin-

ery fitting to their needs. Studies using invertebrate
www.sciencedirect.com
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Figure 1

(a) (b)

Astrocyte Microglia
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Perisynaptic glial cells of the CNS: astrocytes and microglia. (a) A single layer 4 EGFP-filled cerebral cortex protoplasmic astrocyte from a 21-day

old mouse. Astrocytes are morphologically complex cells with a single soma and thousands of tiny branches that ensheathe 6–8 neuronal soma

and over 100 000 synapses. (b) A zoomed-in micrograph of a cortical microglial cell from the CX3CR1-EGFP knock-in mouse. Microglia have a

single soma with many branches that survey synaptic tissue to regulate synapse formation, elimination, and plasticity. Scale = 5 mm3.

Source: Image in B courtesy of Sagar Patel and Juan Ramirez.
genetic models, such as Caenorhabditis elegans, hint that

glial cells indeed can dictate where synapses form [26] and

can preferentially traffic and localize glial proteins to

specific synapses to regulate neural receptive endings

[27]. A single rodent astrocyte can ensheathe more than

100 000 synapses from a number of different circuits; how

it discerns one synapse from another and serves these

synapses individually is a fascinating question and is only

beginning to be explored [28]. Future studies are neces-

sary to elucidate how the diverse glia-derived secreted

synaptogenic factors are released from glia in a regulated

fashion for temporal and spatial control of specific synaptic

circuits.

Glia refine and remodel synapses and circuits
Glia are active participants in synaptic plasticity and are

known to modulate individual synapses and circuits [3].

The function of astrocytic glutamate transporters GLT-1

and GLAST are classic examples of how astrocytes regu-

late glutamatergic synaptic transmission by controlling

the neurotransmitter levels at the synapse [29,30]. Gluta-

mate uptake normally occurs perisynaptically due to the

localization of astrocyte processes [31]. New evidence

shows that astrocyte process ensheathment is restricted to

perisynaptic regions by the hemichannel protein con-

nexin 30 (Cx30). Genetic deletion of Cx30 permits astro-

cyte process invasion into synaptic clefts, which prevents

glutamate activation of the postsynapse and alters excit-

atory synaptic strength. These effects of Cx30 are inde-

pendent of its channel function, suggesting that Cx30 in

this context acts as a cell adhesion protein. Functionally,

astrocytic Cx30 regulates long-term synaptic plasticity

and hippocampal-based contextual memory [32��].
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It has also been postulated that astrocytes regulate syn-

aptic strength through the vesicular release of factors [33]

including astrocyte-specific neurotransmitter D-serine,

which is a co-agonist for NMDA receptors (NMDARs)

[34]. However, the conclusions of some of these studies

have been subject to scrutiny [35]. A new study that

investigated the role of hippocampal astrocytes in regu-

lating adult-born neuron circuit integration addressed

some of these concerns. In two independent transgenic

mouse lines used to inhibit vesicular exocytosis of astro-

cytes, adult-born neurons fail to generate mature dendrit-

ic spines only when passing through the affected

astrocytes. These data argue that local vesicular release

of astrocyte factors is required for synaptic integration

[36��]. These phenotypes could be mostly, but not fully,

restored through exogenous addition of D-serine, sug-

gesting that other vesicle-released astrocyte factors are

involved in different steps of synaptic integration.

In addition to influencing the integration of new-born

neurons, glia modulate the plasticity of existing synaptic

circuits. A useful model for the study of developmental

synaptic plasticity is in the mammalian visual cortex with

a phenomenon known as ocular dominance plasticity

(ODP). ODP is observed when monocular deprivation

during a critical developmental period causes the rear-

rangement of neuronal wiring properties in the binocular

zone of the visual cortex, such that inputs from the open

eye strengthen as inputs from the closed eye weaken [37].

Numerous studies identified neuronal signaling pathways

that are required for the ODP [38]; however, new studies

now shed light on the critical glial contribution to ODP in
Current Opinion in Neurobiology 2017, 42:1–8
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mice. In response to monocular deprivation during the

critical period, microglia rapidly alter their morphology

and synaptic interactions in the binocular zone of the

visual cortex [39]. Interestingly, elimination of the pur-

inergic P2Y12 receptor prevented these microglial ODP-

dependent responses and abolished ODP [40]. How

P2Y12 regulates ODP remains to be elucidated.

Astrocytes also regulate ODP through the release of the

synaptogenic protein hevin. Hevin knockout mice fail to

make the ODP shift unlike their wild type siblings.

Significantly, postnatal rescue of hevin expression, spe-

cifically in astrocytes of the visual cortex, completely

restores ODP [23��]. The underlying mechanism of

how hevin regulates ODP is unclear, though it may stem

from the crucial role of this astrocyte-secreted protein in

the formation and refinement of thalamocortical contacts

[22] and/or its enhancement of NMDAR-dependent glu-

tamatergic signaling [23��].

In addition to their role in regulating synaptic strength

and plasticity, glial cells also actively refine circuits

through pruning and phagocytosis of unnecessary and

weak synapses. Microglia and astrocytes eliminate synap-

ses in a developmentally regulated and activity-depen-

dent manner. The early postnatal pruning process by

microglia is dependent upon the CX3CR1 receptor and

complement receptor, CR3 [41,42]. New evidence also

shows that microglia engulf synaptic material in the adult

brain through a CR3-dependent process by binding to

soluble b-amyloid oligomers [43]. Inhibitory synapses are

also pruned by microglia and are preferentially eliminated

upon genetic deletion of progranulin, a regulator of com-

plement production [44]. Astrocytes also express phago-

cytosis machinery and eliminate synapses through

MEGF10 and MERTK pathways in an activity-depen-

dent manner [45].

Glia sense and respond to synaptic activity
Signaling at the synapse between glia and neurons is not a

one-way street, but is instead a delicate bi-directional

communication required for the proper formation and

maintenance of synapses and circuits. It was proposed

that astrocyte vesicular release is regulated by neuronal

activity [46]. Since circuit formation and integration of

neurons may require the vesicular release of astrocytic

factors [36��], it would appear that neurons and glia utilize

an intricate positive feedback system, whereby neurons

signal through astrocytes to regulate synapse formation

and plasticity ‘on-demand.’

The middle-man function of astrocytes has been detected

in other hippocampal circuits. Hilar astrocytes act as the

relay center between cholinergic inputs and the hippo-

campal granule cells. Acetylcholine activates hilar astro-

cyte intracellular calcium signaling presumably through

the nicotinic and muscarinic receptors, where then
Current Opinion in Neurobiology 2017, 42:1–8 
astrocytes excite the hilar interneurons through glutamate

release and cause downstream granule cell depolarization

[47�]. It is still unclear how calcium signaling initiates

glutamate release in this context.

Astrocytes undergo global and local calcium transients

and the calcium signaling properties of these glial cells

have been investigated for some time. Still our under-

standing of their roles in synaptic transmission and overall

brain function is very limited. Organic calcium indicator

dyes and now powerful genetically encoded calcium

indicators (such as GCaMPs or GECIs) have been uti-

lized to extensively study astrocyte calcium fluctuations

in the brain under pharmacologic and sensory stimuli

[48,49]. Focal calcium elevations in astrocytes near syn-

apses are detected following synaptic neurotransmitter

release [50] even at the level of single-synaptic stimula-

tions [3]. Assorted calcium fluctuations have been live-

imaged within single in vivo astrocytes including calcium

oscillations in the soma, main branches, and within micro-

domains in the neuropil during the startle response [51].

Some calcium spikes are lost upon knockout of the major

astrocyte inositol triphosphate receptor, IP3R2. However,

calcium spikes still occur in IP3R2 knockout mice, which

indicates that other mechanisms can regulate intracellular

calcium in astrocytes [51]. What these calcium fluctua-

tions mean and how they regulate glial cell behavior and

output is still to be determined, and should be a major

focus of future studies.

Microglia also sense neuronal communication and synap-

tic activity. Synaptic pruning by microglia is activity-

dependent, as less active presynaptic inputs are prefer-

entially eliminated over more active terminals [52].

Microglia regulate elimination of these synapses through

the neuronal release of C1q, the initiator of the classical

complement cascade and the complement ligands, C3

and C4 [53]. The precise mechanism of how synapses are

tagged for elimination by C1q and C3 is still unclear. Do

microglia directly or indirectly sense synaptic activity

based on neuronal release of C1q, C3, the fractalkine

ligand CX3CL1, or other proteins? Interestingly, altered

synaptic pruning by microglia is tightly linked to dysfunc-

tional brain connectivity and deficits in social behavior

[54]; therefore alterations in microglia–neuron communi-

cation are likely to underlie neurodevelopmental and

neuropsychiatric pathologies.

Aberrant interplay between glia and synapses
in neurological disorders and diseases
A critical hallmark of most neurodevelopmental disorders

is aberrant synapse formation and/or function. Since glia

play crucial roles in synapse development and plasticity, it

is not surprising that misregulated astrocytes and micro-

glia underlie the pathological mechanisms at work

in many neural disorders. Inclusively, glial cells may

regulate the pathology of Rett syndrome [55], Down
www.sciencedirect.com
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syndrome [56], Spinal Muscular Atrophy [57], Fragile X

syndrome [58] and others [59]. Surprisingly, abnormal

phenotypes can be rescued or alleviated by wild type glial

cells, even when the neurons still harbor the detrimental

mutations.

More recent studies have identified that the communi-

cation between neurons and glial cells is affected in a

number of neuropsychiatric and neurodegenerative dis-

orders. Schizophrenia is a heritable psychiatric disorder

that manifests late in adolescence to early adulthood and

features a pronounced loss of grey matter and reduced

synaptic structures. In humans, neuronal C4 levels

strongly correlate with schizophrenia susceptibility. In

mice, C4 mediates microglial synaptic elimination during

postnatal development, suggesting that schizophrenia

may be regulated by anomalous microglia-synapse com-

munication [60].

The complement pathway and microglia have also re-

cently been shown to regulate mouse models of the

neurodegenerative diseases. Microglial-mediated neu-

roinflammation has been attributed to late stage Alzhei-

mer’s disease (AD) progression, yet a role for microglia in

early stage AD had been determined. The new findings

show that in mouse models of AD, microglia trigger

excessive synapse loss through C1q and C3 signaling that

precedes b-amyloid plaque deposition [43]. Huntington’s

disease (HD) is a neurodegenerative disorder of the basal

ganglia where glial deficits contribute to neuronal dys-

function. In mouse models of HD, striatal astrocytes

display altered membrane properties and lower Kir4.1

potassium ion channel levels compared to controls, which
Figure 2
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lead to increased neuronal excitability and dysfunction

[61]. New evidence suggests that aberrant synaptic de-

velopment may drive the neural pathologies measured in

mouse models of HD [62], opening the door for glial

misregulation in the establishment of synaptic connec-

tivity in HD. The roles of glial cells in these and other

neurological disorders will become more apparent with

the advent of new tools and a dedicated glial focus.

Conclusions and perspectives
As reviewed here, glial cells, specifically astrocytes and

microglia, have are active regulators of synaptic develop-

ment and plasticity (Figure 2). However, there are still a

number of important unanswered questions that need to

be addressed in the upcoming years:

1) How does a single astrocyte coordinate the production

and release of multiple synaptogenic proteins to

organize regulated synapse formation and plasticity?

2) Do astrocytes serve each synapse individually or in

groups, such as within the territory of a single

astrocyte?

3) What is the role of astrocyte-synapse adhesions in

synapse development and plasticity?

4) Do glial cells communicate with each other to

harmonize synapse formation, maturation, and plas-

ticity with synapse pruning?

5) Do other glial cells, such as OPCs, regulate neuronal

and synaptic function?

6) What unknown factors do neurons utilize to commu-

nicate with glial cells?

7) How do glial cells convert these neuronal signals into

functional outputs?
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8) Recent studies revealed molecular and functional

heterogeneity of perisynaptic glia [63,64]. These

findings bring forward the question: Do different

classes of astrocytes and microglia have specific

functions in controlling synaptic connectivity?

In conclusion, here we summarized a number of recent

high impact studies, which revealed important aspects of

the communication between glial cells and synapses.

These critical studies were made possible due to the

advanced tools for studying glial cell biology in connec-

tion with synaptic functions, including mouse models and

functional assays. However, to further our understanding

on glia/synapse interactions there is now an even greater

demand for more sophisticated tools to study glial cells in
vivo and their associations with their neuronal partners in

real time.
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