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Next, we combine these features into a formal regression
model, and allow individual image properties to compete to
predict memory performance across items.
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Memory for object images is better than memory for object concepts.

Visual properties of objects do not predict memory for objects.
Semantic properties of objects (mean distinctiveness, correlational strength) predict memory for objects.
Critically, the assessment of visual features (by AMT workers) —and not image properties-predicted memory for both

tasks.

The Conceptual Structure Account (CSA) provides a means
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of formalizing these relationships with two useful measures.
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Mean Distinctiveness: concept based statistic that measures
the shared relative to distinct features.

Correlational Strength: average of all significant pairwise
correlations between a target feature and all other features for
a concept.

Overall, these results suggest a strong role for semantic attributes in overall object memorability and provide a new set of
property norms that can be used across a wide range of research domains.
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