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This study assesses the performance of public-domain automated

methodologies for MRI-based segmentation of the hippocampus in

elderly subjects with Alzheimer’s disease (AD) and mild cognitive

impairment (MCI). Structural MR images of 54 age- and gender-

matched healthy elderly individuals, subjects with probable AD, and

subjects with MCI were collected at the University of Pittsburgh

Alzheimer’s Disease Research Center. Hippocampi in subject images

were automatically segmented by using AIR, SPM, FLIRT, and the

fully deformable method of Chen to align the images to the Harvard

atlas, MNI atlas, and randomly selected, manually labeled subject

images (‘‘cohort atlases’’). Mixed-effects statistical models analyzed the

effects of side of the brain, disease state, registration method, choice of

atlas, and manual tracing protocol on the spatial overlap between

automated segmentations and expert manual segmentations. Registra-

tion methods that produced higher degrees of geometric deformation

produced automated segmentations with higher agreement with

manual segmentations. Side of the brain, presence of AD, choice of

reference image, and manual tracing protocol were also significant

factors contributing to automated segmentation performance. Fully

automated techniques can be competitive with human raters on this

difficult segmentation task, but a rigorous statistical analysis shows

that a variety of methodological factors must be carefully considered to

insure that automated methods perform well in practice. The use of

fully deformable registration methods, cohort atlases, and user-defined

manual tracings are recommended for highest performance in fully

automated hippocampus segmentation.
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Introduction

Hippocampal atrophy has been proposed as a clinical marker

for early AD because it is known to occur early in the course of the

disease on a spatial scale large enough to be detectable with

structural MR images (Bobinski et al., 1996; Kordower et al.,

2001). Visual qualitative atrophy assessment (e.g., de Leon et al.,

1993) has been hindered by the relative subtlety of atrophy early in

the course of AD (Frisoni, 2001). However, the development of

reliable repeatable protocols for human raters to trace the hippo-

campus (e.g., Jack et al., 1995) has led to the possibility of precise

quantitation of AD-related atrophy (Chetelat and Baron, 2003),

hippocampus-level quantification of activation in co-registered

structural– functional images (Dickerson et al., 2004), and quanti-

fication of other hippocampal characteristics such as bilateral

symmetry (Bigler et al., 2002). Furthermore, tracing protocols have

enabled the study of hippocampal morphometrics in subjects with

mild cognitive impairment (MCI), a high-AD-risk clinical con-

dition marked by minor deficits in one or more cognitive domains

(Convit et al., 1997; Petersen et al., 1997).

However, large-scale studies of AD-related hippocampal

atrophy are often impractical because manual segmentations are

labor-intensive and require training to insure high repeatability

between raters. Typical hippocampi take between 30 min and 2 h to

trace by hand; the tedious labor quickly causes fatigue. Semi-

automated segmentation methods reduce manual labor by having

the user identify a sparse set of image landmarks that constrain a

subsequent automated segmentation process (Christensen et al.,

1997; Freeborough et al., 1997; Shen et al., 2002). However, we

focus on fully automated atlas-based techniques to eliminate the

need for a user to manually process each image under study and to

eliminate the landmark-identification process as a source of

variability between segmentations of the same image.
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Fig. 1. Schematic view of atlas-based segmentation. An intensity transformation and geometric transformation are estimated to register the atlas image to the

subject image; the geometric transformation is applied to the atlas mask in order to estimate the subject mask.
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Atlas-based segmentation coregisters a subject image and a

special reference image called the atlas image on which structures

of interest have been manually traced (see Fig. 1). The resulting

spatial transformation maps the coordinates of the structures from

the coordinate space of the atlas image to that of the subject image.

Since this approach is posed in terms of image-to-image registra-

tion, atlas-based techniques take advantage of methodological

advances in registration that are driven by a wide range of

application areas such as visualization, image-guided surgery, and

voxel-based morphometry. Furthermore, atlas-based approaches

are among the easiest to implement since they only require the user

to align the atlas and subject images.

The purpose of this study was to systematically compare the

performance of several competing public-domain methodologies

for atlas-based segmentation of AD-atrophied hippocampi. We

validated several widely disseminated automated image registra-

tion methods (Friston et al., 1995; Jenkinson et al., 2002; Woods

et al., 1998); in contrast, previous studies on atlas-based elderly

hippocampus segmentation used a single, recently developed,

cutting-edge registration algorithm that lacked a widely dissemi-

nated, standard software implementation (e.g., Crum and Scahill,

2001). Furthermore, we examined the use of two widely

disseminated atlas images (Kikinis et al., 1996; Tzourio-Mazoyer

et al., 2002), as well as individual manually traced subject images

(as in, e.g., Webb et al., 1999) to serve as the reference or cohort

atlas image. Finally, we examined the impact of varying manual

tracing protocols on atlas-based segmentation performance.
1 While we use the original implementation of Chen’s method, its

registration modules are highly similar to the FEM-based and Demons

registration modules of the freely available ITK software package (Yoo,

2004).
Methods

Subject data

We gathered MR images of 20, 19, and 15 subjects in the AD,

MCI, and control populations respectively. All subjects were

enrolled in the University of Pittsburgh Alzheimer’s Disease

Research Center between 1999 and 2004 and given a structural

MR scan at time of enrollment. The spoiled gradient-recalled

(SPGR) volumetric T1-weighted pulse sequence, acquired in the
coronal plane, had the following parameters optimized for maximal

contrast among gray matter, white matter, and CSF (TE = 5, TR =

25, flip angle = 40-, NEX = 1, slice thickness = 1.5 mm/0 mm

interslice). Along with the MR scan, subjects received a

comprehensive battery of neuropsychological and clinical tests at

time of enrollment and at yearly follow-up visits (see (Lopez et al.,

2000a,b) for evaluation procedure). A consensus meeting of

neuroradiologists, psychiatrists, neurologists, and psychologists

diagnosed each subject into MCI (Petersen et al., 1997), AD, or

control categories.

Skulls were stripped from all images using the Brain Extraction

Tool (BET) (Smith, 2002), and the images were cropped to

remove all-zero slices using the crop tool provided with AIR 2.0

(Woods et al., 1998).

Registration methods

We compared the performance of software modules in AIR,

SPM, FLIRT, and Chen’s method (Woods et al., 1998; Friston

et al., 1995; Jenkinson et al., 2002; Chen, 1999) as registration

substrates for atlas-based segmentation of elderly hippocampi.1

While several algorithmic details vary between these registration

techniques, they are chiefly distinguished from each other in

terms of their geometric transformation model—that is, the

mathematical equation that maps image coordinates between the

atlas image and subject image. We partitioned the geometric

transformation models into three categories in terms of the degree

to which they allow the atlas image to spatially deform when it is

aligned to the subject image. Affine methods apply the same

linear transformation to all voxels in the entire atlas image; semi-

deformable mappings deform the atlas image in a spatially

smooth gradual way to align it to the subject image; and fully

deformable methods produce image-to-image mappings that are

essentially unconstrained spatially (see Fig. 2 for an illustration



Fig. 2. Example image deformations produced by fully deformable, semi-deformable, and affine registration techniques. The moving image is registered to the

stationary image using each of the 7 algorithms we analyze. The colored dots show the geometric positions of voxels in the shown slice of the moving image

before and after deformation by each of the methods. The transformation produced by the AIR affine method and SPM affine method were almost identical to

that of the FSL affine method.
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and Carmichael et al., 2004 for a detailed mathematical

explanation). We considered one fully deformable, three semi-

deformable, and three affine registration methods. The AIR affine

(Woods et al., 1998), SPM affine (Friston et al., 1995), and

FLIRT affine (Jenkinson et al., 2002) methods estimate an affine

transformation between images. The AIR semi-deformable

method uses the transformation output by the AIR affine method

as a starting point for estimation of a spatially smooth

deformation based on a polynomial transformation model; the

SPM semi-deformable method uses the transformation output by

the SPM affine method as the starting point for estimation of a

smooth deformation based on a discrete cosine transform (DCT)

transformation model; the Chen semi-deformable method esti-

mates a piecewise-linear transformation (Chen, 1999). Finally, the

Chen fully deformable method takes the output of the Chen semi-

deformable method as a starting point for estimation of an

unconstrained voxel-by-voxel deformation.

Manual segmentations

We evaluated automated segmentations by comparing them to

manual segmentations performed by a single expert rater, R1, who

was blind to diagnosis, gender, age, and other clinical data at the

time of tracing. Hippocampi were traced on contiguous coronal

slices following the guidelines of Watson et al. (1992), Schuff et al.

(1997), and Pantel et al. (1998). The traced structure included the

hippocampus proper, the subiculum, and the dentate gyrus. The

image and tracing were viewed in all three orthogonal viewing

planes during manual segmentation. Rater R1 traced hippocampi

on all 54 subject images; additionally, we selected 2 AD, 2 MCI,

and 2 control images from the pool of 54 subjects for tracing by

two additional trained raters, R2 and R3, using the same protocol.

These additional manual segmentations were used to compare

automated–manual segmentation agreement to inter-rater agree-

ment. All manual segmentations were digitized into binary

volumes for analysis.
Cohort atlases

In the cohort atlas scenario, we selected an image from a subject

population (AD, MCI, or control), manually traced left and right

hippocampi on it, and treated it as a reference image that all other

images in the subject population were registered to during atlas-

based segmentation. We refer to the selected subject image as a

cohort ‘‘atlas’’ image to emphasize its role as a reference image.

Cohort atlas images were selected at random from the subject

population, however, we note that a variety of more complex

strategies for cohort atlas image selection are possible (Rohlfing et

al., 2004). For each image in each subject population, we

considered a hypothetical situation in which that image is selected

as the cohort atlas; all other images in the population were

registered to the cohort atlas image, and hippocampus segmenta-

tion results were evaluated. In other words, for a population of k

images, we considered k different possible cohort atlases, which

we registered to all k � 1 other images in the population for a total

of k � 1 trials per registration method.

Standard atlases and atlas tracers

In the standard atlas scenario, we began with an atlas image and

manual hippocampus tracings, or manual atlas tracings, provided

by an atlas institution (Harvard or MNI). We registered the atlas

image to the subject image, and we used the resulting transformation

to transfer a manual tracing of the hippocampus from the atlas image

to the subject image. This automated segmentation was evaluated by

comparing it to an independent manual subject tracing—a manual

tracing of the hippocampi on the subject image performed by rater

R1. However, we recognized that the manual tracing protocol used

by R1 may differ from that used by human tracers at MNI and

Harvard and that our evaluation risked confounding two factors that

could have caused discrepancies between the automated segmenta-

tion and manual subject tracing: differences in hippocampus

delineation between automated and manual techniques and discrep-
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ancies in hippocampus boundary conventions between manual atlas

and subject tracings. For this reason, rater R1 generated manual atlas

tracings by tracing left and right hippocampi on the Harvard and

MNI atlas images using the same manual tracing protocol used for

tracing on the subject images. Experiments analyzed the effects of

choice of atlas (MNI vs. Harvard) and manual atlas tracings

(performed by R1 vs. performed by the atlas institution) on

manual–automated segmentation agreement.

Cohort atlas images reflect possibly anomalous characteristics

of a particular scan and subject, and their use is inherently more

labor-intensive than standard atlases since they require the user to

hand-label the structure of interest on the cohort atlas image.

However, cohort-atlas-based segmentation has potential advan-

tages over the more conventional standard-atlas-based approach. If

the population of subject images is homogeneous with respect to

factors such as sensor acquisition parameters, subject age, and

subject disease state, then drawing a cohort atlas image from the

population guarantees that these factors will not confound the

registration process. Furthermore, hand-labeling the structure of

interest on the cohort atlas image insures the investigator that

anatomical boundaries reflect his or her conventions.

Manual–automated and manual–manual agreement

Performance of automated segmentation algorithms was

measured in terms of manual–automated agreement, that is,

agreement between automated segmentations and manual tracings

performed by an expert rater. We compared manual–automated

agreement to manual–manual agreement, or the agreement

between manual tracings performed by pairs of expert human

raters. In doing so, we assessed whether switching from manual to

automated segmentation significantly increases the variability

between the produced segmentation and one produced by an

independent human rater. We selected 2 AD, 2 MCI, and 2 control

images from our pool of subjects and had the hippocampi

segmented manually by human raters R1, R2, and R3. Since R1

traced hippocampi on the full set of 54 subject images, we

measured manual–automated agreement in terms of agreement

between R1-rated manual tracings and the Chen fully deformable

automated technique. Manual–manual agreement was measured

in terms of pairwise agreement between manual tracings by R1

and R2, R1 and R3, and R2 and R3. Manual–automated

agreement for each subject image was summarized in terms of

the average manual – automated agreement between its R1

segmentation and the automated segmentations from all cohort

atlas images in its disease category. Experiments analyzed

differences between manual–manual agreement and manual–

automated agreement on the 6 multiply manually traced hippo-

campi. Note that this approach differs from the more common

approach of measuring agreement between pairs of manual and/or

automated segmentations in terms of hippocampal volumes; the

key difference is that our approach quantifies agreement in terms

of how well the segmentations overlap in the brain. We note that

other approaches, based on estimating automated segmentation

performance and a single estimate of the true, underlying structure

mask, are also available (Warfield et al., 2004).

Performance measure: overlap ratio

We evaluated the agreement between an automated hippo-

campus segmentation estimate and a manual segmentation using a
numerical criterion that measured the degree to which they overlap.

We represented the automated segmentation B̂B and its correspond-

ing manual segmentation B as binary 3D volumes in which voxels

labeled as hippocampus had a value of 1. Let VBOTH be the set of

voxels labeled as hippocampus by both B̂B and B; set VB̂B has voxels

labeled as hippocampus by B̂B but not B; and set VB consists of

voxels labeled as hippocampus by B but not B̂B (sets VBOTH, VB̂B,

and VB) are labeled in red, dark gray, and light gray in Fig. 3d).

The overlap ratio measures the degree of overlap between the

automated and manual segmentations, specifically:

or B; B̂B
� �

¼ jVBOTHj
jVBOTHj þ jVB̂Bj þ jVBj

In other words, the overlap ratio measures the percentage of the

combined volumes of B̂B and B that are both labeled as hippo-

campus. When B̂B and B overlap perfectly, or(B̂B, B) = 1; when the

masks do not overlap at all, or(B̂B, B) = 0. We note that several

authors have quantified manual–automated segmentation agree-

ment using criteria similar to the overlap ratio (Dawant et al., 1999;

Kelemen et al., 1999; Klemencic et al., 2001; Shen et al., 2002).

Overlap ratio was computed over the entire hippocampus.

Furthermore, to characterize automated segmentations in terms of

hippocampal sub-regions, we divided the hippocampus into

sections and computed performance measures over the voxels in

each section. Consider a bounding box (xmin, xmax, ymin, ymax, zmin,

zmax) around all the hippocampus voxels in B̂B and B (i.e., the x

coordinates of all voxels in VBOTH?VB̂B?VB are between xmin and

xmax, etc.). For each of the three cardinal directions, we partitioned

the estimated and ground-truth hippocampi into k sections along

that direction and computed overlap ratios in each of the sections.

That is, for all i from 1 to k, we computed or(Bi
x, B̂Bi

x), where

Bx
i x; y; zð Þ ¼ B x; y; zð Þ for xmin þ i � 1

k
T xmax � xminð Þ < x < xminþ

i
k
T xmax � xminð Þ and Bx

i x; y; zð Þ ¼ 0 and for all other voxels.

Similarly, we compute (Bi
y, B̂Bi

y) and or(Bi
z, B̂Bi

z) for all i from 1 to

k. See Fig. 3e for an illustration. Fig. 4 suggests that, since the

hippocampi all have similar gross orientations in the image, the

sections can be interpreted as corresponding to rough anatomical

regions on the hippocampus. For example, if we cut the shown

hippocampi into sections using vertical lines, the sections to the left

correspond to posterior regions, and sections to the right

correspond to anterior regions.

Statistical analysis: mixed-effects models

We analyzed the effects of registration method, side of the

brain, disease state, manual tracing protocol, and choice of atlas on

overlap ratio through mixed-effects statistical models (Pinheiro and

Bates, 2000) that properly accounted for fixed effects, random

effects, and grouping in our data. The fixed effects, including

disease state, side of the brain, and registration method, were

modeled as additive offsets from a baseline value of the perform-

ance measure. Random effects, such as the random sampling of

subjects from an overall patient population, were modeled as

variance components. Each level of each fixed effect was assigned

a coefficient representing the offset it produced from the baseline

value. The overall significance of each fixed effect was evaluated

through omnibus F tests. Furthermore, we analyzed differences

between factor levels–for example, between control, MCI, and AD

subjects—by using focused F tests to check for significant

differences between their coefficients. Effect size for focused F



Fig. 3. Evaluating consistency betweenmasks using overall and sectional overlap. A ground-truth subject mask and estimated subject mask are shown in light and

dark gray. (d) Voxels in red overlap between the ground-truth and the estimate. Overlap ratio measures the ratio between the volume of the red region and the

volume of the combined red and gray regions. (e) The green bars split the hippocampus voxels into axis-parallel sections. In sectional analysis, overlap ratio is

computed for each section independently.
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tests was quantified by the contrast correlation rcontrast (Rosenthal

et al., 2000), which generalizes standard 2-group correlational

effect size measures while properly accounting for degrees of

freedom. In our analysis, between-group differences refer to

differences in model coefficients between two factor levels.

Mixed-effects models properly account for the random sampling

of subject images and cohort atlas images from overall AD, MCI,

and control populations and properly account for repeated

measures. All statistics were performed using R version 1.9.1.

Mixed-effects models were fit using maximum likelihood estima-

tion in the nlme package. In order to give multiple views of the

complex ways in which overlap ratio varied with respect to fixed

effects, we report significance values and effect sizes for between-

group tests, as well as box-and-whisker plots that show the median,

quartiles, and extreme values of overlap ratio within groups.

Experiments evaluate the degree to which segmentation results

varied with respect to disease state, registration algorithm, atlases,
Fig. 4. Points on the left hippocampus in all 19 MCI subjects are shown projected

rough initial orientation in this plane.
manual tracings, and side of the brain. At the core of the

experiments is the following sequence of actions:

1. Registering an atlas image to a subject image.

2. Using the resulting geometric transformation to transfer

manually labeled left and right hippocampus masks from the

atlas image to the subject image.

3. Evaluating the consistency between the resulting subject mask

estimates and ground-truth manual tracings.

We refer to the execution of these actions for a particular choice

of atlas image, subject image, registration algorithm, and manual

tracings as a segmentation trial. Our experimental results were

obtained by performing a series of trials through which each of

these 4 factors is varied systematically. In particular, for both of our

standard atlases, we ran one trial for each possible combination of

the 7 registration algorithms, 54 subject images, and 2 sets of
onto the xz plane of the image. Note that all the hippocampi share the same



Fig. 5. Overlap ratio as a function of disease state, registration method category, and side of the brain for the 54 images using cohort atlases.
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manual tracings supplied with the atlas. For each disease state, and

for each registration algorithm, we ran one trial for each possible

cohort atlas image and subject image within the disease group.
Results

Cohort atlases

For cohort-atlas-based segmentation, we fit a mixed-effects

model in which disease state, side of the brain, and registration

method were fixed effects; the subject and cohort atlas identity

were random effects; and the performance measures were the

dependent variables. The overall effects of side, disease, and

method on overlap ratio were statistically significant (P < 0.0001,

P = 0.0192, P < 0.0001).

Box plots showing how overlap ratio varies with disease state,

side of the brain, registration method, and registration method
Table 1

P values and the contrast correlation rcontrast (Rosenthal et al., 2000) are shown fo

categories in the mixed-effects model for cohort-atlas-based segmentation

P, rcontrast Chen semi AIR semi SPM semi

Chen fully <0.0001, 0.401*** <0.0001, 0.296*** <0.0001, 0.44

Chen semi <0.0001, 0.127*** <0.0001, 0.06

AIR semi <0.0001, 0.127*** <0.0001, 0.18

SPM semi <0.0001, 0.060*** <0.0001, 0.184***

AIR affine <0.0001, 0.104*** <0.0001, 0.227*** <0.0001, 0.04

SPM affine <0.0001, 0.040*** <0.0001, 0.165*** 0.029, 0.020*

FLIRT affine <0.0001, 0.095*** <0.0001, 0.218*** <0.0001, 0.03

P, rcontrast MCI AD

Control 0.647, 0.064 0.011, 0.345*

MCI 0.024, 0.310*

AD 0.024, 0.310*

P, rcontrast Semi-Deformable Affine

Fully Deformable <0.0001, 0.450*** <0.0001, 0.530***

Semi-Deformable <0.0001, 0.170***

Affine <0.0001, 0.170***

Between left and right sides of the brain, P and rcontrast are <0.0001 and 0.277 r

P values and effect sizes for differences in manual–automated overlap using coh

* P < 0.05.

*** P < 0.001.
category are shown in Fig. 5. Effect sizes and P values are shown

in Table 1. Overlap ratio was significantly lower in AD compared

to MCI and control groups, although no significant difference in

overlap ratio was seen between MCI and control groups. No

significant difference existed between the FLIRT affine and AIR

affine methods. For all other pairs of methods, significant (but in

many cases slight) differences in overlap ratio existed. The

methods, ranked in decreasing order of overlap ratio, were as

follows: Chen fully deformable, AIR semi-deformable, Chen semi-

deformable, SPM affine, SPM semi-deformable, FLIRT affine,

AIR affine.

Comparing fully deformable, semi-deformable, and affine methods

We grouped the registration methods into fully deformable,

semi-deformable, and affine categories and fit a mixed-effects

model in which the fixed effects were the method category, disease

state, and side of the brain; subject and atlas identity were random
r F tests between pairs of registration methods, disease states, and method

AIR affine SPM affine FLIRT affine

5*** <0.0001, 0.477*** <0.0001, 0.431*** <0.0001, 0.470***

0*** <0.0001, 0.104*** <0.0001, 0.040*** <0.0001, 0.095***

4*** <0.0001, 0.227*** <0.0001, 0.165*** <0.0001, 0.218***

<0.0001, 0.045*** 0.029, 0.020* <0.0001, 0.035***

5*** <0.0001, 0.065*** 0.286, 0.010

<0.0001, 0.065*** <0.0001, 0.055***

5*** 0.286, 0.010 <0.0001, 0.055***

espectively.

ort atlases.



Fig. 6. Overlap ratio as a function of disease state, registration method, manual tracing, and side of the brain for the 54 images using standard atlases.
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effects (see Fig. 5 and Table 1). Fully deformable methods had

significantly higher overlap ratio than semi-deformable and affine

methods. In turn, semi-deformable methods had significantly

higher overlap ratio than affine methods, although the effect size

was not as pronounced as in the comparison between fully

deformable and semi-deformable categories.

Standard atlases and manual atlas tracings

For standard-atlas-based segmentation, we fit a mixed-effects

model in which the fixed effects were the standard atlas (Harvard

or MNI), the source of the manual atlas tracings (R1 or Harvard/

MNI), side of the brain, disease state, and registration method;

subject identity was a random effect; and the performance
Table 2

P values and the contrast correlation rcontrast for F tests between factor levels in

P, rcontrast Chen semi AIR semi SPM semi

Chen fully <0.0001, 0.235*** <0.0001, 0.204*** <0.0001, 0.37

Chen semi 0.072, 0.033 <0.0001, 0.15

AIR semi 0.072, 0.033 <0.0001, 0.19

SPM semi <0.0001, 0.159*** <0.0001, 0.191***

AIR affine <0.0001, 0.306*** <0.0001, 0.112*** <0.0001, 0.08

SPM affine <0.0001, 0.120*** <0.0001, 0.152*** 0.027, 0.041*

FLIRT affine <0.0001, 0.184*** <0.0001, 0.215*** 0.163, 0.026

P, rcontrast MCI AD

Control 0.665, 0.061 0.020, 0.319*

MCI 0.004, 0.390**

AD 0.004, 0.390**

P, rcontrast

R1 vs. other tracers <0.0001, 0.642***

Left vs. right <0.0001, 0.331***

Harvard vs. MNI 0.900, 0.0023

P, rcontrast Semi-def. Affine

Fully def. <0.0001, 0.326*** <0.0001, 0.410***

Semi-def. <0.0001, 0.146***

Affine <0.0001, 0.146***

P values and effect sizes for differences in manual–automated overlap using stan

* P < 0.05.

** P < 0.01.

*** P < 0.001.
measures were dependent variables. Fig. 6 and Table 2 present

the overlap ratio as a function of atlas image and manual atlas

tracing, registration method, side of the brain, and disease state.

Results based on R1-traced atlas tracings are referred to as

‘‘Harvard By R1’’ and ‘‘MNI By R1’’; results based on manual

atlas tracings provided by the atlas institution are referred to as

‘‘Harvard By Harvard’’ and ‘‘MNI By MNI’’ respectively.

Overlap ratio was significantly higher for R1-traced manual

atlas tracings than hippocampi traced by the atlas institution and

was significantly higher for right sides of the brain compared to

left. No significant difference in overlap ratio was seen between the

MNI and Harvard atlases. Overlap ratio was significantly lower for

AD subjects than MCI subjects and controls, but no significant

difference was seen between the MCI and control groups. The
the mixed-effects model for standard-atlas-based segmentation

AIR affine SPM affine FLIRT affine

4*** <0.0001, 0.306*** <0.0001, 0.341*** <0.0001, 0.395***

9*** <0.0001, 0.306*** <0.0001, 0.120*** <0.0001, 0.184***

1*** <0.0001, 0.112*** <0.0001, 0.152*** <0.0001, 0.215***

<0.0001, 0.0817*** 0.027, 0.041* 0.163, 0.026

17*** 0.024, 0.041* <0.0001, 0.107***

<0.0001, 0.065*** <0.0003, 0.066***

<0.0001, 0.107 0.0003, 0.066***

dard atlases.



Fig. 7. Left: Overlap ratio for cohort-atlas-based and standard-atlas-based segmentation using Chen’s fully deformable registration method. Right: P values and

the contrast correlation rcontrast for F tests between factor levels in the mixed-effects model.
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registration methods, ranked in decreasing order of overlap ratio,

were: Chen fully deformable, AIR semi-deformable, Chen semi-

deformable, SPM affine, AIR affine, SPM semi-deformable,

FLIRT affine. The difference in overlap ratio between the SPM

semi-deformable and FLIRT affine methods was not statistically

significant nor was the difference in overlap ratio between the

Chen semi-deformable method and AIR semi-deformable method.

Differences in overlap ratio between all other pairs of methods had

statistically significant P values, although in some cases the effect

sizes were not large.

Cohort atlases vs. standard atlases

We directly compared cohort-atlas-based segmentation to

standard-atlas-based segmentation using the Chen fully deformable

registration method, which had shown the highest segmentation

performance in experiments described above. We fit a mixed-

effects model in which the atlas (MNI, Harvard, or cohort atlas),

human tracer (R1 or the atlas institution), side of the brain, and

disease state were fixed effects, subject identity was a random

effect, and the dependent variable was the overlap ratio. Fig. 7

plots the overlap ratio for the standard atlases and cohort atlases in

this model, along with P values and effect sizes. The mean overlap
Fig. 8. Overlap ratio between manual and automated segmentations (automatic vs
ratio was significantly higher for cohort-atlas-based segmentation

than standard-atlas-based-segmentation using manual atlas tracings

by R1 along with the MNI or Harvard atlas images. Performance

measures for standard atlases using manual atlas tracings from the

atlas institution were significantly worse in each case.

Manual–automated agreement and manual–manual agreement

For the six multiply manually traced subjects, we fit a mixed-

effect model with overlap ratio as the dependent variable, the type

of agreement (manual–manual or manual–automated), and side of

the brain as fixed effects, and subject identity as a random effect.

Manual–manual agreement was not significantly higher than

manual–automated agreement in terms of overlap ratio, although

we saw a trend toward slightly higher manual–manual agreement

(P = 0.0916, rcontrast = 0.264). Box plots comparing the distribution

of overlap ratio for manual–manual and manual–automated

agreement are shown in Fig. 8.

Sectional results

Fig. 9 shows a representative plot of automated–manual mean

overlap ratios and manual–manual mean overlap ratios for
. manual) and between pairs of manual segmentations (manual vs. manual).



Fig. 9. Overlap ratio delineated along posterior–anterior line (left), inferior– superior line (middle), and medial– lateral line (right) for the Chen fully automated

registration method on the right hippocampus in MCI images. Similar patterns of overlap ratio distribution are seen for other registration methods, other disease

states, and the left hippocampus. See text for details.
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hippocampal sections taken along the three cardinal directions of

our data set. Results are shown for cohort-atlas-based segmenta-

tion using the Chen fully deformable registration method on the

right hippocampus in MCI images; however, similar distributions

of overlap are seen for both sides of the brain, all registration

methods, and all disease states (see [3] for detailed plots). The

three cardinal directions correspond roughly to the posterior–

anterior, medial– lateral, and superior–anterior hippocampal axes,

respectively (see Fig. 4). The hippocampal sections most

responsible for manual–automated disagreement were located at

the extremities of the hippocampus, especially at the superior,

inferior, medial, and lateral ends. With the exception of the most

extreme sections, mean overlap ratio was generally higher toward

the lateral extent of the hippocampus and lower toward the medial

extent. Furthermore, with the exception of the most extreme

sections, mean overlap ratio was relatively constant with respect to

anterior–posterior position. Finally, moving from the superior to

inferior extent, mean overlap ratio increased steadily, reached a

peak at the central sections, and decreased toward the inferior end.

These patterns of manual–automated overlap across sub-regions

were similar to patterns of manual–manual overlap on the 6

selected images, although the human raters were relatively more

consistent at the lateral extent.
Discussion

This section summarizes our results in terms of which factors

led to higher or lower performance measures in the atlas-based

segmentation experiments. A ‘‘>’’ between two factor levels

indicates that the overlap was higher for the first factor level

compared to the second.

Fully deformable > semi-deformable � affine

Our results confirm the intuition that methods making use of

more highly deformable geometric transformation models tended

to fit the complex shape of the hippocampus more accurately than

less-deformable geometric models. This agrees with earlier results

that demonstrated that atlas-based hippocampus segmentation

based on other highly deformable registration methods can produce

hippocampal volumes consistent with expected disease-related

atrophy effects (see, e.g., (Crum and Scahill, 2001; Fischl et al.,

2002; Hogan et al., 2004). We believe that the AIR semi-

deformable technique performed better than competing semi-
deformable methods because the ‘‘deformability’’ of its geometric

transformation—i.e., the degree of its polynomial basis–was

allowed to gradually increase over the course of optimization,

while the geometric transformations for the Chen and SPM semi-

deformable techniques were fixed in their spatial structure.

Furthermore, as mentioned above, SPM is explicitly biased toward

minimally deforming transformations, which may steer its geo-

metric transformation away from highly accurate fit of the

hippocampal surface. In a related technical report, a statistical

analysis of the severity of segmentation errors shows a similar

relationship between the performance characteristics of the three

registration categories (Carmichael et al., 2004).

Human–human agreement � automated–human agreement for

fully deformable registration

Results suggest a general trend toward higher manual–manual

agreement compared to manual–automated agreement (see Figs. 9

and 8), but the differences are not statistically significant. Thus,

while there may be room for improvement of the automated

methods, Chen’s fully deformable method can be competitive with

the human raters in terms of overlap ratio. These results, together

with results from a related study of the severity of automated

segmentation errors (Carmichael et al., 2004), suggest that

automated methods may be competitive for elderly hippocampus

segmentation applications, especially those that can tolerate minor

errors in spatial localization. These results extend previous

findings that atlas-based techniques can be competitive with

manual tracing for other subject groups and brain structures (see,

e.g., Chard et al., 2002; Collins et al., 1995; Leemput et al., 1999;

Warfield et al., 1998). Furthermore, the automated results present

a very promising starting point for further automated refinement

by more complex shape-model-based segmentation techniques

(for example, Kelemen et al., 1999; Pitiot et al., 2002; Pizer et al.,

1999).

MCI � controls > AD

Overall performance measures were significantly lower among

AD subjects than MCI or control subjects. One possible

explanation for these results is that the degenerative processes of

AD made image registration inherently more difficult and

ambiguous by reducing tissue contrast and/or inducing a high

degree of variability in the geometric characteristics of brain

structures such as the hippocampus. Another possible explanation

is that registering pairs of AD images was no more or less difficult
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than registering MCI or elderly control brains, but that standard

software packages are not optimized for the task. Similarly, the fact

that overlap ratios for MCI and control cases were similar could

suggest that their image characteristics do not differ so significantly

that they affected registration.

To further investigate how performance differences between

disease groups were modulated by other algorithmic factors, we fit

mixed-effects models similar to those described above, but with

additional terms to model interactions between disease states and

concurrent algorithmic factors. Specifically, for cohort-atlas-based

segmentation, there were fixed effect terms in the model for

disease state, side of the brain, registration method, and the

interaction between disease state and registration method. For

standard-atlas-based segmentation, we included fixed effect terms

for the standard atlas, source of the manual atlas tracing, side of

the brain, disease state, registration method, interaction between

disease state and registration method, and interaction between

disease state and standard atlas. For comparing standard atlases to

cohort atlases using fully deformable registration, fixed effects

were the atlas, human tracer, side of the brain, disease state, and

interaction between disease state and atlas. Cohort-atlas-based

segmentation performance was significantly higher for control

subjects with the SPM affine (P = .0232, rcontrast = .0206), AIR

semi-deformable (P = .0035, rcontrast = .0265), and SPM semi-

deformable methods (P < 0.0001, rcontrast = .0524); standard-atlas-

based performance was higher in control subjects with the AIR

semi-deformable (P = .0207, rcontrast = .0426) and SPM semi-

deformable methods (P = .0128, rcontrast = .0458) and lower in

MCI subjects with the Chen semi-deformable method (P = .0463,

rcontrast = .0367); and no interaction terms were significant in the

model comparing cohort-atlas-based to standard-atlas-based seg-

mentation using the Chen fully deformable method. While the

effect size is relatively low for each interaction term, these results

suggest that performance differences between AD, MCI, and

control groups are attributable more to AIR and SPM registration

methods than other registration methods or atlas choices.

Right > left

In terms of automated segmentation performance, a striking

bilateral asymmetry was seen in all experiments, across all three

disease groups. These results echo the slight bilateral asymmetry in

atlas-based hippocampus segmentation results shown by Duchesne

et al. (2002). However, a mixed-effects model fit to solely

manual–manual agreement data did not show a statistically

significant bilateral asymmetry in manual–manual overlap ratio

(P = .12). Our initial calculations of hippocampal volumes did not

show a significant volume asymmetry, echoing the findings of

Bigler et al. (2002). Further investigation is needed to explain this

bilateral effect.

Cohort-atlas-based � standard-atlas-based

Results from our mixed-effects models suggest that randomly

selecting cohort atlas images from a population leads to higher

automated segmentation performance than standard-atlas-based

segmentation, independent of differences in manual segmentation

protocols between institutions. This confirms our intuition that

differences in brain morphology and image acquisition character-

istics between young healthy atlas-image brains and elderly

diseased subject-image brains can negatively impact performance
of standard-atlas-based segmentation. In particular, differences in

brain structure between the young healthy individuals scanned for

standard atlas images and the elderly subjects in our study could

pose additional challenges to accurate image registration and

segmentation. Future work should investigate the ways in which

discrepancies in morphology, image acquisition parameters, and

scanning equipment impact atlas-based segmentation results.

Posterior � anterior, lateral > medial, center > periphery

Segmentation errors were evenly distributed between posterior

and anterior regions of the hippocampus, were more concentrated

in the medial regions than the lateral regions, and were generally

more highly concentrated toward the periphery than the center. One

possible reason for the medial skew in errors is that CSF forms part

of the lateral boundary of the structure over its entire anterior–

posterior extent, while in some regions, the medial boundary

consists entirely of subtle, ambiguous interfaces with other gray-

matter compartments. We suggest that the sharp contrast between

gray matter and CSF forms a strong visual cue that the automated

methods take advantage of to more accurately localize the lateral

boundary. Interestingly, our finding that agreement between pairs

of human raters did not vary significantly along the anterior–

posterior direction except at the extreme periphery contrasts with

the inter-rater consistency maps shown by Thompson et al. (2004),

which suggest that manual tracings are relatively more consistent

in the anterior sections. A possible explanation for this discrepancy

is that the consistency measure of Thompson et al. is based on

agreement between raters in radial distances from the medial axis

of the hippocampus to its surface and therefore could be less

sensitive in anterior sub-regions where radial distances are

relatively large.

Manual tracing protocols add significant variability

Geuze et al. recently described a dizzying array of existing

methods for manually tracing the hippocampus in MR (Geuze et

al., 2004). Our results (see Fig. 6) indicate that discrepancies

between these manual protocols can add a highly significant source

of variation to what portion of the brain can be expected to be

labeled as hippocampus, both in manual tracings and atlas-based

automated methods. We emphasize that we are not suggesting that

the manual segmentation protocol used by R1 is superior or

inferior to those employed for the Harvard or MNI atlases; rather,

we have showed that variations in the resulting hippocampi can be

significant. Therefore, we recommend that researchers using

standard atlas images for atlas-based segmentation should examine

the manual tracings and tracing protocols closely to be sure the

delineation conventions employed match those of their own

laboratory. If they do not, our results have shown that tracing the

structure on the standard atlas image or a randomly selected subject

image leads to automated segmentations whose agreement with

expert manual segmentations is competitive with manual–manual

agreement.
Conclusion

Atlas-based segmentation is a simple automated method for

structure segmentation that can use public-domain tools to produce

reasonable structure delineations in images of elderly controls and
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subjects with MCI and AD. While additional work may be needed

to make these automated techniques truly competitive with expert

human raters, their performance may be acceptable for image

processing applications that can tolerate a small amount of

hippocampus localization error. While standard digital atlases

from MNI, Harvard, and other institutions allow investigators to

apply atlas-based segmentation to their subject images with no

need for manual labeling, care must be taken to insure that

hippocampus tracing protocols from the atlas institution coincide

with those of the investigator.
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