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a b s t r a c t 

Brain regions within a posterior medial network (PMN) are characterized by sensitivity to episodic tasks, and 

they also demonstrate strong functional connectivity as part of the default network. Despite its cohesive struc- 

ture, delineating the intranetwork organization and functional diversity of the PMN is crucial for understanding 

its contributions to multidimensional event cognition. Here, we probed functional connectivity of the PMN dur- 

ing movie watching to identify its pattern of connections and subnetwork functions in a split-sample replication 

of 136 participants. Consistent with prior findings of default network fractionation, we identified distinct PMN 

subsystems: a Ventral PM subsystem (retrosplenial cortex, parahippocampal cortex, posterior angular gyrus) and 

a Dorsal PM subsystem (medial prefrontal cortex, hippocampus, precuneus, posterior cingulate cortex, anterior 

angular gyrus). Ventral and Dorsal PM subsystems were differentiated by functional connectivity with parahip- 

pocampal cortex and precuneus and integrated by retrosplenial cortex and posterior cingulate cortex, respectively. 

Finally, the distinction between PMN subsystems is functionally relevant: whereas both Dorsal and Ventral PM 

connectivity tracked the movie content, only Ventral PM connections increased in strength at event transitions 

and appeared sensitive to episodic memory. Overall, these findings reveal PMN functional pathways and the 

distinct functional roles of intranetwork subsystems during event cognition. 
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. Introduction 

Complex cognitive processes, such as understanding and remem-

ering events, rely on the functional interactions of brain networks,

hich are defined as groups of structurally and functionally connected

rain regions. One such network is the posterior medial network (PMN),

hich consists of regions that are strongly functionally connected with

he parahippocampal cortex, including posterior medial temporal lobe,

edial and lateral posterior parietal cortex, and medial prefrontal cor-

ex ( Libby et al., 2012 ; Wang et al., 2016 ). As part of the default net-

ork ( Buckner et al., 2008 ; Raichle et al., 2001 ), the PMN seems to

lay a pivotal role in event perception and memory, with its network-

evel functional role described as forming situational or contextual

odels ( Ranganath and Ritchey, 2012 ; Reagh and Ranganath, 2018 ;

itchey et al., 2015 ). An important characteristic of events is that they

re multidimensional, including their visuo-spatial content, conceptual

ignificance, and attributed thoughts and emotions. While large-scale

etworks help to paint a broad picture of regions that tend to affiliate

uring cognitive tasks, distinct components of cognitive processes are

ikely associated with smaller subnetworks of brain regions ( Cabeza and

oscovitch, 2013 ), refined from the large-scale network in which they
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re embedded. Therefore, understanding how the PMN supports the rep-

esentation of multidimensional events requires a better understanding

f its subnetwork architecture ( Ritchey and Cooper, 2020 ). Here, we

econstruct the organization of the PMN and test how its constituent

onnections relate to event cognition. 

Regions of the PMN tend to function in a cohesive manner, exhibit-

ng strong task-independent correlations in BOLD activity within the

efault network as well as task-related coactivation. Prior research has

hown increased activity across the PMN during the recollection and

onstruction of specific events ( Benoit and Schacter, 2015 ; Rugg and

ilberg, 2013 ; Schacter et al., 2007 ; Spreng et al., 2009 ), network-wide

ultivariate representation of event-specific information ( Chen et al.,

017 ; Robin et al., 2018 ), as well as reliable PMN responses to transi-

ions between event contexts ( Baldassano et al., 2017 ; Ben-Yakov and

enson, 2018 ; Reagh et al., 2020 ). Research that has directly modu-

ated the PMN also supports its cohesive structure: non-invasive brain

timulation of left angular gyrus (AG) — the PMN network region most

ccessible for stimulation —increases BOLD activity ( Kim et al., 2018 ),

nd functional connectivity throughout the PMN during episodic tasks

 Warren et al., 2019 ), confirming the strong functional dependence be-

ween these regions. Functional communication within the PMN not
ticle under the CC BY-NC-ND license 
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nly increases during event processing, but also dynamically tracks

he amount of information later recalled ( Cooper and Ritchey, 2019 ;

imony et al., 2016 ). The overarching role of PMN communication ap-

ears tied to the construction of meaningful contextual frameworks, as

videnced by increasing connectivity among PMN regions as the tempo-

al structure of naturalistic events is learned ( Aly et al., 2018 ). Beyond

his research, it is important to highlight the functionally diverse organi-

ational structure of the PMN, a flexibility which may explain its ability

o dynamically adapt to varying task demands. 

Two emerging lines of evidence suggest that although episodic con-

truction may describe PMN function at the network level, there is also

ignificant diversity of cognitive processes and functional connectivity

rofiles associated with PMN regions ( Ritchey and Cooper, 2020 ). The

rst line of research illustrating PMN diversity comes from the multi-

imensional analysis of mnemonic content, drawn from both standard

pisodic tasks as well as movie perception and recall. Separable at-

ributes of episodic memory are associated with distinct PMN regions:

hereas medial temporal lobe (MTL) regions facilitate successful re-

rieval of event information, parietal cortex tracks the richness of that

nformation, with memory imageability and precision dissociating me-

ial and lateral parietal regions, respectively ( Richter et al., 2016 ).

elatedly, the PMN is fractionated by transient activation within the

ippocampus and retrosplenial cortex when accessing episodic infor-

ation, and sustained activation in dorsal medial and lateral parietal

ortex during elaboration ( Daselaar et al., 2008 ; Thakral et al., 2017 ;

ilberg and Rugg, 2012 ). Interestingly, PMN regions also show vari-

ble temporal resolutions of event context signals during movie watch-

ng ( Baldassano et al., 2017 ; Keidel et al., 2017 ). Ventral medial pari-

tal cortex and parahippocampal cortex separate events at short time-

cales whereas dorsal medial and lateral parietal cortex separate events

t longer time-scales ( Baldassano et al., 2017 ; Chen et al., 2016 ). Ad-

itionally, parahippocampal and ventral parietal signals are stronger

hen there is a new narrative context, but lateral parietal activity is

ncreased when an existing context is maintained ( Keidel et al., 2017 ).

aken together, such dissociations point to a hierarchical structure of

vent cognition within the PMN, with specific event information being

onveyed from the MTL and ventral parietal cortex to update represen-

ations in dorsal and lateral parietal regions. 

The second line of research suggesting a diverse PMN organiza-

ional structure comes from resting-state analyses that have shown frac-

ionation of the large-scale default network into distinct subsystems.

uch research has demonstrated the presence of a cortical MTL net-

ork, including parahippocampal cortex and ventromedial parietal cor-

ex, and a more dorsal network including posterior cingulate cortex,

refrontal cortex, and lateral temporal cortex ( Andrews-Hanna et al.,

010 ; Barnett et al., 2020 ; Braga and Buckner, 2017 ; Gordon et al.,

020 ; Kaboodvand et al., 2018 ). Moreover, activity of these subsys-

ems appears to correlate with distinct, yet related, cognitive do-

ains: An MTL network may be driven by spatial-contextual processes

 Baldassano et al., 2016 ; Silson et al., 2019 ) and a Dorsal Medial network

hows sensitivity to conceptual information and mental states ( Andrews-

anna et al., 2010 ; Barnett et al., 2020 ; DiNicola et al., 2020 ). The PMN

dentified in studies of event perception and memory includes brain re-

ions that bridge these previously defined default subsystems. Yet, a fo-

used analysis of intranetwork PMN connectivity, where network defini-

ion is limited to areas specifically associated with episodic processing, is

acking. Understanding the organization of the PMN could help to shed

ight on why the aforementioned functional dissociations occur. Specifi-

ally, what are the paths of information flow between brain regions that

re associated with episodic processing? And are there functionally dis-

inct subsystems within the PMN that differentially contribute to event

ognition? 

To address these outstanding questions, we analyzed a subset

f the Cambridge Centre for Ageing and Neuroscience (CamCAN)

ataset ( Shafto et al., 2014 ; Taylor et al., 2017 ), a large population-

epresentative sample of individuals who underwent a rich behavioral
2 
nd neuroimaging testing protocol, generating data ideal for the estima-

ion of dynamic changes in functional connectivity of the PMN during

ovie watching. First, we aimed to identify separable PMN subsystems

ased on whole-brain voxel connectivity patterns, additionally testing

ntranetwork PMN functional connectivity to validate the subsystems

nd to probe region-specific contributions. Second, we tested the func-

ional significance of intranetwork PMN connectivity dynamics in terms

f their sensitivity to movie content, including event transitions, and

heir relation to individual differences in episodic memory. 

. Material and methods 

.1. Data 

The data analyzed here were obtained from the CamCAN Stage II

ata repository ( Shafto et al., 2014 ; Taylor et al., 2017 ): https://camcan-

rchive.mrc-cbu.cam.ac.uk/dataaccess/ . From this dataset, we selected

ealthy young adult subjects aged 18–40 who are right-handed, na-

ive English speaking, and who had completed the movie watching

MRI scan. A total of 154 (80 female, 74 male; mean age = 30.92,

D = 5.64) subjects met this criteria. After data quality checks, detailed

n Section 2.4 , 18 subjects were removed from the sample, leaving 136

ubjects for all analyses. Due to this large sample size, we randomly di-

ided subjects into two equal groups (68 subjects per group), equating

or age (group 1: mean = 31.06, SD = 5.75; group 2: mean = 31.12,

D = 5.52) and gender (35 females and 33 males per group). All statis-

ical analyses were run first on group 1 only, allowing us to explicitly

est the replicability of our results with group 2. 

.2. Task 

In the MRI scanner, participants watched a 8 min movie ( Shafto

t al., 2014 ). The movie was a shortened episode of Alfred Hitchcock’s

Bang! You’re Dead ” ( Hasson et al., 2008 , 2010 ) that was cut in a way

hat retained the central plot (see Ben-Yakov and Henson, 2018 ). To al-

ow us to quantify meaningful changes in context during the movie —

ransitions from one ‘event’ to another — we used the event boundaries

s defined by ( Ben-Yakov and Henson, 2018 ). As part of their study, a

ample of 16 participants were asked to watch the movie and to indi-

ate whenever they felt like one event ended and another began. The

uthors used these subjective ratings to define 19 likely ‘boundaries’ in

he movie. For the purpose of the current analyses, we used these times

o create event transition windows, defined as the boundary TR + /- 2

Rs to capture any gradual as well as abrupt changes in context around

he boundary, additionally shifted forward by 2 TRs (~5 s) to account

or the hemodynamic lag. 

.3. MRI data acquisition 

The CamCAN MRI data were collected using a Siemens 3T TIM Trio

canner, with a 32 channel head coil, at the MRC Cognition and Brain

ciences Unit, Cambridge, UK. Functional data during movie watching

ere acquired with a multi-echo T2 ∗ EPI sequence over 193 vol [32

xial slices, 3.7 mm thick, 0.74 mm gap, TR = 2470 ms, TE = [9.4,

1.2, 33, 45, 57] ms, flip angle = 78°, FOV = 192 × 192 mm, voxel

ize = 3 × 3 × 4.44 mm]. T1 images were acquired with a 3D MPRAGE

equence [TR = 2250 ms, TE = 2.99 ms, TI = 900 ms, flip angle = 9°,

OV = 256 × 240 × 192 m, 1 mm isotropic voxels, GRAPPA acceleration

actor = 2]. Fieldmap scans were additionally collected [TR = 400 ms,

E = 5.19 ms/7.65 ms, 1 Magnitude and 1 Phase volume, 32 axial slices,

.7 mm thick, 0.74 mm gap, flip angle = 60°, FOV = 192 × 192 mm,

oxel size = 3 × 3 × 4.44 mm]. 

.4. FMRI data processing 

The description of MRI data processing below was taken from the

ustom language generated by fMRIPrep ( Esteban et al., 2018 ), which

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
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as been released under the CC0 licence and is recommended for use in

ublications. 

MRI data was preprocessed using fMRIPrep 1.5.2;

ttps://fmriprep.org/en/stable/ ; RRID: SCR_016216 ), which

s based on Nipype 1.3.1 ( Gorgolewski et al., 2011 );

ttps://nipype.readthedocs.io/en/latest/ ; RRID: SCR_002502 ).

any internal operations of fMRIPrep use Nilearn 0.5.2

 https://nilearn.github.io/ ; RRID: SCR_001362 ). The T1-weighted

T1w) image was corrected for intensity non-uniformity

ith N4BiasFieldCorrection, distributed with ANTs 2.2.0

 http://stnava.github.io/ANTs/ , RRID: SCR_004757 ), and was then

kull-stripped with a Nipype implementation of the antsBrainExtrac-

ion.sh workflow (from ANTs), using OASIS30ANTs as target template.

rain tissue segmentation of cerebrospinal fluid (CSF), white-matter

WM) and gray-matter (GM) was performed on the brain-extracted

1w using fast (FSL 5.0.9; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki ;

RID: SCR_002823 ). Volume-based spatial normalization to the

NI152NLin6Asym template was performed through nonlinear reg-

stration with antsRegistration (ANTs 2.2.0), using brain-extracted

ersions of both T1w reference and the T1w template. 

For the functional data, a reference volume and its skull-stripped ver-

ion were generated using a custom methodology of fMRIPrep. A defor-

ation field was estimated based on the field map that was co-registered

o the BOLD reference, which was used to correct for susceptibility dis-

ortions. Head-motion parameters with respect to the BOLD reference

transformation matrices, and six corresponding rotation and transla-

ion parameters) were estimated before any spatiotemporal filtering us-

ng mcflirt (FSL 5.0.9). BOLD runs were slice-time corrected using 3dT-

hift from AFNI ( https://afni.nimh.nih.gov/ ; RRID: SCR_005927 ). The

OLD time-series (including slice-timing correction) were resampled

nto their original, native space by applying a single, composite trans-

orm (using antsApplyTransforms) to correct for head-motion and sus-

eptibility distortions. A T2 ∗ map was estimated from the preprocessed

OLD by fitting to a monoexponential signal decay model with log-

inear regression. For each voxel, the maximal number of echoes with

eliable signal in that voxel were used to fit the model. The T2 ∗ map was

sed to optimally combine preprocessed BOLD across echoes. The com-

ined time series was carried forward as the preprocessed BOLD, and the

2 ∗ map was also retained as the BOLD reference. The BOLD reference

as then co-registered to the T1w reference using flirt (FSL 5.0.9) with

he boundary-based registration cost-function and nine degrees of free-

om. The BOLD time-series were resampled to the MNI template with

 mm voxel resolution. 

FMRIPrep calculates several confounding time-series based on the

reprocessed BOLD. Framewise displacement (FD) and DVARS were cal-

ulated for each functional run, both using their implementations in

ipype (following the definitions by Power et al., 2014 ). Three global

ignals were extracted within the CSF, the WM, and the whole-brain

asks. Additionally, a set of physiological regressors were extracted to

llow for component-based noise correction using the CompCor method

 Behzadi et al., 2007 ). Principal components were estimated after high-

ass filtering the preprocessed BOLD time-series (using a discrete co-

ine filter with 128 s cut-off) for the two CompCor variants: tempo-

al (tCompCor) and anatomical (aCompCor). tCompCor components are

alculated from the top 5% variable voxels within a mask covering the

ubcortical regions. aCompCor components are calculated within the in-

ersection of the aforementioned mask and the union of CSF and WM

asks calculated in T1w space, after projection to the native space of

ach functional run. 

After preprocessing with fMRIPrep, the confounds were inspected

o determine if data met the criteria for inclusion. Subjects were ex-

luded if more than 20% of time points exceeded a FD of 0.3 mm

nd/or if the mean FD exceeded 0.2 mm. After careful visual inspec-

ion of the data, subjects were additionally excluded if notable arti-

acts were present or preprocessing had failed. The CONN v18.b tool-

ox ( Whitfield-Gabrieli and Nieto-Castanon, 2012 ); https://web.conn-
3 
oolbox.org/ ; RRID: SCR_009550 ) was used to denoise the BOLD time-

eries with nuisance regression prior to analyses. For each subject, con-

ound time-series included in the model were the six head motion pa-

ameters and their temporal derivatives, the first six aCompCor compo-

ents from a combined WM and CSF mask, and FD. Additional spike re-

ressors were included for any time points that exceeded a FD of 0.6 mm

nd/or a standardized DVARS of 2. The mean number of spikes identi-

ed across subjects was 1.61 (max = 13) out of 193 time points. After re-

ression of motion confounds, BOLD data were band-pass filtered with

 high-pass filter of 0.008 Hz and a low-pass filter of 0.1 Hz. BOLD data

ere kept unsmoothed for extracting the mean time-series from regions

f interest (ROIs), but were smoothed with a 6 mm FWHM kernel for

hole-brain seed-to-voxel connectivity analyses. 

.5. Regions of interest 

We used a combination of functional and anatomical atlases to ac-

urately delineate our PMN ROIs. Posterior medial regions within two

reviously characterized default subnetworks were selected from a cor-

ical atlas ( Schaefer et al., 2018 ) — labeled ‘Default A’ and ‘Default C’ —

hich reflect regions that are broadly associated with constructive and

pisodic processes ( Andrews-Hanna et al., 2010 , 2014 ; DiNicola et al.,

020 ). We additionally included the posterior hippocampus (body and

ail) from a probabilistic parcellation ( Ritchey et al., 2015 ) due to

ts well-known role in episodic memory, sensitivity to event bound-

ries ( Reagh et al., 2020 ), and connectivity to cortical PMN regions

 Libby et al., 2012 ). Next, we used “episodic ”-related activity, as de-

ned by a Neurosynth meta-analysis ( Yarkoni et al., 2011 ), to search

or a single functional peak within each regional mask, except for me-

ial parietal cortex regions (covering precuneus and posterior cingulate)

here two peaks separated by at least 10 voxels were identified. To cre-

te each ROI, 100 contiguous (adjoining faces) episodic-sensitive voxels

2 × 2 × 2 mm) were selected that expanded out from a peak, con-

trained by the regional mask. This resulted in 8 equal-sized clusters:

osterior hippocampus (pHipp), parahippocampal cortex (PHC), retros-

lenial cortex (RSC), precuneus (Prec), posterior cingulate cortex (PCC),

osterior angular gyrus (pAG), anterior angular gyrus (aAG), and medial

refrontal cortex (MPFC). 

.6. Statistical analyses 

All code is available through our github repository:

ttp://www.thememolab.org/paper-camcan-pmn/ . Data were ana-

yzed using MATLAB, R v3.5.1, and RStudio v1.0.143. Brain images

ere generated with BrainNet Viewer ( Xia et al., 2013 ), and all

ther plots were generated with ggplot2 within the R tidyverse

 https://www.tidyverse.org/ ). The analyses outlined below tested the

unctional connectivity of the PMN during movie watching, and how

ts connections relate to events in the movie. First, we used patterns

f whole-brain connectivity to distinguish two PMN subsystems, as-

essing the strength of intranetwork functional connectivity within and

etween these subsystems. Next, we tested how the PMN subsystems

re similarly or differentially modulated by the content of the movie,

ncluding events transitions. Finally, in an exploratory analysis, we

nvestigated how move-related PMN functional connectivity relates to

ndividual differences in episodic memory. 

.6.1. PMN subsystems from functional connectivity patterns 

For each region of the PMN, seed-to-voxel connectivity values were

alculated as the Pearson’s correlation between the mean ROI time-

eries (averaged over voxels in the unsmoothed data) and each voxel’s

ime-series (from smoothed data) during the movie-watching functional

can. This resulted in a whole brain connectivity map per ROI and sub-

ect. Subject-level connectivity maps were averaged (after Fisher’s z

ransformation), per ROI, to produce group-level maps. Louvain com-

unity detection ( Blondel et al., 2008 ), from the Network Toolbox

https://www.fmriprep.org/en/stable/
https://www.rridsoftware:SCR_016216
https://www.nipype.readthedocs.io/en/latest/
https://www.rridsoftware:SCR_002502
https://www.nilearn.github.io/
https://www.rridsoftware:SCR_001362
http://stnava.github.io/ANTs/
https://www.rridsoftware:SCR_004757
https://www.fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.rridsoftware:SCR_002823
https://www.afni.nimh.nih.gov/
https://www.rridsoftware:SCR_005927
https://www.web.conn-toolbox.org/
https://www.web.conn-toolbox.org/
https://www.rridsoftware:SCR_009550
http://www.thememolab.org/paper-camcan-pmn/
https://www.tidyverse.org/
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Fig. 1. Subsystems of the PMN derived from seed-to-voxel connectivity patterns. a) Left: PMN ROIs, showing each 100-voxel cluster. aAG = anterior angular gyrus, 

pAG = posterior angular gyrus, PCC = posterior cingulate cortex, MPFC = medial prefrontal cortex, pHipp = posterior hippocampus, PHC = parahippocampal cortex, 

RSC = retrosplenial cortex, Prec = precuneus. Right: Connectivity pattern similarity approach — subsystems were characterized based on the similarity (Pearson’s r) 

of whole-brain seed-to-voxel connectivity patterns for each pair of ROIs (i, j). b) The top 20% of group-averaged connections (binarized) between each ROI (seed) 

and every voxel across the brain. c) Using connectivity density thresholds between 10% and 30%, Louvain community detection was run on the similarity of group- 

averaged voxel connectivity patterns with gamma values between 0.75 and 1.25. The matrix shows the percentage of the time each pair of ROIs were assigned to the 

same module across all density and gamma iterations. ROIs are grouped with hierarchical clustering for visualization, which reveals 2 subsystems: The yellow axis 

line shows regions within a “Dorsal PM ” subsystem and the blue axis line shows regions within a “Ventral PM ” subsystem. d&e) The overlap in binarized connections 

shown in (b) for Dorsal PM (d) regions (MPFC, pHipp, Prec, aAG, PCC) and for Ventral PM (e) regions (RSC, pAG, PHC). Warmer colors show a higher number of 

regions within connections to a voxel. Data is plotted from Group 1 (discovery sample) only — Group 2 (replication sample) results look almost identical, revealing 

the same subnetworks (Supplementary Analyses S.1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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 Christensen, 2018 ), was used to identify likely PMN subnetworks based

n the similarity of group-averaged ROI voxel connectivity patterns,

pplied iteratively over different connection density thresholds and

amma values. Specifically, each ROI connectivity map was binarized

ccording to density thresholds of 10–30%, by 5% increments, such

hat the top X% of voxel connections to the seed were marked as 1,

ith connections below that threshold marked as 0. The correlation be-

ween the binarized, group-averaged connectivity maps was calculated

etween every pair of ROIs, and this similarity matrix was run through

he Louvain algorithm with gamma values between 0.75 and 1.25, in

.01 increments, with gamma influencing how coarse or fine the re-

urned community structure will be. Each iteration of community de-

ection, with a unique density and gamma combination, assigned the

MN ROIs to mutually exclusive groups, and the probability of every

air of ROIs being assigned to the same group was calculated across all

terations. Therefore, our ROI groupings reflect the most robust com-

unity structure when considering different levels of voxel connectiv-

ty strength. Hierarchical clustering was applied to the matrix of shared

robabilities to determine the most appropriate groupings of ROIs into

ubsystems. 

Intranetwork functional connectivity over the entire duration of the

ovie was calculated as the pairwise Pearson correlations among the

 ROI time-series for every subject. Subject-level correlation matri-

es were Fisher-z transformed prior to group-averaging. Mean func-

ional connectivity within and between the PMN subsystems was
4 
ompared with paired-sample t-tests to validate the distinction be-

ween subsystems at the intranetwork level. Supplementary anal-

ses were performed to probe the importance of individual PMN

egions in mediating intranetwork connectivity (see Supplementary

nalyses S.2). 

.6.2. Movie-related dynamic functional connectivity 

Whereas the previous functional analyses were based on time-

veraged connectivity across the movie, remaining analyses targeted

he relevance of time-varying PMN connectivity in relation to the movie

nput. First, we considered the influence of event transitions in the

ovie. For each pair of ROIs, we entered their standardized time-series

s well as their product (coactivation), reflecting the edge time-series

 Faskowitz et al., 2020 ; van Oort et al., 2018 ), as predictors in a logis-

ic regression model with event type (transition:1 vs. within-event:0) as

he dependent variable [ event ~ ROI i + ROI j + ROI i 
∗ ROI j ]. Event tran-

ition time points were defined as a boundary TR + /- 2 TRs to capture

ny gradual as well as abrupt changes in context around the boundary,

dditionally shifted forward by 2 TRs (~5 s) to account for the hemo-

ynamic lag. The beta coefficient of the interaction term reflects the

hange in ROI coactivation at event transitions, controlling for the ac-

ivity time series of each ROI. These beta values were averaged within

nd between PMN subsystems to test the sensitivity of PMN connections

o event transitions. 
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Second, we considered whether fluctuations in PMN connectivity are

ied to the movie stimulus (including but not limited to event tran-

itions), which is shared across subjects, by comparing the intersub-

ect similarity of time-varying connectivity (see Campbell et al., 2015 ).

ithin each subject and for every time point t , we first calculated the

pearman correlation between every pair of ROI time-series over a win-

ow of 25 TRs (~62 s) centered on t , resulting in a vector of time-

arying connectivity. This window size is consistent with prior work

haracterizing time-varying correlations during movie-watching ( Di and

iswal, 2020 ; Jang et al., 2017 ; Simony et al., 2016 ), with the aim of

moothing noise that accompanies the raw edge time-series or correla-

ions over very short windows, while preserving temporal resolution,

efore comparing time-varying connectivity between subjects ( Di and

iswal, 2020 ). To test if PMN connectivity fluctuations are tied to the

ovie, we next calculated the intersubject Pearson correlation of time-

arying connectivity vectors ( Di and Biswal, 2020 ), averaged within

ach subsystem, using a leave-one-subject-out approach ( Nastase et al.,

019 ): For each subject, we calculated the correlation between their

ime-varying connectivity and the average time-varying connectivity of

ll remaining subjects, resulting in one intersubject correlation value

er subject. If connectivity fluctuations are meaningfully related to the

ovie content (shared across subjects), then the average intersubject

orrelation should be non-zero. We also compared the intersubject cor-

elations of time-varying connectivity across different subsystems to test

f movie-related dynamics of PMN subsystems are distinct from one an-

ther. All r values were Fisher-z transformed prior to averaging. 

.6.3. Relationship between PMN connectivity and episodic memory 

In a final exploratory analysis, we tested how PMN connectivity re-

ates to episodic memory on an independent task. Within our full sam-

le of CamCAN subjects, exactly half ( N = 68) had also completed a

eparate item-scene memory task, where neutral objects were paired

ith a negative, neutral, or positive background scene. In a memory

est, participants recalled the objects and their associated scene con-

ext, verbally describing the details of the scene (see Shafto et al., 2014 )

or a detailed task description). One subject was excluded from anal-

ses due to a high number of response errors ( > 50% of trials). We

sed the number of neutral trials for which the scene context was re-

alled in detail as a measure of episodic memory for each subject. As

 control measure, we used priming of objects in the neutral condi-

ion, as indexed by corrected recognition of previously studied degraded

bjects. 

We first considered the influence of time-averaged connectivity, test-

ng if there was a correlation between mean PMN subsystem functional

onnectivity and episodic memory across subjects. Second, we consid-

red the influence of time-varying connectivity by using intersubject

epresentational similarity analysis (IS-RSA), as outlined by Finn et al.,

020 ). A subject x subject representational dissimilarity matrix (RDM)

as calculated for behavioral scores, and another was calculated for

rain data. The brain RDM was defined as the intersubject dissimilar-

ty (1 - Pearson correlation) of time-varying connectivity (or activity,

ee Supplementary Analyses) for each of the PMN subsystems. Two be-

avioral RDMs were tested — a nearest neighbor model, reflecting the

uclidean distance between the memory scores of every pair of subjects

 abs(i-j) ], and an “Anna K ” model (as coined by Finn et al., 2020 ), where

igh performing subjects are assumed to be similar, with increasing vari-

bility among lower performing subjects [ max score - min(i,j) ]. Finn and

olleagues found that the Anna K model, using behavioral data from a

orking memory task, provided the best fit to their brain data. Spear-

an correlation was then calculated between every behavioral RDM

nd brain RDM. To determine the significance of the behavior-brain

orrelations, 10,000 permutations were run, wherein the subject labels

or the brain RDM were shuffled for every permutation. The p -value

or the behavior-brain comparison was calculated as the proportion of

ermutation correlations that were greater than the true correlation.

onferroni-corrected p -values were also calculated, correcting for the to-
5 
al number of tests (6: 2 behavioral models x 3 time-varying connectivity

easures). 

. Results 

.1. PMN subsystems from functional connectivity patterns 

First, we tested whether regions in the PMN were dissociable based

n their patterns of connections with the rest of the brain during movie

atching. To do so, we examined seed-to-voxel connectivity across the

hole brain, using the similarity of whole-brain connectivity patterns

etween ROIs ( Fig. 1 a) to group them into subsystems with Louvain

ommunity detection. Comparing the similarity of seed-to-voxel con-

ectivity patterns across PMN ROIs revealed a high degree of overlap

n the strongest connections. As expected, voxels within the broader

efault network, including medial prefrontal cortex, medial and lateral

arietal cortex, and lateral temporal cortex, were consistently within the

op 20% of functional connections to PMN regions ( Fig. 1 b), support-

ng their common grouping within a coherent network. However, two

istinct PMN subsystems were identified ( Fig. 1 c). We tested the repli-

ability of these results in a second group of subjects, which revealed

n identical allocation of ROIs to PMN subsystems (see Supplementary

nalyses S.1). 

Across multiple connection thresholds and Louvain gamma values

see Methods 2.6.1), PHC, pAG, and RSC were grouped into the same

odule almost 100% of the time, hereafter referred to as the “Ven-

ral posterior medial (PM) ” subsystem ( Fig. 1 e). These regions shared

 module assignment with other ROIs approximately 50% of the time.

n the other hand, MPFC, pHipp, Prec, aAG, and PCC were assigned to

he same module at least 78% of the time, hereafter referred to as the

Dorsal PM ” subsystem ( Fig. 1 d). Due to this high overlap and limited

umber of ROIs, we grouped all 5 of these regions together, but it is in-

eresting to note that pHipp and MPFC were particularly similar in their

oxel connectivity patterns, being grouped into the same module 100%

f the time. The same was true for Prec, aAG, and PCC, suggesting that

 finer-grained parcellation may be possible. 

Next, we examined functional connectivity within the set of PMN

OIs. Like the seed-to-voxel analyses, Pearson’s correlations between

he ROI time-series confirmed a high-degree of interconnectedness

 Fig. 2 a). Despite significant connectivity between virtually all pairs of

OIs, evidence for the subsystems identified on the basis of whole-brain

onnectivity was supported ( Fig. 2 b) — on average, connections within

oth the Ventral and Dorsal PM subsystems were stronger than connec-

ions between them (ts(67) > 4.32, p s < 0.001; replicated in Group 2:

s(67) > 4.06, p s < 0.001). 

We additionally calculated the average strength of functional con-

ectivity between each PMN region and each of the subsystems ( Fig. 2 c).

ll 3 ROIs within the Ventral PM network (RSC, pAG, PHC) showed

ignificantly stronger functional connectivity to each other than to re-

ions of the Dorsal PM network (ts(67) > 3.02, p s < 0.004; replicated

n Group 2: ts(67) > 2.21, p s < 0.031). Within the Dorsal PM network,

PFC, Prec, and PCC showed stronger communication with other Dor-

al PM regions than with the Ventral PM subsystem (ts(67) > 2.55, p s <

.013; replicated in Group 2: ts(67) > 2.28, p s < 0.026); however, pHipp

nd aAG did not show preferential connectivity to one subsystem over

nother (ts(67) < 1.02 p s > 0.31; replicated in Group 2: ts(67) < 0.98,

 s > 0.32). This likely reflects the integration of pHipp with PHC and

he strong communication between aAG and pAG, despite the whole-

rain connectivity patterns of pHipp and aAG being more aligned with

ther Dorsal PM regions. In contrast, PHC and Precuneus showed the

trongest, opposite differentiation in functional connectivity between

he PMN subsystems. Overall, RSC and PCC had the strongest functional

onnectivity within the PMN, which is supported by their large, yet dis-

inct, mediating effect on PMN connections: In a supplementary analy-

is, we found that RSC mediated communication between PHC and the
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Fig. 2. Intranetwork PMN functional connectivity. Left = Group 1 (discovery sample) results; right = Group 2 (replication sample) results. a) Graph showing 

intranetwork PMN connections: light gray edges indicates mean r > 0.2, dark edges indicate the top 50% of those connections. A mean r value of 0.2 was deemed 

to be a conservative threshold for visualizing a meaningful edge as it reflects the critical value for a significant correlation (at ɑ = 0.005) between our ROI time- 

series with 193 TRs. b) Distribution of mean functional connectivity within and between PMN subsystems (each point indicates a subject). c) Distribution of mean 

functional connectivity for every ROI to the two PMN subsystems. The 5 ROIs to the left, underlined in yellow, form the Dorsal PM subsystem. The 3 ROIs to the 

right, underlined in blue, form the Ventral PM subsystem. ∗ indicates a significant difference between subsystem connectivity strength at p < .05. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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orsal PM subsystem, whereas PCC mediated communication among

orsal PM regions (see Supplementary Analyses S.2). 

.2. Movie-related dynamic functional connectivity 

The prior results show the presence of two PMN functional subsys-

ems and reveal key nodes that mediate their communication through

nalyses of time- averaged functional connectivity over the entire movie.

ere, we sought to validate the functional significance of these sub-

ystems in terms of their time- varying dynamics. First, we tested how

onnectivity within and between the subsystems changed at event tran-

itions in the movie. In line with prior analyses of event boundaries in

he CamCAN dataset ( Ben-Yakov and Henson, 2018 ; Reagh et al., 2020 ),

e confirmed a general increase in activity across all PMN ROIs at event

ransitions (see Supplementary Results S.3). Therefore, we asked how

onnectivity is modulated by event transitions over and above these ac-

ivity changes. 

We found a striking and replicable dissociation between the sub-

ystems in the sensitivity of connectivity to event transitions. Whereas

oactivation within the Dorsal PM subsystem did not change as a func-

ion of event transitions (Group 1: t (67) = − 0.93, p = .35; Group 2:

 (67) = 0.07, p = .94), there was a strong increase in coactivation within

he Ventral PM subsystem (Group 1: t (67) = 8.46, p < .001; Group 2:

 (67) = 9.26, p < .001), and between Ventral and Dorsal PM regions

Group 1: t (67) = 5.66, p < .001; Group 2: t (67) = 7.51, p < .001) (see

ig. 3 a&b). In both groups, the change in functional connectivity of the

entral PM subsystem at event transitions was significantly greater than

hanges within the Dorsal PM subsystem (Group 1: t (67) = 7.57, p <

001; Group 2: t (67) = 7.55, p < .001) and between Ventral and Dorsal

M regions (Group 1: t (67) = 6.10, p < .001; Group 2: t (67) = 4.91, p <

001). We additionally verified that the event transition window length
6 
defined as a 5-TR window centered on each HRF-adjusted boundary)

id not drive our effects: repeating the analyses using shorter 3-TR win-

ows did not change the selective modulation of Ventral PM connectiv-

ty. 

To probe movie-related connectivity dynamics within and between

he PMN subsystems beyond their specific relation to event transitions,

e additionally calculated time-varying connectivity using a sliding-

indow ( Fig. 3 c). We then compared the similarity of time-varying con-

ectivity across subjects to determine if PMN subsystem connectivity

as related to the movie content (shared across subjects) and if connec-

ivity of the two PMN subsystems exhibited similar or distinct fluctu-

tions. Interestingly, visual inspection of the data shows that the only

oint during the movie where group-averaged connectivity among Dor-

al PM regions exceeded that among Ventral PM regions was during

 prolonged event, without any transitions, from approximately 100 s

o 182 s. Intersubject correlations revealed that connectivity fluctua-

ions of the whole PMN appear to be tied to the movie content, as ev-

denced by significant intersubject similarity of time-varying connec-

ivity for both the Ventral PM subsystem (Group 1: mean Z = 0.23,

E = 0.04, t(67) = 6.03, p < .001; Group 2: mean Z = 0.20, SE = 0.04,

(67) = 5.45, p < .001) and the Dorsal PM subsystem (Group 1: mean

 = 0.30, SE = 0.05, t(67) = 6.74, p < .001; Group 2: mean Z = 0.25,

E = 0.04, t(67) = 5.57, p < .001). In contrast, there was not a positive

ntersubject relationship between the time-varying connectivity of the

entral PM subsystem and the time-varying connectivity of the Dorsal

M subsystem (Group 1: mean Z = − 0.09, SE = 0.03, t(67) = − 3.04,

 = .003; Group 2: mean Z = − 0.02, SE = 0.02, t(67) = − 1.01, p = .32).

herefore, connectivity fluctuations within PMN subsystems appear tied

o the movie input as shown by consistency across subjects, rather than

eflecting only idiosyncratic patterns, but these fluctuations differed be-
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Fig. 3. Change in PMN connectivity at event transitions. Left = Group 1 (discovery sample) results; right = Group 2 (replication sample) results. a) The group- 

averaged beta values, reflecting the change in connectivity between each pair of ROIs at event transitions relative to within events. Warmer colors reflect an increase 

in connectivity at transitions. Yellow axis line shows Dorsal PM regions; blue axis line shows Ventral PM regions. b) The distribution of mean subsystem changes 

in connectivity at event transitions. Each point indicates a subject, ∗ indicates a change significantly greater than zero at p < .05. c) Group-averaged time-varying 

connectivity is plotted for connections within and between the PMN subsystems. Line = mean across subjects, ribbon = standard error of the mean. Gray windows 

indicate event transitions within the movie (shifted by 2TRs to account for the HRF). Note that some transition windows are immediately adjacent to one another, 

producing wider windows. Time-varying connectivity is calculated using a 25-TR sliding window, centered on each TR. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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t  
ween the subsystems, suggesting that they were related to different as-

ects of the movie. 

Visual inspection of the data shows a notable increase in time-

arying connectivity of the Ventral PM subsystem just after 400 s (see

ig. 3 c). Interestingly, this phase of the movie is centered around the

ain event — an accidental gunshot. To verify that this period did not

rive any of our results, we repeated all analyses only including data up

o TR 162/193 (400 s). None of the findings changed when using this

hortened version of the data. 

.3. Relationship between PMN connectivity and episodic memory 

The prior analyses demonstrated functional differences between

MN subsystem connectivity patterns and their relation to the movie

vents. But what is the significance of PMN connectivity for memory-

elated behavior? To gain some preliminary insight into this question,

e conducted exploratory analyses testing if functional connectivity re-

ated to individual differences in episodic memory performance on an

ndependent task ( Fig. 4 ). In this task, participants were tested on their

emory for the scene context associated with studied objects. Episodic

emory was defined as the number of trials for which participants could

escribe the scene context in detail. 

There was no significant relationship between time-averaged PMN

ubsystem connectivity strength during the movie and episodic scores

cross subjects ( Fig. 4 a; Dorsal: r = − 0.079, p = .52; Ventral: r = 0.178,

 = .15; Ventral-to-Dorsal: r = 0.018, p = .88). Next, we used intersub-

ect representational similarity analysis ( Fig. 4 b; Finn et al., 2020 ) to test

he relationship between time-varying connectivity and episodic mem-

ry. We tested two models — nearest neighbor ( Fig. 4 c), where subjects

ith similar behavior are assumed to have similar connectivity dynam-

cs, and an “Anna K ” model ( Fig. 4 d), where high performing subjects

re assumed to have similar connectivity, with low performing subjects

eing more variable (see Finn et al., 2020 ). A nearest neighbor model

 Fig. 4 e) revealed no significant relationship between time-varying PMN
7 
onnectivity and episodic memory (Dorsal: r = 0.030, p = .15; Ventral:

 = 0.051, p = .053, Bonferroni-corrected p = .32; Ventral-to-Dorsal:

 = 0.007, p = .37). However, the Anna K model ( Fig. 4 f) suggested

 positive, selective relationship between the intersubject similarity of

pisodic memory and Ventral PM time-varying connectivity ( r = 0.101,

 = .017) although we highlight that this effect did not survive cor-

ection across all 6 models (Bonferroni-corrected p = .10). This corre-

ation was not present for time-varying Dorsal ( r = 0.036, p = .20) or

entral-to-Dorsal PM connections ( r = 0.017, p = .30). Control analyses

howed no significant correspondence between time-varying PMN pro-

esses and memory using either activity or a measure of object priming

rom the same task (see Supplementary Analyses S.4). We also verified

hat there was no relationship between subjects’ episodic memory per-

ormance and their movement (mean FD) during the movie watching

can ( r = − 0.04). 

To visualize any potential correspondence between Ventral PM sub-

ystem connectivity and episodic memory, the mean time-varying con-

ectivity was calculated for subjects with high ( N = 35) vs. low ( N = 32)

emory scores, using a median split ( Fig. 4 g). This revealed distinct

hanges in Ventral PM connectivity over the movie between memory

roups: post-hoc tests for a linear trend in time-varying connectivity

howed that subjects who had high episodic memory scores significantly

ncreased their Ventral PM connectivity over time (mean Z = 0.325,

(34) = 5.31, p < .001), whereas subjects with lower scores did not

mean Z = 0.002, t(31) = 0.04, p = .97), which was significantly different

etween groups (t(64.6) = 3.67, p < .001). Therefore, not only do PMN

ubsystems show meaningfully distinct patterns of functional connec-

ivity during movie watching, those dynamics, particularly of Ventral

egions, may have implications for individuals’ episodic memory. 

. Discussion 

The PMN is a structurally and functionally interconnected system

hat specializes in the construction of episodic representations. Prior
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Fig. 4. Relationship between PMN connectivity and episodic memory. a) Correlations between time-averaged functional connectivity and episodic memory. b) 

Intersubject representational similarity calculation, wherein a memory representational dissimilarity matrix (RDM) is correlated with a brain RDM. c) The memory 

RDM using a nearest neighbor model, where subjects with similar memory scores are assumed to have similar brain dynamics. d) The memory RDM using an 

“Anna K ” model ( Finn et al., 2020 ), where subjects with high memory are assumed to have similar brain dynamics, with low memory subjects assumed to be more 

variable. e&f) Null distributions of Spearman correlations between memory and brain RDMs over 10,000 permutations, shuffling subject labels in the brain RDM. 

The solid, colored lines, indicate the true correlation between the behavior and brain RDMs for each PMN subsystem. e) Permutations of the nearest neighbor model, 

f) Permutations of the “Anna K ” model. g) Mean time-varying connectivity of the Ventral PM subsystem for high and low episodic memory subjects, defined by a 

median split (ribbon = standard error of the mean). Gray windows = event transitions for visualization. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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ork has provided valuable insight into the functional properties and

epresentations of the PMN as a whole, but research is only just start-

ng to map the organizational structure of the PMN, which is impor-

ant for understanding the multidimensional nature of episodic thought

 Ritchey and Cooper, 2020 ). To this end, we sought to tease apart func-

ional pathways and subsystems within the PMN, testing how they re-

ate to changes in event context and individual differences in episodic

emory. First, we found that the PMN can be parcellated into two func-

ional subsystems: a Ventral PM system comprising PHC, RSC, and pos-

erior AG, and a Dorsal PM system comprising PCC, Prec, anterior AG,

PFC, and posterior Hipp. Second, we showed that functional connec-

ivity with PHC and Prec differentiated the subsystems, whereas RSC

nd PCC were strongly connected throughout the PMN. Third, we found

hat although connectivity of both the Dorsal PM and Ventral PM subsys-

ems tracked the movie content, showing time-varying similarity across

ubjects, there was a selective increase in functional connectivity of Ven-

ral PM regions at event transitions. Finally, time-varying connectivity

f the Ventral PM subsystem appeared to relate to individual differences

n episodic memory. 
8 
The partition of the PMN into two separable functional subsystems

uring movie watching aligns with prior work considering fractionation

f the broader default network during rest. Early approaches identified

n MTL default subsystem, characterized by strong connectivity to PHC,

hat included RSC and posterior AG, and a Dorsal Medial subsystem,

omprising dorsal MPFC and lateral temporal cortex, with these two sub-

ystems converging on a Core subsystem of dorsal medial parietal cortex

nd MPFC ( Andrews-Hanna et al., 2010 ). Recent work at the individual-

evel, however, has divided the default network into two interdigitated

ubsystems ( Braga and Buckner, 2017 ; DiNicola et al., 2020 ) that retain

otable overlap with groupings of PMN regions identified here. In par-

icular, default network ‘A’ is characterized by strong functional con-

ectivity to PHC, whereas default network ‘B’ includes regions within

nterior lateral parietal cortex, PCC, and MPFC that appear similar to

ur Dorsal PM network. However, these parcellations have not included

he hippocampus and other subcortical structures, and the individual-

pecific analyses do not afford a direct comparison with the current re-

ults or with group-level functional dissociations in the literature. More

ecently, the default network has been segregated beyond two systems,
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c  
ncluding a separate Parietal Network of middle AG, medial parietal cor-

ex, and anterior MPFC, and a Ventromedial Network of hippocampus

nd ventral MPFC ( Barnett et al., 2020 ; Gordon et al., 2020 ). We also ob-

erved some evidence for a functional divide within the Dorsal PM sys-

em, with reliable clustering of hippocampus and MPFC based on similar

atterns of whole-brain connectivity. Interestingly, these prior studies

nd our results suggest that the hippocampus may be more strongly

ligned with the network organization of MPFC despite strong func-

ional communication with PHC. Overall, the subsystems we revealed

ithin the PMN during movie-watching appear to align with those that

ave been identified within the default network during rest using a

hole-brain approach, despite some state-based variability in functional

onnectivity patterns during movie-watching and rest ( Geerligs et al.,

015 ). An outstanding question, therefore, is whether movie-watching

r other episodic paradigms might be best suited to studying PMN or-

anization because they directly modulate the network. 

Beyond the overarching network organization, analyses of intranet-

ork functional connectivity validated the separation of PMN subsys-

ems and revealed the connectivity patterns of individual PMN regions.

he hippocampus consistently exhibited the lowest functional connec-

ivity suggesting that, whereas PHC and connections of the Dorsal PM

ystem — most notably MPFC — converge on the hippocampus, it may

ot drive communication among cortical PMN regions. In support, prior

ork suggests that temporal integration of narrative information dur-

ng movie watching in Dorsal PMN regions may not depend on interac-

ions with the hippocampus ( Chen et al., 2016 ; Zuo et al., 2020 ). The

ippocampus has been characterized as a gateway between the PMN

nd an anterior temporal (AT) network that processes item and emo-

ional information ( Ranganath and Ritchey, 2012 ; Ritchey et al., 2015 ).

herefore, while it may not be central to situation models supported

y cortical PMN regions, the hippocampus may be important for con-

ecting the PMN with other brain networks. In contrast, RSC and PCC

ere the most strongly functionally connected regions within the PMN,

ut our analyses highlighted distinct roles: RSC mediated communica-

ion between PHC and the Dorsal PM subsystem, whereas PCC mediated

ommunication among Dorsal PM regions. The dominance of both RSC

nd PCC in the network supports prior work that has highlighted these

reas as connectivity “hubs ”. PCC is often regarded as an integrative

ub of the default network ( Andrews-Hanna et al., 2010 ; Buckner et al.,

008 ), as revealed with partial correlation analyses ( Fransson and Marr-

lec, 2008 ), that can regulate information flow between default regions

 Wang et al., 2019 ). Complementing the current findings, RSC in turn

as been shown to mediate connectivity between the MTL and dorsal

efault network regions ( Kaboodvand et al., 2018 ), and is thought to

erve as a key area of transformation between MTL and dorsal parietal

patial codes ( Bicanski and Burgess, 2018 ). 

In addition to understanding the functional structure of the PMN, we

ought to demonstrate the functional relevance of subsystems for event

rocessing. Prior work has shown increased activity throughout the

MN at event boundaries ( Ben-Yakov and Henson, 2018 ; Reagh et al.,

020 ), as replicated here. However, we observed a selective increase in

onnectivity of the Ventral PM subsystem, not among Dorsal PM regions,

t event transitions. This dissociation highlights both a distinct finding

rom connectivity patterns that is not observed with regional activity

lone, and a dominant role of Ventral PM communication in integrating

vents within the PMN. Interestingly though, time-varying connectivity

f both the Ventral and Dorsal PM subsystems was ’synced’ to the movie

timulus, as evidenced by intersubject correlations, but they were un-

elated to one another. This suggests that the subsystems were related

o different features of the movie, and thus the event-transition dissoci-

tion between subsystems is not reflective of any overall difference in

he sensitivity of connectivity fluctuations to movie content. The movie

hown to participants was 8 min in total, with some events lasting only a

ew seconds. A fine-grained sensitivity to event structure among Ventral

M regions supports findings of a temporal event hierarchy in the PMN:

SC and PHC process the most high-resolution events in contrast to more
9 
lowly evolving context models in Dorsal PM regions ( Baldassano et al.,

017 ; Keidel et al., 2017 ), as perhaps indicated by the increase in Dor-

al PM connectivity during the longest event in our analysis. Moreover,

ithin the default network, connectivity between the medial temporal

obe and RSC, specifically, increases during episodic tasks relative to

est ( Bellana et al., 2017 ). 

We suggest that, at local event boundaries, Ventral PM regions com-

unicate with Dorsal PM regions to integrate the event with a sustained

nd more abstract contextual framework. This explanation is in line with

vidence of intra-PMN dissociations in the reinstatement of event con-

ext, which is persistent in AG, Prec, and PCC and more transient in

HC and RSC ( Jonker et al., 2018 ). An outstanding question, therefore,

s whether within-Dorsal PM connectivity increases at boundaries char-

cterized by less frequent thematic shifts that could not be explicitly

odeled with the current task. Relatedly, it is unclear whether Ventral

M connectivity is particularly sensitive to boundaries that are charac-

erized by shifts in visuo-spatial content or whether it reflects a content-

eneral process that would be sensitive to other kinds of context shifts,

uch as semantic narrative. Providing some support for the latter, a

rior study suggests that RSC and PHC are sensitive to changes in nar-

ative context when visuo-spatial context is maintained ( Keidel et al.,

017 ). Finally, a surprising finding was the lack of increase in hip-

ocampal connectivity at event transitions, particularly given the domi-

ant role of hippocampal event boundary signals in supporting memory

 Cohen et al., 2015 ; Cooper and Ritchey, 2020 ; Reagh et al., 2020 ). It is

ossible, however, that the posterior hippocampus creates and separates

vent-specific representations ( Chanales et al., 2017 ; Schlichting et al.,

015 ) in contrast to the integrated event structure (embedding specific

vents within an ongoing situational model) supported by cortical PMN

ommunication ( Aly et al., 2018 ). 

Mirroring the modulation of PMN connectivity by movie event tran-

itions, an exploratory analysis showed some evidence for a selective

elationship between Ventral PM connectivity and episodic memory on

n independent task. Subjects who had detailed recollection of scene

ontext showed more similar patterns of time-varying Ventral PM con-

ectivity during movie watching, which reflected an increase in connec-

ivity over time. Ventral areas of the PMN, particularly PHC and RSC,

re strongly related to the processing of spatial contextual information

n memory and imagination in contrast to the preferential representa-

ion of people in posterior cingulate cortex and anterior angular gyrus

 Peer et al., 2015 ; Robin et al., 2018 ; Silson et al., 2019 ). PHC, RSC,

nd posterior AG have also been defined as a functionally connected

ystem supporting scene memory ( Baldassano et al., 2016 ; Steel et al.,

021 ). Moreover, functional connectivity of Ventral PM regions, specifi-

ally, has been previously related to episodic memory: One study found

hat PHC- and RSC-mediated resting state connectivity of the hippocam-

us and AG was related to TMS-enhanced spatial memory precision

 Tambini et al., 2018 ). In another study, there was a selective relation-

hip between MTL-RSC resting state connectivity and episodic memory

hat was not present for other default network connections ( Kaboodvand

t al., 2018 ). In contrast to this prior research, we did not find a relation-

hip between time-averaged connectivity and individual differences in

emory. Rather, we provide preliminary evidence that Ventral PM con-

ectivity dynamics may be relevant for individual differences in episodic

emory, although we highlight that the main effect did not survive Bon-

erroni correction. Moreover, the cause of the relative dissimilarity in

ime-varying connectivity for subjects with low episodic memory is un-

lear, possibly reflecting differences in general attention and processes

ot specific to memory. While we speculate that increased Ventral PM

onnectivity over time in subjects with high episodic memory could in-

icate an enhanced ability to bind spatial-contextual information, future

esearch will be required to test this hypothesis and, importantly, repli-

ate the current results. 

In conclusion, we revealed distinct functional subsystems of the

MN, whose pathways dynamically tracked movie content. Communi-

ation of the Ventral PM subsystem was selectively modulated by event
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ransitions during movie-watching and may relate to individual differ-

nces in episodic memory. Beyond these specific findings, our analy-

es point to both the utility and challenges of integrating large-scale

etworks with questions about specific cognitive operations, which are

ften studied in a region-centric manner. Understanding the subnet-

ork organization of brain networks, and mapping that organization

o specific task-related factors, may be the key to understanding the

unctional relevance of large-scale networks associated with high-level

ognitive processes ( Cabeza et al., 2018 ; Cabeza and Moscovitch, 2013 ;

itchey and Cooper, 2020 ). Overall, our findings illustrate PMN func-

ional organization, and highlight the significance of functional diversity

f the PMN for event cognition. 
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