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1. Introduction

In a recent paper Ambrus and Elliott (2018) propose a strategic model of network formation

in a context of informal risk-sharing. The model features distinct groups of households, with

the central assumption that it is costlier to maintain connections across groups than within,

but also that it is potentially more beneficial, because incomes are less positively correlated

across groups than within. The model predicts that if maintaining across group links is

relatively costly, households typically underinvest in across-group connections relative to

what would be socially optimal, as those maintaining these connections do not take into

account the positive externality the connection generates for their group members. It is also

shown that the households that have the highest private incentives to invest into outside

connections are the more central ones, according to a new measure of network centrality they

label Myerson centrality. Lastly, the model predicts that when household face less volatile

incomes and therefore the value of informal risk-sharing connections decreases, the association

between Myerson centrality and maintaining across group connections should be higher since

less central households do not find it worthwhile anymore to maintain such connections.

We test the latter theoretical prediction using unique network data from 185 villages in

Tamil Nadu, India. The data were collected in the context of a large field experiment in

which a randomly chosen half of the villages gained access to local banking services, providing

exogenous variation in access to formal loans. Both in the treated and non-treated villages,

near complete network data were collected on within-village actual and potential financial

transactions, as well as on financial links to households outside the village. Using these data,

we test the theoretical prediction that the association between Myerson centrality within

the village network and having financial links outside the village becomes more positive

when villagers have access to formal banking (and therefore the value of informal financial

links is smaller). This prediction bears out in the data. In particular, the relationship

between Myerson centrality and outside links is significantly more positive in villages that

were randomly chosen to receive formal banking services. This prediction can confidently

be interpreted as a causal influence of a reduction in the value of outside links because it is

based on truly exogenous variation in formal credit access, which gives rise to a significant

reduction in the number of network links, consistent with a decline in the relative importance

of informal risk-sharing.

Our dataset is particularly well-suited for our analysis as it (i) involves numerous inde-

pendent villages (essential for inference, though most network-based studies have just one

or a handful of villages), (ii) includes complete network data across both financial and so-

cial connections for almost all households in every village, and (iii) captures both within

village contacts and outside-village contacts, which are rarely contained in datasets of this

kind. However, the major advantage of these data for testing the empirical predictions of

our model is that they were collected in the context of a large field experiment in village

banking, in which a randomly chosen half of villages gained access to local banking services
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1-2 years prior to data collection. This gives us indisputably exogenous variation in access

to formal financial services with which to test one of the model’s key predictions: that the

correlation between Myerson Centrality and number of costly links is more positive when the

value of outside risk-sharing links is lower, all else equal. The setting is unique in the sense

that reliance on informal networks varies randomly with the introduction of banking services,

which allows us to study how truly exogenous variation in the value of network links across

villages influences network composition.

Our work contributes to a recent string of papers examining how social networks respond

to the introduction of various financial instruments: see for example Feigenberg et al. (2013),

Banerjee et al. (2014a, 2014b) and Binzel et al. (2017). More broadly the paper is related

to the empirical literature on informal risk-sharing arrangements.1

2. Setting and Data

The data we employ were collected from 2014 to 2016 in conjunction with a large-scale

impact evaluation of access to formal financial services in rural Tamil Nadu, India (Binzel

et al., 2017). The implementing partner was a large financial institution (henceforth, LFI)

that offers group-based and individual loans to both men and women through local village

branches with the explicit goal of reaching individuals in financially marginalized (previously

unbanked) rural communities. Beginning in 2008, LFI expanded bank infrastructure across

villages from the districts of Thanjavur, Thiruvarur and Pudukkotai (Tamil Nadu). Prior to

this rolling-out, 102 potential branch service areas (henceforth, SAs) were identified by LFI

as potential expansion areas. The average SA spans 10 villages within a radius of 4-5 km

from the branch and covers a population of roughly 10,000 people. Once all feasible branch

locations in the district had been designated, SAs were matched into pairs using a minimum

distance matching algorithm, and 51 bank branches were randomly assigned to one SA in

each pair.

Bank operations began soon after treatment assignment. By the onset of network data

collection efforts, bank penetration had reached a average level of 41% in treatment SAs.

An early evaluation of this expansion of financial activity conducted in 2013 shows that

households living in treatment villages were 32% more likely to have borrowed in the previous

year compared with households in control villages.

Beginning in 2014, a full social network mapping survey was administered in a randomly

chosen subset of 204 villages from the 102 service areas (2 villages per service area).2 In these

1For an incomplete list of papers see Ellsworth (1988), Rosenzweig (1988), Deaton (1992), Paxson (1993),
Udry (1994), Townsend (1994), Grimard (1997), Fafchamps and Lund (2003), Schulhofer-Wohl (2011) and
Mazzocco and Saini (2012).
2At baseline, i.e. before branch openings in treatment service areas, two villages per service area were selected
as follows. First, the sample was limited to villages with 40-250 households, excluding the designated branch
location. For each pair, one village was randomly selected and then matched with the village in the corre-
sponding treatment or control service area that had as close to the same distance from its respective branch
as the first picked village had from its branch. For control area villages, the planned branch location was used
as benchmark.
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villages, all households were asked to name all social and financial contacts both within and

outside the village, enabling us to map the full network of social and financial connections

within each sampled village.3 Households were surveyed 18 to 24 months after the opening

of the branch.4 The network survey was administered to both the head and spouse of each

household, when available.5 In the survey, the head of the household and spouse were asked

to identify all individuals within the village with whom they: (i) spend leisure time; (ii)

could borrow in case of emergency; and (iii) could borrow to finance a business investment.6

In addition, respondents were asked to list all individuals living outside of the village from

whom they could borrow in case of emergency. In addition to naming each link both inside

and outside the village, respondents were asked their relationship to the link (friend, family,

employer, moneylender), the actual amount borrowed from each link, the amount they could

borrow from each link in case of emergency, the amount they could borrow from each link

to finance a business investment, and the number of contact days with each link (out of

past 7). For outside links, respondents were also asked the distance to each link (for our

purposes, whether the link lives within walking distance). Information on outside links was

only collected in 189 villages, and village-level controls are missing from 4 villages. As a

consequence, this analysis is limited to the 185 villages with complete data.7 We also exclude

the 38 households that moved into the study area between baseline and endline.

Although financial and leisure ties are elicited separately for both the head and spouse, in

order to analyze household-level networks we aggregate observations within the household in

the following manner. First, we only consider “OR” networks - that is, those containing either

a social or a financial tie.8 Second, we aggregate the two layers of edges between households

using the following rule: If two people from household A report two persons in household B,

there is a unique directed edge from A to B. Thus, it will be equivalent to the case where

only one person from household A reports a person from household B.

3Links named by respondents were immediately matched to names within a database of village members
collected at baseline. Information on outside contacts cannot be mapped since household living in villages
that are not included in our sample cannot be identified by name and location.
4In 85 villages, an additional round of network data was also collected at Baseline (prior to the opening of
the bank branch) in addition to Endline. Because less than half of villages have panel network data, baseline
data are excluded from the current analysis.
5For 23% of the households, only the head of the household has been interviewed. For 13% only the spouse
has been interviewed.
6In all questions, households could list up to 15 individuals, which results in very little censoring of networks.
The maximum number of links was reached in only very few cases (less than 0.01% of cases).
7Inclusion in the sub-sample is balanced across treatment and control.
8In particular, our analysis focuses on two types of networks: the financial graph Lf and the social graph
Ls. The financial graphs represent risk-sharing connections, and the social graph represents friendships and
ties used to socialize (see survey questionnaire in Section A.1 of the Supplementary Appendix), which are not
mutually exclusive. Our empirical test utilizes both types of links and considers Lall the network of either
risk-sharing or friendship connections. We favor “OR” networks because of the high degree of overlap between
social and financial networks, and because of the concern that network links are self-censored due to imperfect
recall or insufficient recall effort. The results are almost identical when MC is computed on the financial or
social networks alone.
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Second, to aggregate characteristics of the interaction between two households, we consider

an aggregation rule that avoids double-counting. The continuous value characterizing a link

between household A and household B is the maximum of all the values that the head and

the spouse of household A have reported for anyone belonging to household B.9

These aggregation rules are only applicable for inside village contacts in which we know

whether two declared contacts belong to the same household. For outside contacts, we

consider all the outside contacts listed by the household, excluding only contacts that are

classified by respondents as money-lenders.

3. Results on Consumption Variance and Myerson Centrality

Tables 2-3 provide summary statistics of the sampled villages in order to verify that the

sample is balanced across treatment and control arms. The average number of households

per village is 112, the average node degree is 4.56, and the density is 0.04. Tables 4-6 show

the treatment effects of village-level banking services on within-village and outside-village

links, which are discussed extensively in Binzel et al. (2017). As predicted, the introduction

of banking services generates an exogenous reduction in households’ within-village network

links and their reliance on informal transfers, as measured by the difference in real and

potential borrowing levels between treatment and control villages (Table 4).

In Tables 5 and 6 we observe that banking does not reduce the number of outside links, but

does lead to less informal borrowing from outside sources, and to changes in the composition

of outside links. In particular, in banked villages, outside links are younger, closer in distance,

and more social than outside links in control villages. All of these suggest a shift away form

more financially valuable outside links.

Overall, these results demonstrate that the randomized introduction of formal banking

services reduced the value of informal links both within and outside the village, as would be

expected. This allows us to rigorously test the more nuanced predictions on the relationship

between bridging links and Myerson Centrality. Our main test of the theoretical model,

presented in Table 1, utlizes the following specification:

(1) #OutContactji = α0 + α1Ti + α2MCji + α3MCji × Ti + α4Xij + γsi + εit

Where #OutContactij is a binary indicator of whether household j in village i has any

links outside the village, Ti is the treatment indicator equals to 1 if village i was in a service

area that was randomly given access to the LFI’s services, MCji is the Myerson Centrality

of individual j computed on the ALL network, Xij is a set of control variables either at the

household or the village level, γsi is a pair fixed effect that accounts for the experimental

stratification, and εit is an error term. Since the treatment is assigned at the service area

level (encompassing several villages), this error term is clustered at the service area level.

9For instance, if the head of household A report that she can borrow Rs. 150 from the spouse of household B
and the spouse of household A reports that he can borrow Rs. 100 from the head of the household B, we will
consider that household A can borrow Rs. 150 from household B.

4



In Table 1 we see clear evidence that an exogenous reduction in the value of outside

links brought about by the introduction of formal banking services leads to a significantly

more positive relationship between Myerson Centrality and link formation. The negative

and significant coefficient estimate on the treatment indicator implies that banking services

encouraged an overall reduction in outside links for all individuals in the village. Meanwhile,

the positive and significant coefficient estimate on the interaction between MC and treatment

implies that the impact of access to formal banking on outside links was less extreme among

more central individuals. That is, although outside links are less common in the new regime

in which those links are less financially valuable, Myerson central individuals are significantly

more likely to retain outside links compared to less central individuals when their value

declines.10 Appendix A.3 also shows that villagers’ incomes are positively correlated with

their Myerson centralities, as predicted by the theory.

10The negative coefficient on Myerson centrality is not predicted by the theory, but it is also not inconsistent
with it: when the benefits of across group links are large then all agents, including those who are not central
in their own group’s network, have incentives to establish outside links, and our model does not give sharp
predictions on the structure of the network. Furthermore, there might be individuals who have more recently
moved to the village and are both more likely to have “free” outside links and to be less central within the
village community. Unfortunately, we do not have information on how long a household has resided in the
village to test this hypothesis.
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Table 1. Treatment effect on whether household has outside contacts

Has any
outside
contact

Has any
outside
contact

(excluding
contacts
within

walking
distance)

Has any
outside
contact

Has any
outside
contact

(excluding
contacts
within

walking
distance)

Has any
outside
contact

Has any
outside
contact

(excluding
contacts
within

walking
distance)

(1) (2) (3) (4) (5) (6)

Treatment -0.0310∗ -0.0288 -0.0274∗ -0.0255 -0.0512∗ -0.0614∗∗

(0.0165) (0.0191) (0.0157) (0.0176) (0.0285) (0.0270)

MC -0.000201∗∗∗ -0.000156∗∗∗ -0.000108∗∗∗ -0.0000880∗∗ -0.000415 -0.000920∗

(0.0000469) (0.0000528) (0.0000306) (0.0000339) (0.000419) (0.000501)

MC × Treatment 0.000113∗∗ 0.0000830 0.0000788∗∗∗ 0.0000558∗ 0.000433∗ 0.000463∗∗

(0.0000449) (0.0000531) (0.0000294) (0.0000332) (0.000221) (0.000197)

Nr. Observations 18,648 18,648 18,648 18,648 18,648 18,648
Nr. villages 185 185 185 185 185 185
R2 0.164 0.143 0.163 0.142 0.162 0.142

MC Calculation
Method 1,
Undirected

Method 1,
Undirected

Method 2,
Undirected

Method 2,
Undirected

Method 3,
Undirected

Method 3,
Undirected

Mean Control 0.60 0.52 0.60 0.52 0.60 0.52

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses
Control variables include, at the household level, a dummy of whether the only respondent of the household
was the head of the household, a dummy of whether the only respondent of the household was the head of the
household’s spouse, the average age of the household’s respondents, a dummy of whether the household is involved
in agriculture. Control variables at the village level are: the number of households in the village, the distance to
the bank branch, and the proportion of people belonging to the same caste in the village. Control variables take
a value of zero when missing values, and regressions include an indicator of missing data corresponding to each
control. Control HH refers to a regression including only the first two dummies of the household controls.
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Appendix A

A.1. Survey questions and definition of networks. As part of the social and informal

risk-sharing network mapping, we asked about three types of ties: inside their village leisure

contact, inside their village borrowing contact and outside their village contact.

Inside leisure contacts were elicited by asking respondents to “think of the people, within

their gramum with whom they spend the most leisure time (non-household members above

the age of 18). These are people with whom they may have spent time for your relaxation,

during breaks at work, discussing in person or on the phone, at festivals, drinking tea, or

whenever they have made time for yourself (free time)”.

Additional borrowing contacts within the village were elicited by asking respondents to

list “additional people (outside of their household) who they could borrow from in case of

emergency, other than those people they have already listed”.

Finally, contacts living outside the village were elicited by asking respondents to “list peo-

ple outside the gramum from whom they could borrow in the case of an emergency”.

For each contact, we asked the respondent to specify:

(1) The number of days in the last 7 when you have met or spent time with this person

face-to-face or spoken to this person on the phone.

(2) The total amount of money actually borrowed from this person in the last 12 months.

(3) The maximum amount of money that this person would have been willing to lend

you over the last 12 months.

(4) The amount of money the respondent could borrow from this person if she was going

to start a business or expand an existing business, over the past 12 months.

For outside contacts we also ask where the contact lives.

Based on this set of question, we define two types of inside ties:

• Leisure contact are any household listed as an inside leisure contact.

• Borrowing contact are any household listed as an inside leisure contact or as an

inside borrowing contact such as one of the answer to questions 2, 3 or 4 is strictly

positive, i.e. it is a contact the respondent can either borrow money from, has already

borrowed from or could borrow from in case she wants to start a business.

Finally, from these two types of links we draw the final graphs used in the analysis:

• Bidirected financial network: there is a link between household A and B iif A declares

B and B declares A as a borrowing contact.

• Bidirected social network: there is a link between household A and B iif A declares

B and B declares A as a leisure contact.
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• Bidirected all network: there is a link between household A and B iif A declares B

as either a leisure or a borrowing contact and B declares A as either a leisure or a

borrowing contact.

A.2. Tables.

Table 2. Balance statistics: Village characteristics at Endline - Villages with
more than 40 households

Observations

NC + NT

Control

Mean

[SD]

Treatment

Mean diff.

(SE)

[1] [2] [3]

Village characteristics

Number of households (Census) N= 185 119.52 -8.771

93C + 92T [ 55.54] ( 6.688)

Number of heads and spouses (Census) N= 185 214.77 -16.793

93C + 92T [ 99.04] ( 11.788)

Number of surveyed households (SNM) N= 185 110.71 -9.974

93C + 92T [ 53.47] ( 6.479)

Number of surveyed heads and spouses (SNM) N= 185 175.51 -18.774?

93C + 92T [ 87.80] ( 9.829)

Pct. of surveyed households N= 185 0.92 -0.006

93C + 92T [ 0.09] ( 0.010)

Pct. of surveyed heads and spouses N= 185 0.81 -0.011

93C + 92T [ 0.10] ( 0.009)

Population estimate (Indian Census, 2001) N= 185 488.83 -34.688

93C + 92T [ 213.33] ( 25.550)

Distance to the bank branch, kms N= 185 2.31 -0.051

93C + 92T [ 1.32] ( 0.114)

Note : The sample is restricted to villages with outside contact information. . ???, ??, and ?

indicate significance at the 1%, 5%, and 10% levels respectively. Column (1) reports the total

number of observation and its decomposition by groups. Column (2) reports the average

outcome (standard deviation) for the control group. Column (3) reports the regression

coefficent associated to the treatment dummy when controlling for pair fixed effects and

with error terms cluster at the Service Area level.
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Table 3. Descriptive Statistics - Undirected networks

N Mean (SD) Min-Max

[1] [2] [3]

Average Myerson Centrality - Incoming link deletion algorithm (Method 1)

Leisure network 185 169.49 ( 142.91) 0.77 - 569.05

Financial network 185 188.02 ( 167.11) 3.67 - 768.19

All network 185 227.90 ( 184.56) 6.37 - 805.90

Std Dev Myerson Centrality -Incoming link deletion algorithm (Method 1)

Leisure network 185 35.71 ( 27.11) 0.84 - 212.86

Financial network 185 42.82 ( 27.98) 2.92 - 149.75

All network 185 44.35 ( 26.67) 3.98 - 140.46

Average Myerson Centrality - Outgoing link detection algorithm (Method 2)

Leisure network 185 236.11 ( 207.57) 0.64 - 801.46

Financial network 185 258.25 ( 243.28) 2.27 - 1189.14

All network 185 315.79 ( 269.74) 4.77 - 1237.11

Std Dev Myerson Centrality - Outgoing link detection algorithm (Method 2)

Leisure network 185 65.58 ( 63.47) 1.01 - 546.02

Financial network 185 71.86 ( 59.44) 1.72 - 329.28

All network 185 77.95 ( 59.94) 3.09 - 321.49

Average Myerson Centrality - Link detection algorithm (Method 3)

Leisure network, bidirected 185 56.49 ( 39.36) 13.67 - 215.75

Financial network 185 53.78 ( 31.93) 13.58 - 181.04

All network 185 50.22 ( 29.33) 13.54 - 179.86

Std Dev Myerson Centrality - Link detection algorithm (Method 3)

Leisure network 185 9.07 ( 11.10) 0.50 - 58.53

Financial network 185 12.97 ( 12.45) 0.51 - 57.42

All network 185 9.71 ( 12.51) 0.55 - 55.90

Average Node Degree

Leisure network 185 4.14 ( 1.65) 0.75 - 7.11

Financial network 185 4.31 ( 1.64) 1.38 - 7.14

All network 185 4.84 ( 1.68) 1.58 - 7.61

Std Dev Node Degree

Leisure network 185 2.31 ( 0.60) 1.02 - 3.88

Financial network 185 2.55 ( 0.67) 1.18 - 4.33

All network 185 2.65 ( 0.68) 0.71 - 4.41

Note : The sample is restricted to villages with outside contact information and control

variables.
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Table 4. First stage effect at the Household level - Inside contact characteristics

Observations

NC + NT

Control

Mean

[SD]

Treatment

Mean diff.

(SE)

[1] [2] [3]

Household declaring inside contact

Household having least one inside contact N= 18642 0.86 -0.006

9816C + 8826T [ 0.35] ( 0.011)

Number of inside contacts N= 18642 2.60 -0.129??

9816C + 8826T [ 1.93] ( 0.058)

Borrowing capacity

Total emergency borrowing capacity - Rs 1,000 N= 18642 20.51 -2.078?

9816C + 8826T [ 41.72] ( 1.185)

Total business borrowing capacity - Rs 1,000 N= 18642 24.08 -2.569?

9816C + 8826T [ 50.53] ( 1.387)

Maximum total borrowing capacity - Rs 1,000 N= 18642 25.90 -2.457?

9816C + 8826T [ 52.15] ( 1.421)

Total actual borrowed amount - Rs 1,000 N= 18642 6.96 -0.799??

9816C + 8826T [ 16.78] ( 0.379)

Note : The sample is restricted to villages with outside contact information and at least

40 households. Borrowing capacity amounts have been top-coded using the 99th percentile..
???, ??, and ? indicate significance at the 1%, 5%, and 10% levels respectively. Column

(1) reports the total number of observation and its decomposition by groups. Column (2)

reports the average outcome (standard deviation) for the control group. Column (3) reports

the regression coefficent associated to the treatment dummy when controlling for pair fixed

effects and with error terms cluster at the Service Area level.
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Table 5. First stage effect at the Household level - Outside contact characteristics

Observations

NC + NT

Control

Mean

[SD]

Treatment

Mean diff.

(SE)

[1] [2] [3]

Household declaring outside contact

Household having least one outside contact N= 18642 0.52 -0.008

9816C + 8826T [ 0.50] ( 0.012)

Number of outside contacts N= 18642 0.90 -0.023

9816C + 8826T [ 1.15] ( 0.029)

Borrowing capacity

Total emergency borrowing capacity - Rs 1,000 N= 18642 31.44 -2.108

9816C + 8826T [ 73.34] ( 1.449)

Total business borrowing capacity - Rs 1,000 N= 18642 35.14 -2.753?

9816C + 8826T [ 83.47] ( 1.629)

Total actual borrowed amount - Rs 1,000 N= 18642 12.30 -1.154??

9816C + 8826T [ 32.38] ( 0.537)

Maximum total borrowing capacity - Rs 1,000 N= 18642 37.22 -2.096

9816C + 8826T [ 86.92] ( 1.709)

Note : The sample is restricted to villages with outside contact information and at least

40 households. Borrowing capacity amounts have been top-coded using the 99th percentile..
???, ??, and ? indicate significance at the 1%, 5%, and 10% levels respectively. Column

(1) reports the total number of observation and its decomposition by groups. Column (2)

reports the average outcome (standard deviation) for the control group. Column (3) reports

the regression coefficent associated to the treatment dummy when controlling for pair fixed

effects and with error terms cluster at the Service Area level.
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Table 6. First stage effect at the contact level - Outside contact characteristics

Observations

NC + NT

Control

Mean

[SD]

Treatment

Mean diff.

(SE)

[1] [2] [3]

Demographics

Respondent’s Age N= 18103 41.59 -0.245

9555C + 8548T [ 12.15] ( 0.239)

Male Respondent N= 18103 0.44 -0.003

9555C + 8548T [ 0.50] ( 0.008)

Contact’s Age N= 18101 43.27 -0.582???

9554C + 8547T [ 12.37] ( 0.207)

Male Contact N= 18103 0.67 -0.006

9555C + 8548T [ 0.47] ( 0.007)

Type of contact

Type of contact: Family and other relatives N= 18103 0.70 -0.016

9555C + 8548T [ 0.46] ( 0.011)

Type of contact: Employer N= 18103 0.04 0.004

9555C + 8548T [ 0.19] ( 0.005)

Nr. of days over the last 7 spent with the contact N= 18103 2.86 0.126???

9555C + 8548T [ 2.50] ( 0.039)

Location

In the respondent’s panchayat but not their gramum N= 18103 0.02 0.005?

9555C + 8548T [ 0.12] ( 0.003)

In the respondent’s district but not their panchayat N= 18103 0.66 0.034??

9555C + 8548T [ 0.47] ( 0.014)

In Tamil Nadu but not the respondent’s district N= 18103 0.30 -0.038???

9555C + 8548T [ 0.46] ( 0.013)

In India but not in Tamil Nadu N= 18103 0.01 0.000

9555C + 8548T [ 0.09] ( 0.001)

Outside of India N= 18103 0.01 -0.002

9555C + 8548T [ 0.12] ( 0.002)

Note : The sample is restricted to villages with outside contact information.. ???, ??, and ?

indicate significance at the 1%, 5%, and 10% levels respectively. Column (1) reports the total

number of observation and its decomposition by groups. Column (2) reports the average

outcome (standard deviation) for the control group. Column (3) reports the regression

coefficent associated to the treatment dummy when controlling for pair fixed effects and

with error terms cluster at the Service Area level.
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A.3. Household Income and Myerson Centrality. Here we test if villagers’ incomes are also positively

correlated with their Myerson centralities, as predicted by the theory. The household income has been collected

as part of the auxiliary survey in a subset of villages. The exact question was:

How much rupees, in total, did household members earn in the last 30 days from all income-generating

activities including household business, farming, income from other sources of labour, transfers and government

schemes? Include in-kind earnings, but first convert to cash and hen add to the total.

Table 7

N Mean (SD) Min-Max

[1] [2] [3]

Household Income over the last 30 days

Monthly Income, Rs 8735 7603.17 (11293.11) 0.00 - 4.0e+05

Note : The sample is restricted to villages with outside contact information and control

variables.

Table 8. Pearson Correlation Coefficient - Undirected networks, excluding
Money Lenders

Income over the last 30 days

[1]

Myerson Centrality - Incoming link deletion algorithm (Method 1)

Leisure network 0.037 ???

Financial network 0.034 ???

Financial & leisure network 0.027 ???

Myerson Centrality - Outgoing link detection algorithm (Method 2)

Leisure network 0.032 ???

Financial network 0.030 ???

Financial & leisure network 0.023 ???

Myerson Centrality - Link detection algorithm (Method 3)

Leisure network 0.048 ???

Financial network 0.043 ???

Financial & leisure network 0.050 ???

Node Degree

Leisure network 0.060 ???

Financial network 0.089 ???

Financial & leisure network 0.081 ???

Note : The sample is restricted to villages with outside contact information and control

variables.
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Appendix B. Variable Construction

B.1. Approximating the Myerson distance and centrality. Assuming that risk sharing

results in agents share the surplus generated by information risk sharing according to the

Myerson value, Ambrus and Elliott (2018) show that payoffs can be calculated by applying

the inclusion–exclusion principle from combinatorics, and relate this to a measure of the

distance between agents on the risk sharing agent. They call this distance measure Myerson

distance. We would like to compute the Myerson distance of every pair in every village and

the Myerson centrality for all nodes. Unfortunately, this is computationally infeasible for the

sample sizes of our data (see Algaba et al. (2007)), presenting a new challenge. Thus, we

develop an approximation, described below.

Let md(L) be the matrix of Myerson distances and define q(L) := 1/2−md(L). So q(L)

is a matrix with the ijth entry capturing the probability that, upon his arrival agent i will

not be connected to agent j. It is difficult to directly characterize md(L) (or equivalently,

q(L)) as each village typically consists of around 230 households and the number of candidate

paths between each i and j is exponential in the size of the network. Correctly accounting

for paths that share nodes is computationally very intensive, and it has to be done for all

pairs of agents without a direct connection.11 Instead, we develop a computationally feasible

approximation of md(L), which is exact for trees.

To approximate q, we use the following idea. The algorithm works by starting with a node,

moving to its neighbors, then move to its neighbors’ neighbors, and so on, never returning to

a previously used node along a given walk. This helps us to avoid counting walks that revisit

nodes and are therefore not paths. All the while, we keep track of how many ways we have

moved from the original node to any given node. We denote our approximation of q by q̂.
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(a) Tree
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(b) Circle

Figure 1. The nodes i,j for which we are computing md(i, j, L) have purple
stripes. The tree contains a single path (solid orange nodes), whereas the
circle contains two paths (solid orange nodes and chequered blue nodes).

The inclusion–exclusion principle weights paths that are longer less and a path that shares

many nodes with another less. With this in mind, we choose the following two approximation

11Further, due to presumed measurement error (see Banerjee et al. (2013)), there are likely to be missing
paths. In fact, the data have occasional disconnected components, and so measures that are precisely based
on exact paths or even maximal path lengths are likely to be problematic (Chandrasekhar and Lewis (2014)).
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strategies. Let the shortest path between two nodes be of length l. We first count the paths

of length l and length l + 1. We then count paths of length l + 2.12 If there are fewer than

k such paths, we use them all. Otherwise, we consider only the k shortest and in practice

we set k = 4.13 Discarding longer paths in this way biases downwards our approximation

of q. As we cannot keep track of exactly which nodes feature in each path, we also have

to make an assumption about the overlap of nodes in order to apply the inclusion–exclusion

principle to these paths. Each path must share the same first and last node. We perform the

inclusion–exclusion principle assuming that only these nodes are shared. Assuming no other

nodes are shared introduces a second bias, but this time upwards in our approximation.

To explain these concepts, we provide some illustrations. Figure 1 presents two examples:

a tree and a circle. The tree has a single path between nodes 1 and 8, whereas the circle has

two paths between nodes 1 and 4. Figure 2 shows how links are removed for the case of a

tree. Once a node has been reached, links back into that node are deleted before the nodes

neighbors are “infected.” This ensures only paths, and not other walks, are included in the

calculation.
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Figure 2. As the algorithm progresses, directed links into nodes that are
reached are deleted. This ensures that only paths, and not other walks, are
included. In this case, as in all tree networks, there is a unique path from A
to B.

In the case of the circle shown in Figure 1, our algorithm is also exact for paths between

1 and 4. There are two paths (which in this case are both shortest paths too), and we find

both in the initial run of our algorithm. Following the inclusion–exclusion principle, we add

1/4 to 1/4 and subtract 1/6. In this case our assumption that the two paths share only two

nodes is accurate. We are also exact for paths between 1 and 3, but in this case there is a

path of length l + 2. To find this path, we look for paths of length l from 1 to nodes other

than 3. In this case there is one such path to node 5. We then look for paths from 5 to 3

that pass through one other node. There is one such path and so the calculation we perform

12Counting more paths greatly (exponentially) increases the running time of our algorithm.
13We need a fixed (small) truncation. Otherwise both the memory requirements and the run-time of the
algorithm grow exponentially. Results are not sensitive to the truncation point.
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is: 1/3 + 1/5− 1/6. While we are accurate for all pairs of nodes in the circle shown, in larger

circles we will miss the longer paths.

The following algorithm finds the length of the shortest path between two nodes, how

many paths of that length there are and how many paths there are that are one longer. From

this information, we also find paths of length l + 2.14

Algorithm 1 (Incoming Link Deletion). Let ei be the ith basis vector. This will represent the

root (starting) node. Initialize q̂ = zeros(n, n), a matrix of zeros. Initialize zt,i = zeros(n, 1)

and xt,i = zeros(n, 1) to be n-vectors of zeros, indexed by i = 1, ..., n and t = 1, ..., T . Repeat

steps 1–4 for each of (e1, ..., en).

(1) Period 1: There is no identification or updating steps.

(a) Percolation: x1,i = Aei.

(Identifies who is connected to the root node)

(2) Period 2, given (x1,i,A):

(a) Identification: z2,i = ei.

(b) Update graph:15 A2 = zeros(n, n), A2(¬z2,i, :) = A(¬z2,i, :).
(Deletes links into the root node)

(c) Percolation: x2,i = A2x
1,i.

(Records number of paths from root node to other nodes passing through one

other)

(3) Period t, given (xt−1,i,At−1):

(a) Identification: zt,i = 1
{∑t

s=3 x
s−2,i > 0

}
.

(Identifies nodes already visited)

(b) Update graph: At = zeros(n, n), At(¬zt,i, :) = At−1(¬zt,i, :).
(Deletes links into all nodes that have already been visited)

(c) Percolation: xt,i = Atx
t−1,i.

By construction xt,ij , the jth entry of xt,i, records paths from i to j that pass through t

nodes. If t′ is the lowest t with a positive entry in this matrix, then the shortest path from

i to j passes through t′ nodes. In this case, xt
′,i
j tells us how many such paths there are

and xt
′+1,i
j tells us how many paths there are that pass through one more node. However,

by construction xt
′+k,i
j = 0 for all k > 1 and longer paths are not recorded. This is because

the incoming links to node j will have been deleted by this step of the algorithm. Deletion

of incoming links helps prevents walks that are not paths from being recorded. Using this

information for all seed nodes, the number of paths of length t′ + 2 between i and j are also

found as described above. The inclusion-exclusion principle is then applied to this combined

set of paths, assuming each path shares only the first and last nodes, to calculate q̂(L).

14For paths from i to j, this is done by looking at paths of length l to agents other than j, and then looking
at paths from these agents to j.
15Let A(:, v) denote (A(1, j), ..., A(n, j)).
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Ambrus and Elliott (2018) relate a measure of agents centrality in the network to their

incentives to form out-of-group links, and term this centrality measure Myerson centrality. To

approximate Myerson centrality we use M̂Ci =
∑

j q̂ij . While this approximation generates

a cardinal measure of what is an ordinal concept, it does correctly order people when the

Myerson distance approximation is exact as shown in Proposition 2

Proposition 2. If i is more Myerson central than j, then
∑

k qik >
∑

k qjk.

Proof. By definition, if i is more Myerson central than j, then there exists a pairing or arrival

orders, such that for each arrival order in which j is path-connected to k agents, i is path-

connected to weakly more than k agents. Thus, if i is more Myerson central than j, then the

expected number of agents that i is connected to upon her arrival is greater than the expected

number of agents that j is connected to upon her arrival. The expected number of agents

that i is connected to upon her arrival is
∑

k qik. We therefore have that
∑

k q̂ik >
∑

k q̂jk as

claimed. �

We now show that the Myerson distance approximation is exact for trees.

Proposition 3. Let L be a tree. Then q̂(L) = q(L).

Proof. We will say that agent k is a distance-t neighbor of i if the shortest path from i to k

take exactly t steps (and contain t+ 1 agents, including i and k).

Consider the implementation of the Incoming Link Deletion algorithm to find q̂ij . We

begin by calculating x1,i = Aei, where ei is the ith basis vector. This identifies all agents

connected to i. We then set all entries in the ith row from the adjacency matrix A to 0 and

call this new matrix A2. This deletes the inward links toi in the network L. Starting from

i’s neighbors, we then find their neighbors on A2. In other words we calculate x2,i = A2x
1,i.

This identifies the distance-2 neighbors of i. We then delete the rows of A2 that are indexed

by one of i’s neighbors, and so on.

In the tth round the algorithm identifies the distance-t neighbors of i. Thus, for t < l,

xl,ij = 0; for t = l, xl,ij = 1; and for all t > l, xt,ij = 0. Deleting incoming links ensures for all

t > l+ 1, xt,ij = 0. As L is a tree there, there is no path of length l+ 1 to j and so xl+1,i
j = 0.

The algorithm therefore finds the unique path from any i to any j and records its length;

If the unique path from i to j has length l, q̂ij = 1/l. From equation (11) in Ambrus and

Elliott (2018) it is then easily verified that qij = 1/l. Thus q̂(L) = q(L). �

In combination, Propositions 2 and 3 lead directly to the following corollary.

Corollary 4. Let L be a tree. If i is more Myerson central than j, then M̂Ci > M̂Cj.

A limitation of the Incoming Link Deletion algorithm is that longer paths are excluded. To

address this, we construct an alternative algorithm. This Outgoing Link Deletion algorithm is

identical to the one described, except that it deletes outgoing links instead of incoming links.

The Outgoing Link Deletion algorithm finds longer paths, and does an especially good job
18



of picking up longer paths that share few nodes with other paths. However, it also includes

additional short walks that are not paths and is not exact for tree networks. As longer paths

are found, we directly use the output of the algorithm without constructing any additional

longer paths. Nevertheless, for the set of paths we find, it is computationally infeasible

to compute the Myerson distances using the inclusion-exclusion principle. Censoring these

paths would defeat the point of the Outgoing Link Deletion algorithm. Instead, we use

an approximation of the inclusion–exclusion principle which makes the computation much

simpler. This approximation treats every path as completely independent, assuming that no

nodes are shared (even though we know at two must be). For example, if we find 3 paths

from i to j that pass through l nodes, l′ nodes and l′′ nodes respectively, our approximation of

qij will be 1/l+ 1/l′+ 1/l′′. Finally, we also consider a hybrid of the Incoming Link Deletion

algorithm and the Outgoing Link Deletion algorithm. We refer to this as the Link Deletion

algorithm.
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