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Abstract 

 

The effectiveness of volatility arbitrage has been a source of debate for researchers. On 

one hand, some have found the strategy to be immensely profitable, indicating a potential 

structural mispricing in the options market. Other researchers have claimed these profits arise 

from hidden risk in the form of higher distribution moments like kurtosis and skewness or that 

the strategy is highly susceptible to jump risk. In this paper, I examine the risk and return of a set 

of options volatility arbitrage strategies over the last 6 years to determine the magnitude of a 

possible mispricing.  I construct a portfolio of long straddles using the options in the decile with 

the greatest positive IV-HV difference and a portfolio of short straddles using the options in the 

decile with the greatest negative difference. I then calculate the Compound Annual Growth Rate 

and standard deviation of monthly and weekly strategies, find the optimal Sharpe ratio, and 

adjust for potential liquidity issues. I find that the combined monthly portfolio can be a strong 

performer if properly hedged but that only the long portfolio is necessary in the weekly strategy. 

Both weekly and monthly portfolios can highly effective investments if risk is managed 

correctly. 

JEL classification:  G11, G13, G14 
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I. Introduction  

Options pricing theory in academic literature often relies on a broad assumption of 

informational efficiency resulting in an arbitrage-free market. Under this assumption, prices of 

options instantly reflect updated information, preventing any a strategy trading on this 

information to achieve excess return above the market. This belief is what has allowed investors 

to hedge directional risk, one-sided exposure to an asset, and volatility risk, an increase or 

decrease in the overall pattern of price movements, across asset classes (Jarrow, 2013). However, 

as tested by Cao & Han (2013), a “no-arbitrage approach [between options and the underlying] 

can only establish very wide bounds on equilibrium option prices” (p. 231). In addition,  

One unique feature of options markets is a concept called implied volatility. Implied 

volatility is a metric that indicates the market sentiment of the stock’s expected absolute price 

changes over the maturity of the option. It is not directly observed but derived through a pricing 

model such as Black-Scholes or the Binomial Model. One trading strategy known as volatility 

arbitrage rests on the assumption that implied volatility is not an accurate indicator of the actual 

volatility of the stock. Implied volatility should increase or decrease to match historical volatility 

levels, and this mispricing can be captured. On one hand, some researchers have found volatility 

arbitrage between implied and historical volatility to be immensely profitable (Goyal & Saretto, 

2009), potentially challenging an efficient market hypothesis implied by pricing theory (Jarrow, 

2013). Other researchers, on the other hand, attribute volatility arbitrage profits to risk to 

unaccounted for in the form of higher distribution moments like kurtosis and skewness (McGee 

& McGroarty, 2017). The distribution of returns in a volatility arbitrage strategy is oftentimes 

leptokurtic with fat tails – the majority of returns are small and positive, but there is a 

significantly higher than normal chance that a return will be many standard deviations away from 
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the mean, especially on the left. This is due to unforeseeable risks such as jump tail risk and 

black swan events. In fact, according to Bollerslev and Todorov (2011) who decomposed the risk 

premium into its constituent parts, “on average more than half of the historically observed 

variance risk premium is directly attributable to disaster risk” (p. 2167) and “on average close to 

5% of the equity premium (in absolute terms) may be attributed to the compensation for rare 

disaster events” (p. 2167). One possibility is that volatility arbitrage is profitable and predictable 

for some period of time but unprofitable in the long-run due to these major periodic losses.   

From my experience trading options spreads, volatility does not appear to be priced 

correctly for numerous equity options, especially those with lower volumes and coverage by 

analysts. The observations I made while trading have led me to believe that for certain stocks 

there exist options with implied volatility that is not only higher than recent historical or future 

realized volatility – a bias that has been confirmed by previous research – but is even higher than 

when adjusting for foreseeable risks.  

Before starting this research, I wrote an algorithm to search and identify individual stocks 

with a volatility-bearish weekly options spread that is priced higher than would be expected 

given recent levels of historical volatility. I calculated the average 5-day price movement of a 

stock over 130 trading days, attempting to control for the execution date of an order. I then 

calculated the price of placing a market order for a long condor spread with calls expiring at the 

end of the trading week assuming poor liquidity for the spread: taking the ask when buying a 

long call and taking the bid when buying a short call. The inner legs of the condor would be the 

first available strike prices that were outside the estimated level of historical volatility (below for 

the smaller short call and above for the larger short call). I then calculated the maximum 

potential profit for the condor spread, filtering to only those spreads with positive profit 



6 
 

potentials. Then, assuming the estimated five-day level of volatility in the upcoming five trading 

days, I identified the stocks with the largest “breathing room” to the breakeven point closest to 

their current stock price. Finally, I eliminated tickers with possible catalysts of volatility spikes 

within the expiry of the option, namely earnings reports, corporate announcements, and other 

announced events that historically have affected the price of stocks.  

Despite more risk-averse trading practices – not competing on the spread of the option, 

using a condor as opposed to a butterfly or a short straddle, picking spreads with a “breathing 

room” that is approximately one-half standard deviation of the average volatility, and avoiding 

stocks with high or unpredictable idiosyncratic volatility – about 5-10 equities would still have a 

condor spread with a net premium higher than would have been predicted by the historical 

volatility. This strategy is one variant of the volatility arbitrage noted by Goyal & Saretto (2009). 

The similarity in our average performance despite variations in set-up, assumptions, and time 

period has intrigued me to understand these inefficiencies within options pricing, notably the risk 

factors contributing to this disparity, how the aforementioned strategy compares to other short 

volatility arbitrage strategies, the pricing of volatility between systematic and idiosyncratic risk, 

and how short volatility arbitrage performs in various market conditions. However, given the 

risks associated with a fat tail distribution, I do not believe there is a risk-free way to exploit this 

supposed inefficiency. Rather, I will distinguish variations of volatility arbitrage by their 

risk/reward profile. In this paper, I explore variations upon the volatility arbitrage strategy 

executed by Goyal & Saretto (2009) by changing variables such as maturity, liquidity, and hedge 

ratio. I then characterize distributions of their returns by consistency and magnitude of positive 

and negative returns through a set of statistical and financial pricing models, especially noting 

the strategies’ resistance to unforeseeable black swan events. No other research that I have found 
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has examined the impact of volatility arbitrage strategies since 2009. Furthermore, little research 

has been conducted looking at volatility arbitrage using weeklies. Finally, there has been almost 

no research to characterize different forms of volatility arbitrage beyond the variation in 

technique employed (straddles and delta-hedging).  

First, I used data obtained from OptionMetrics over the time period January 1, 2015 to 

December 31, 2020. This range was chosen partly because I wanted to use recent data that had 

not been previously analyzed in other research papers and that covered the COVID stock market 

crash. A larger time scale of 10+ years would have been preferred, but I was limited by the 

computing power available to me and the large size of the data I was working with.  

The baseline strategy is to calculate the difference between HV and IV for all options 

with monthly expirations at the start of the trading month, rank them into deciles, and then create 

a portfolio that trades long straddles with the largest positive differences and shorts straddles 

with the largest negative differences. This baseline strategy will receive a significant portion of 

my attention in this paper. I test a multipart hypothesis in that the following modifications will 

result in a significantly different stream of returns and create different risk/reward profiles from 

the baseline strategy.  

• Stemming from Andersen et al (2016), I believe a weekly options strategy with ATM 

options compared to a monthly ATM options will be more effective in isolating volatility 

risk from jump risk. As a result, volatility arbitrage will produce more consistent returns, 

although its resistance to tail risk is subject to examination.  

•  Stemming from Cao and Han (2013), I believe lower liquidity (large bid/ask spread) is 

more effective in a short vol strategy but higher liquidity (small big/ask) is more effective 
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in a long vol strategy. Implementing specific liquidity requirements to the long and short 

side will result in higher returns with fewer drawdowns.  

• Given my own experience, I believe a short vol strategy is more effective than a long vol 

strategy. A smaller proportion long hedge (not 50-50) would be more effective than a 50-

50 hedge, resulting in higher returns but likely more significant drawdowns.  

I will compare and contrast the average return, CAGR, standard deviation, distribution of 

returns, skewness and kurtosis, expected return using CAPM, and the Sharpe ratio when 

comparing performance of these strategies.  

II. Literature Review 

Past research on volatility arbitrage using equity options has been too assumption-heavy, 

either noting that options are simply levered equities, that no arbitrage opportunities exist 

between equities and options, or that no arbitrage exists between implied and historic volatility, 

that it is close to an efficient market. Only in the last decade have researchers begun to identify 

options as an asset class with distinct features and have begun to test and challenge some of these 

theoretical assumptions.  

Goyal and Saretto (2009) identify the volatility arbitrage strategy that is most similar to 

my own interest. They rank all options by the difference in historical volatility as calculated over 

the last twelve months (LTM) and implied volatility from the option’s price, then trade a long-

short vol approach through two portfolios of straddles, long in the decile with the highest 

positive difference and short in the decile with the largest negative difference. They find that the 

approach is profitable, noting a 22.7% average monthly return. The researchers hypothesize that 

investor overreaction to recent increases in volatility are the causes for an overpricing. They key 
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finding of a statistically significant and highly profitable arbitrage between implied and historical 

volatility serves as an important basis for my own research.  

However, there are a few significant assumptions that I would like to challenge and set-

up behaviors I would like to change. For one, their paper portfolio of trades uses the mid-price of 

the bid and ask rather than the spread as given. Not competing on spread returned only 3.9% 

monthly. Because the size of the bid-ask spread is a measure of liquidity, having poor liquidity 

could create unfavorable buying and selling prices which would break the long-term profit of a 

portfolio. Furthermore, from my experience, the stock candidates for a short vol strategy have 

been far more numerous than in a long vol strategy. In fact, I believe the principle of mean 

reversion applies with greater significance to a short vol strategy since it profits from decreases 

in volatility over the duration of the contract while a long vol straddle will lose money from 

natural decreases in vol. I believe the greatest volatility changes (and overreactions) are in the 

upward direction, whereas decreases are more gradual. As a result, I would like to look at the 

short vol portfolio independently or with greater weighting. Most significantly, the researchers 

used options data in a time when options were not as common or utilized as they are in the 

present day. Examining trends in performance during more recent periods is necessary to gauge 

performance in the long-term, especially to examine the effects of this strategy after the 

publication of the paper.  

McGee and McGroarty (2017) confirmed that there does exist an upward bias when 

estimating future realized volatility as a linear regression of implied volatility, often described as 

a risk premium. However, they claim that an OLS estimate assumes that the cost of volatility 

forecast errors is symmetrical and ignores the impact of higher moments of the return 

distribution such as skewness and kurtosis. Volatility arbitrage strategies through delta hedging 
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do not account for these higher moments, which may be a source of the unpriced risk. The 

researchers created a framework for pricing in these higher moments and concluded that due to 

the heavy costs of tail events, a volatility arbitrage strategy will result in negative expected 

growth. “Despite its upward bias, the market pricing of implied volatility is efficient to the extent 

that trading the upward bias does not generate a long-term return premium over the period of the 

study [between Jan 1996 and May 2013] (McGee & McGroarty, 2017, p. 13). The strategy 

employed by Goyal & Saretto (2009) is delta-neutral and uses these moments as controls but 

does not adjust for these higher moments, which could be a factor in the price of volatility. 

However, McGee and McGroarty trade the same “static” portfolio of options for the duration of 

the study, studying the continuous upward bias of implied volatility for the portfolio for a set of 

predefined stocks. On the other hand, Goyal & Saretto (2009) find different candidates for 

volatility arbitrage at the start of every trading period, not being subject to systematic 

overpricing, rather looking for idiosyncratic mispricing. This may affect the type of risk factors 

influencing arbitrage candidates.  

Cao and Han (2013) note other relevant findings. “On average, delta-hedged options have 

negative returns, especially when the underlying stocks have high idiosyncratic volatility” (p. 

232).  In fact, a portfolio that bought delta-hedged calls from the bottom quintile of idiosyncratic 

volatility and sold delta-hedged calls from the top quintile returned 1.4% per month in their 

study. Furthermore, “average delta-hedged option return is significantly more negative when the 

underlying stocks or the options are less liquid and when the option open interests are higher. 

These results are consistent with option dealers charging a higher option premium when the 

options are more difficult to hedge and option demands are higher” (p. 232). What this signifies 

is that non-directional exposure to options is negatively correlated with the idiosyncratic 
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volatility of the underlying and is an opportunity for long-short arbitrage, regardless of being a 

put or call. Less liquidity lowers returns for a long strategy but, although it is not directly stated, 

may increase returns for a short strategy since a short seller would be requiring an additional 

premium to provide liquidity and hedge their own position. This is, in fact, corroborated by more 

recent research. “The risk-adjusted return spread for illiquid over liquid equity options 

is 3.4% per day for at-the-money calls and 2.5% for at-the-money puts” (Christoffersen et al, 

2017). For this reason, it may be worthwhile to pay attention to the performance of the long side 

and short side of a vol arb portfolio separately and test the hypothesis with various volatility 

arbitrage spreads that use a different combination of long/short and puts/calls. Cao and Han 

touch on the possibility of volatility mispricing as the reason for the bias against idiosyncratic 

volatility but dismiss these variables after the results remain as they after controlling for a few 

volatility mispricing hypotheses laid out in other papers – market overreactions and large 

disparities between implied and historical volatility.  

Another important consideration for choosing which options to select for a volatility 

arbitrage strategy is the stability of a stock’s volatility over time. An unpredictable volatility is 

one that cannot be explained and that will not follow a pattern, even if one across its broader 

category of equities. Ruan (2020) explores the impact of volatility-of-volatility on option equity 

returns, finding an economically and statistically significant negative relationship between delta-

hedged option returns and the volatility-of-volatility. VOV is not a well-studied unit of measure 

so this is a newly identified relationship. With a portfolio construction approach similar to Goyal 

& Saretto (2009) and Cao & Han (2013), Ruan (2020) ranks equities into quintiles based on their 

VOV, as calculated by standard deviation of implied volatility / mean of implied volatility. He 

finds that a portfolio of options held until maturity (on average 50 days) that shorts the quintile 
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with highest VOV and longs the quintile with the lowest VOV makes 0.16% on average between 

January 1996 and April 2016. Practically speaking, one potential variation upon the volatility 

arbitrage strategy would be to limit the top decile of the long candidates ranked by difference 

between historical and implied volatility to those also in the bottom quintile of VOV and the 

short candidates to those also in the top quintile of VOV. This could potentially help adjust for 

the set of stocks with little systematic pattern in volatility. Due to the already large scope of this 

project, this strategy will have to be sidelined for future research.  

Other variables to consider in the risk/reward profile of a vol arb strategy is the maturity 

and strike of the contract. Longer maturities and options closer to being ATM are more sensitive 

to changes in volatility, while shorter maturities and OTM options are less reflective of volatility. 

Andersen et al (2016) study the characteristics of the increasingly prevalent “weeklies” – the 

shortest-dated instruments with a week-long maturity. They note that “short-maturity ATM 

options help pin down spot volatility, while the relative prices of deep OTM options assist in 

determining the intensity and distribution of jumps” (p.1336). The researchers take a semi-

nonparametric approach to pricing options in order to take advantage of all the information on 

the option’s surface but not be subject to minor misspecification errors, which can result in 

significant unpredictable effects. By specifically looking at how these shorter ATM maturities 

react to vol and jump events compared to longer and more OTM ones, the researchers identify a 

measure to price negative jump tail risk independent of volatility risk and create a way to easily 

identify “periods of heightened concerns about negative tail events that are not always ‘signaled’ 

by the level of market volatility and elude standard asset pricing models.” 

 For the purposes of studying IV-HV arbitrage, isolating implied volatility while 

predicting and avoiding tail risks like the ones mentioned by in Bollerslev and Todorov (2011) 
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would be the optimal approach, although the method proposed in the paper would not feasible 

for the function of my study due to the complexity of implementing parametric modeling to the 

entire range of stock options across decades. Rather, studying the effects of short tenor ATM 

options as a proxy for a cleaner volatility estimate and the effects of short tenor OTM options as 

a proxy for jump risk would be one possible approach to varying the risk/return profile. For 

instance, comparing the performance of a strangle to a straddle in situations of systematic 

volatility change versus situations of tail end risk would be an interesting implementation of 

these findings.  

Park (2015) proposes an alternative method of measuring tail risk that does not follow the 

standard jump process framework that we see in Bollerslev and Todorov (2011) or Andersen et 

al (2016). It is not as sensitive to misspecification errors that can occur on an option’s surface 

and does not require the complexity of a semi-nonparametric approach of Andersen et al (2016). 

He uses volatility-of-volatility as a measure of tail risk because “even a small change in the 

variable has a critical influence on the tails of return distributions” (p. 39). Park uses the VVIX 

index, which is a risk-neutral expectation of volatility of the 30-day forward VIX index. He finds 

that “a higher level of tail risk increases the current prices of tail risk hedges, lowering their 

subsequent returns over the next period” and that “the VVIX index is predictive of tail risk 

hedging returns with a negative sign over the next three to four weeks, implying that the tail risk 

hedging options become more expensive when the VVIX index is high” (p. 39). In the long term, 

a consistently high tail risk lowers This finding reinforces my justification for limiting the VOV 

as a potential adjustment strategy in making the returns more consistent but also indicates that 

doing so could potentially limit tail risk and therefore aid in making a volatility arbitrage strategy 

more resistant to drawdowns.  
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III. Research Strategy 

One of the primary inputs in a traditional options pricing model is the volatility 

associated with the underlying security. The higher the volatility, the higher the likelihood of an 

option reaching or surpassing a given strike price within a maturity. This results in an increased 

time value for the option and a higher premium. Options sellers are compensated for taking on 

this risk in the form of a volatility risk premium. However, higher volatility is also associated 

with a higher downside risk for the buyer because the measure is symmetrical in both directions 

– the price could just as equally go down as it could go up. As such, the volatility implied by the 

option’s price is a measure of investor uncertainty. Historical volatility is certain and 

documented while implied volatility is an estimate of future volatility, adjusted for the 

uncertainty risk. For this reason, implied volatility is usually significantly higher than historical 

volatility.  

One options strategy known as volatility arbitrage assumes that the risk premium is 

unjustified – rather, future volatility is more closely associated with historical volatility than 

implied volatility. If volatility is consistent period after period, then given unchanging 

circumstances, it is logical that it would remain more similar to its historical averages. This is 

further justified by the trend of mean reversion – investors often overreact to news, leading to a 

spike then a drop in volatility. In the long-term, volatility smooths out to a historical average.  

Evidence from papers such as Goyal & Saretto (2009) shows that historically, this 

assumption has held up. A volatility arbitrage strategy using straddles or delta-hedging resulted 

in statistically significant profits over the study period. However, there are a number of 

assumptions and qualifications that require further testing to validate. Most significantly, one 

trait of volatility arbitrage strategies that often appears in professional settings is a leptokurtic 
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distribution with fat tails. Specifically, the majority of returns over many trading periods are 

small and positive. However, they are punctuated by large drawdowns from unexpected events. 

As such, one theory holds that the long-run return of any vol arb strategy is small or negative but 

appears positive because the time period studied is too short to account for these major 

drawdowns (Rennison & Pedersen, 2012). Rather than attempting to find a variant upon standard 

volatility arbitrage that is not subject to these large drawdowns, which I do not believe is 

possible, my goal is to modify it in such ways as to change the risk/return profile over the long-

run to find efficient strategies to match investor preferences.  

The first variation upon the strategy implemented by Goyal & Saretto (2009) will be a 

change from monthly to weekly option maturities. Weekly options, as evidenced by Andersen et 

al (2016), isolate volatility risk better than monthly options, which are subject to other various 

economic uncertainties. Weekly ATM options, as would be the case with straddles and short 

straddles are also more isolated from jump risk, which would help prevent against drawdowns. 

More generally, I believe weekly options have three other major advantages over longer 

maturities. For one, weekly options take better advantage of compounding effects. Since the 

majority of returns are small and positive, the fight is against time. Increasing the frequency of 

running the strategy allows for a grater cushion to be created before large drawdowns occur. 

Second, the driving principle of volatility arbitrage is to achieve a more accurate prediction of 

volatility than what is implied by the market. This is easier to do with weeklies because there is 

less time for an unexpected event to occur – this is a corollary of what is stated by Andersen et al 

(2016). Finally, shorter expirations attract significantly more interest than longer dated 

expirations. As a result, there is greater liquidity and a smaller bid-ask spread, which could be 

beneficial in some cases. 
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The second variation will focus specifically on modifications on liquidity. Goyal & 

Saretto’s exceptional returns come from using the mid-price of the spread to buy and sell 

contracts. When using the bid while selling and the ask when buying, their returns become 

statistically insignificant, indicating that liquidity can make it or break it for this type of strategy. 

Cao & Han (2013) observe that delta-hedging produces poorer results with decreased liquidity, 

noting that options dealers charge a premium for providing this liquidity. From this, I believe it 

would be probable that in the case of long-short straddle portfolio, the long side would benefit 

from increased liquidity and the short side would benefit from decreased liquidity. As a result, 

putting additional restrictions on liquidity when evaluating portfolio candidates would help 

account for this observation.  

Finally, I believe an unbalanced hedge, one that is biased towards the short side, would 

be a far more effective strategy in the long-run, given the type of distribution. A 50-50 split 

between the long and short side provides a balanced capture of the IV-HV difference, but the IV-

HV difference is not equal. Rather, if mean-reversion theory holds, jumps in IV are followed by 

significant drops due to overreaction to news – more than would have been predicted by 

historical volatility. The reverse, however – sudden drops in volatility – do not happen anywhere 

near as often. No event can prompt it, and I cannot identify any reliable cause other than a 

reaction to a spike, which would have been already captured on the long side. Although an 

incomplete hedge would expose the strategy to higher drawdowns, since the majority of returns 

would see significant increases, this should offset the higher losses.    

In short, I will test the influence of changing the portfolio maturity, adding liquidity 

restrictions, and changing the hedge ratio compared to a monthly, unrestricted portfolio of long 

and short straddles.  
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IV. Data 

The data is sourced from the OptionMetrics IvyDB US database through Wharton 

Research Data Services (WRDS). The optionm_all data library contains daily option prices for 

each year between 1996 and 2020. Each year is stored as a separate database within the library 

due to size limitations. The focus of the preliminary model was 2019 data, stored in the 

opprcd2019 database. Within this dataset, the date (date of observation), symbol (unique 

identifier of each option), secid (unique identifier for the underlying security) strike_price, 

best_bid, best_offer, open_interest, volume, impl_volatility, exdate (expiration date), and cp_flag 

(whether the option is a call or a put) variables were collected. This database was joined with two 

other datasets, the hvol2019 dataset and the secprd dataset. The former contains historical 

volatility data necessary for HV-IV calculations. The latter contains a code to decipher the secid 

variable into tickers. The datasets were joined to match rows based on the secid and date labels. 

Historical volatility data was limited to the most recent 365-day sample. In total, the dataset 

contained every ticker and every option of that ticker for the year 2019. It was composed of 

233,867,903 observations across 14 variables. Because of the memory and size limitations, most 

of the code was initially tested on a much smaller sample, then applied to the larger dataset on 

the WRDS servers.  

Data cleaning included these operations: eliminating observations where the bid price was 

greater than the ask price, where the bid price was equal to 0, where the difference between the 

bid and the ask was less than 0.05 for stocks closing under $3 or less than 0.10 for all other 

stocks (minimum tick size requirements), and where open interest was equal to 0. This was done 

to verify logical constraints. The ask must necessarily be greater than the bid to ensure supply 
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and demand. There must be some demand for the option. And the option must meet institutional 

tick size requirements under Rule 612 of the SEC.  

For simplicity and to match the process performed in Goyal and Saretto (2009), the midpoint 

between the bid and ask was created as an average of the two. Then, a subset of the dataset was 

created with only options expiring in exactly one month’s time. Since straddles are at-the-money, 

this was further narrowed to options with strike prices closest to closing price of the stock on the 

given date. In the end, each stock only had a single pair of puts/calls for any given day. Goyal & 

Saretto take the average of the call and put IV’s as the basis for the straddle’s IV. I followed suit, 

calculating the IV for pairs of calls and puts per stock per month. The vast majority of monthly 

options expire on the third Friday of every month, so portfolios were constructed 30 days before 

the third Friday of each month.  

 Below are summary statistics for a sample of cleaned data that is for the full year of 2019, 

limited to at-the-money and 1 month to expiration. 2019 was chosen because it is a recent 

example of an unexceptional year. A single year was chosen to limit temporal differences in the 

strategy. Within the data for the single year, the summary statistics are for the full range of 

observations that would be sorted into deciles and long-short-portfolios.  
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Table 1: Summary Statistics 

 

Strike price, best bid, best offer, mean price, impl vol, his vol, close measured in dollars; open interest and volume measured by 
quantity of transactions.  

There are a few things to note through these observations. First, the data shrunk by over 99%, 

from over 200 million observations to under 100 thousand, which is then further selected from 

based on deciles. This makes the data much easier to work with.  It is also interesting that 

historical and implied volatilities have very similar summary metrics (~0.4 mean, ~0.33 med 

~0.25 std) although historical volatility actually tends to have a higher max and a higher range. 

This is another piece of evidence to support the theory that on average and over time, implied 

volatility tends to revert back to historical levels. What does seem to be unusual is that historical 

volatility has a significantly higher kurtosis than implied volatility, indicating there are more tails 

or outliers. This could be in part due to the nature of implied volatility derivations. It could also 

be that investors often do not or cannot account for the potential of tail risks observed 

historically. The last observation would be on the range of open interest and volume. Volume has 

an automatic minimum at 0 while open interest has a defined minimum at 1 in order to allow at 

least some trading capacity. By contrast, the max values are in the tens or hundreds of thousands. 

This liquidity difference should be sufficient to test the liquidity hypothesis.  

var n mean sd median min max range skew kurtosis se
strike price 95387 80.77 283.42 37.50 0.50 8725.00 8724.50 19.16 469.46 0.92
best bid 95387 2.32 5.88 1.17 0.01 197.80 197.79 16.64 397.45 0.02
best offer 95387 2.68 6.08 1.45 0.02 201.40 201.38 15.95 372.28 0.02
mean price 95387 2.50 5.97 1.33 0.02 199.60 199.59 16.33 385.92 0.02
open interest 95387 703.38 3868.61 53.00 1.00 253836.00 253835.00 19.86 654.12 12.53
volume 95387 90.36 649.36 2.00 0.00 37954.00 37954.00 21.26 637.79 2.10
impl vol 95387 0.39 0.26 0.32 0.02 2.92 2.90 2.46 10.39 0.00
his vol 95387 0.40 0.22 0.34 0.01 5.38 5.37 2.64 22.87 0.00
close 95387 80.78 283.41 37.45 0.32 8733.07 8732.75 19.16 469.50 0.92
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V. Empirical Specification  

Each test was modeled through a similar methodology. At the beginning of a trading 

period, the difference between implied and historical volatility was calculated for every stock. 

Historical volatility is calculated as the standard deviation of realized daily stock returns over the 

last 365 days. This is done by first taking the continuously compounded return of day-to-day 

returns 𝑅𝑅𝑛𝑛 = ln ( 𝐶𝐶𝑛𝑛
𝐶𝐶𝑛𝑛−1

)where 𝐶𝐶𝑛𝑛is the current closing price and 𝐶𝐶𝑛𝑛−1 is the previous closing price. 

Then, an average of these returns is calculated with 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 followed by the standard 

deviation from the mean 𝜎𝜎 = �∑ (𝑅𝑅𝑖𝑖−𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎) 𝑛𝑛
𝑖𝑖=1

2

𝑛𝑛−1
 . Finally, the historical volatility is annualized. The 

implied volatility is the average of the ATM call and put implied volatilities. Both were sourced 

from OptionMetrics IV databases.  The percent difference between the two was then sorted into 

deciles. These deciles formed the basis of portfolio creation. Option pairs in the first decile 

(largest negative difference between historical and implied volatility) were put in the short 

straddle portfolio. Options pairs in the 10th decile (largest positive difference between historical 

and implied volatility) were put in the long straddle portfolio.  

Table 2: First Decile (Short Straddle Portfolio) 

 

vars n mean sd median min max range skew kurtosis se
strike price 9545 26.9 48.2 12.5 0.5 1160.0 1159.5 9.7 178.6 0.5
best bid 9545 1.2 2.0 0.7 0.0 45.2 45.2 7.7 105.1 0.0
best offer 9545 1.7 2.3 1.1 0.0 50.1 50.1 6.5 81.9 0.0
open interest 9545 690.1 3259.3 53.0 1.0 94447.0 94446.0 13.7 258.1 33.4
volume 9545 93.2 635.5 0.0 0.0 24263.0 24263.0 18.5 460.0 6.5
impl vol 9545 0.7 0.4 0.6 0.0 2.9 2.9 1.4 2.4 0.0
his vol 9545 0.5 0.2 0.4 0.0 2.0 2.0 1.1 2.3 0.0
close 9545 27.0 48.3 13.0 0.3 1162.5 1162.2 9.6 178.1 0.5
mean price 9545 1.5 2.1 0.9 0.0 47.7 47.6 7.2 97.0 0.0
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Table 3: Last Decile (Long Straddle Portfolio) 

 

Tables 2 and 3 compare the summary statistics of options that were placed within the first and 

tenth deciles. They indicate some initial differences between the options that will eventually 

make their way into the short and long portfolios. Only these deciles are used in the formation of 

long and short portfolios so the options in the remaining deciles are of no interest to us.  There 

are a few notable differences other than their difference between implied and historical volatility. 

First, the tenth decile portfolio tends to have stocks with higher prices, reflected in a higher strike 

price, close, and mean price. Open interest and volume, surprisingly, seem to be about the same. 

This suggests there may not be a liquidity difference between them. It is also of note that implied 

volatility appears greater in the first decile, while historical volatility remains about the same. 

Both are quite similar to each other, even between deciles. However, the kurtosis for the 

historical volatility is much greater in the last decile compared to the first, indicating that tail risk 

could be higher in long portfolio than in the short.  

The return for long straddles was calculated as the difference between the net premium at 

which the put and calls were sold at expiration and the price paid initially, divided by the initial 

net premiums. The return for short straddles was calculated as the difference between the initial 

vars n mean sd median min max range skew kurtosis se
strike price 9534 133.7 503.4 45.0 0.5 8250.0 8249.5 11.3 153.5 5.2
best bid 9534 3.2 9.0 1.3 0.0 143.7 143.7 9.8 121.2 0.1
best offer 9534 3.6 9.3 1.6 0.1 147.2 147.1 9.6 117.6 0.1
open interest 9534 629.6 3473.5 50.0 1.0 179019.0 179018.0 22.9 875.9 35.6
volume 9534 94.8 635.9 2.0 0.0 23842.0 23842.0 20.0 553.3 6.5
impl vol 9534 0.3 0.2 0.3 0.0 2.1 2.1 1.5 3.2 0.0
his vol 9534 0.5 0.4 0.4 0.0 5.4 5.3 3.2 24.7 0.0
close 9534 133.6 503.4 44.1 0.4 8241.9 8241.5 11.3 153.4 5.2
mean price 9534 3.4 9.2 1.5 0.0 145.4 145.3 9.7 119.6 0.1



22 
 

net premium received and the final net premium paid out, divided by the initial net premium 

received.  

Each variant / test of the baseline monthly strategy has an additional step in the 

calculation process. The weekly strategy requires a change from portfolios created at the 

beginning of about a 30-day period and sold at the end of it to portfolios created at the beginning 

of a 5-day period and sold at the end of it. The liquidity strategy requires an analysis of the 

bid/ask spread, as well as the open interest values. For this, the assumption that the mid-price of 

the bid and ask is generally attainable is relaxed. Instead, I assume that the purchase and sale of 

options is done at an unfavorable price. If buying a put or call, the purchase price is closer to the 

ask. If selling, the purchase is closer to the bid. Specifically, I look at a 25% bias towards to the 

unfavorable side. For example, the price of purchasing a long straddle would be (0.25*bid + 

0.75*ask) while the price of selling it would be (0.75*bid + 0.25*ask).  Liquidity requirements 

for the options are created by ranking them into deciles based on OI, choosing all long portfolio 

options from the last decile, and choosing all short portfolio options from the first decile. Finally, 

for the hedging test, I will optimize the Sharpe ratio and the total CAGR in two separate tests for 

each of the other strategies by changing the weights of the long and short portfolios to determine 

the optimal hedge.  

One of the analyses of risk and return requires additional explanation. To compare the 

risk and return of the market to the risk and return of the options portfolio, I decided to apply the 

Capital Asset Pricing Model (CAPM) and derive the Capital Market Line (CML). The CAPM 

formula is 𝐸𝐸𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑓𝑓 +  𝛽𝛽𝑖𝑖�𝐸𝐸𝑅𝑅𝑚𝑚 − 𝑟𝑟𝑓𝑓� where 𝐸𝐸𝑅𝑅𝑖𝑖 is the expected return of investment, 𝑟𝑟𝑓𝑓 is the 

risk-free rate, 𝛽𝛽𝑖𝑖 is the beta of the investment, and �𝐸𝐸𝑅𝑅𝑚𝑚 − 𝑟𝑟𝑓𝑓�is the market risk premium. To 

apply this analysis, I first calculated the returns of the S&P 500 index and the VIX index for the 
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same time and duration as the options portfolio. The S&P is the standard set of risky equity 

assets while the VIX is calculated from market volatility. From these set of returns, I calculated 

the covariance between the options strategy and the two indexes and the variance of the two 

indexes. The entire set of monthly returns for the six-year period was used. These numbers gave 

me the beta of the strategy relative to each index. 𝐸𝐸𝑅𝑅𝑚𝑚was set as the average annual return of the 

S&P and the VIX between 2015 and 2020. I assumed the risk-free rate to be the current 10-year 

treasury. The CAPM formula was then applied to find 𝐸𝐸𝑅𝑅𝑖𝑖. Using beta provides an indicator of 

systematic risk.  

In contrast, the Capital Market Line Equation, derived from CAPM, gives an estimate of 

total risk in the market. It compares the market and portfolio returns at a level of standard 

deviation to estimate its efficiency. The CML formula is s 𝑅𝑅𝑝𝑝 = 𝑟𝑟𝑓𝑓 +  𝑅𝑅𝑇𝑇−𝑟𝑟𝑓𝑓
𝜎𝜎𝑇𝑇

𝜎𝜎𝑝𝑝 where 𝑅𝑅𝑝𝑝 is the 

portfolio return,  𝑟𝑟𝑓𝑓 is the risk-free rate, 𝑅𝑅𝑇𝑇  is the market return, 𝜎𝜎𝑝𝑝 is the standard deviation of 

portfolio returns, and 𝜎𝜎𝑇𝑇 is the standard deviation of market returns. 
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Results 

Monthly / Baseline Strategy 

Year Long Avg Monthly Return Short Avg Monthly Return L/S Avg Monthly Return 
2015 9.6% 9.1% 9.3% 
2016 -3.6% 7.0% 1.7% 
2017 -1.6% -2.3% -1.9% 
2018 17.8% -1.7% 8.1% 
2019 8.1% -3.4% 2.4% 
2020 49.4% -9.8% 19.8% 
Total 13.3% -0.2% 6.6% 

Table 4: Average Monthly Returns; long, short, and combined (L/S) portfolios. Return values are expressed as the average of 
each portfolio’s total monthly returns for each year. The “total” row averages the return for all months for the 6-year period.  

Year Long CAGR Short CAGR L/S CAGR 
2015 129.1% 145.5% 159.2% 
2016 -37.1% 96.0% 17.8% 
2017 -17.3% -23.5% -20.0% 
2018 356.7% -32.9% 128.2% 
2019 117.9% -35.6% 27.1% 
2020 676.4% -351.7% 372.1% 
Total 112.5% -166.8% 79.5% 

Table 5: Compound Average Growth Rate (CAGR); monthly strategy; long, short, and combined (L/S) portfolios. Yearly CAGR 
is calculated as percent return assuming all profits/losses at the end of each month are reinvested at the beginning of the 

following month. The “total” column CAGR is calculated through the formula 𝐶𝐶𝐴𝐴𝐴𝐴𝑅𝑅 = �𝑉𝑉𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑓𝑓
𝑉𝑉𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖𝑛𝑛

�
1
𝑡𝑡
− 1 where 𝑉𝑉𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑓𝑓  is the final 

value, 𝑉𝑉𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖𝑛𝑛 is the beginning value and t is time in years. The profits/losses at the end of each year are reinvested at the 
beginning of the following year. The value of the portfolio at end of 2020 is 𝑉𝑉𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑓𝑓 .  

 

Moving forward, the combined or hedged portfolio consisting of a 50% allocation in the 

short portfolio and a 50% allocation in the long portfolio will be referred to as the Long/Short 

(L/S) portfolio. In table 4, return values are expressed as the average of each portfolio’s total 

monthly returns for each year. The “total” row averages the return for all months for the 6-year 

period. In table 5, yearly CAGR is calculated as percent return assuming all profits/losses at the 

end of each month are reinvested at the beginning of the following month. The percent difference 
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between the value of the final month and the original starting amount is the CAGR. The “total” 

column CAGR is calculated through the formula CAGR = �Vfinal
Vbegin

�
1
t
− 1 where Vfinal is the final 

value, Vbegin is the beginning value and t is time in years. The profits/losses at the end of each 

year are reinvested at the beginning of the following year. The value of the portfolio at end of 

2020 is Vfinal.  

The first set of results discussed will be the returns on the baseline / monthly portfolios 

over the period. On average, the strategy returned 6.6% per month, ranging from an average of -

1.9% per month in 2017 to +19.8% per month in 2020. Reinvesting all profits from the 

beginning of each year until the end of each year resulted in a total CAGR of 79.5%. Individual 

annual returns ranged from -20.0% in 2017 to +372.1% in 2020.  

Within the time range, the return was primarily driven by the long portfolio which 

significantly outperformed the short portfolio. Overall, the long portfolio averaged 13.3% per 

month while the short portfolio averaged almost no movement, falling by 0.2% per month. This 

translated to a 112.5% return for the long portfolio and a -166.7% return for the short portfolio. 

2020 and 2018 were the best years for the long portfolio, returning 676.4% and 356.7% 

respectively, while 2016 was the worst year, falling by 37.1%. 2015 and 2016 were the best 

years for the short portfolio, returning 145.5% and 96.0% respectively, while the worst year was 

2020 where it fell by 351.7%. This disparity is actually quite unusual given the fact that volatility 

was low for the majority of the bull market. The theory would be that constant low volatility 

would benefit the short vol portfolio more than the long. Part of the reason for the difference 

could be the nature of the underlying strategies. Long straddles have limited risk and infinite 

profit potential while short straddles have unlimited risk and limited profit potentials.  
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The results were also heavily skewed by the COVID crisis and the resulting stock market 

volatility in 2020. That year, the long portfolio returned 49.4% per month and grew by 676.4% 

while the short portfolio returned -9.8% per month and fell by 351.7% overall. Excluding 2020 

brings the long, short, and combined portfolio average monthly returns to 6.1%, 1.8%, and 3.9% 

respectively. As a result, the average CAGR for each portfolio changes to 109.9%, 29.9%, and 

62.4%, respectively. This is a decrease in the long and combined portfolio returns but a 

significant increase in the short portfolio returns.  

The table below provides the minimum, maximum, first quartile, third quartile, and 

median returns, yearly and as a whole. Except for 2017, the annual median returns for the L/S 

portfolio are positive. Between 2015 and 2020, the median monthly return was 3.6%.  One 

interesting feature is the fact that the scale of minimum and maximum returns varies between 

portfolios. The minimums of the short portfolio tend to be absolutely greater than the maximums 

while the maximums of the long portfolio tend to be equal or greater than the minimums. The 

L/S portfolio does not have as strong of a pattern.  
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Year Quartile Long Short L/S 
2015 Min -14.6% -15.4% -0.2% 

  1 -2.7% 4.5% 4.5% 
  Med 1.7% 7.4% 6.0% 
  3 9.6% 16.6% 11.5% 
  Max 60.2% 28.0% 27.3% 

2016 Min -20.0% -24.7% -9.4% 
  1 -12.5% 2.3% -3.4% 
  Med -4.4% 11.9% 1.2% 
  3 5.2% 14.1% 5.8% 
  Max 12.5% 18.9% 15.7% 

2017 Min -7.1% -11.2% -8.3% 
  1 -5.6% -6.2% -4.8% 
  Med -0.9% -3.3% -1.7% 
  3 1.3% 1.6% 0.9% 
  Max 5.3% 7.8% 3.3% 

2018 Min -7.4% -43.1% -1.6% 
  1 -4.2% -9.4% 4.2% 
  Med 5.7% 2.0% 6.4% 
  3 23.4% 9.0% 9.2% 
  Max 82.3% 22.2% 31.5% 

2019 Min -16.6% -19.2% -6.4% 
  1 0.7% -10.5% -1.9% 
  Med 10.2% -7.2% 2.8% 
  3 16.9% 3.9% 6.4% 
  Max 27.8% 11.3% 10.3% 

2020 Min -22.6% -208.3% -10.9% 
  1 -11.2% -4.2% 0.4% 
  Med 3.4% 12.1% 8.5% 
  3 28.2% 20.1% 19.1% 
  Max 491.5% 30.9% 141.6% 

Total Min -22.6% -208.3% -10.9% 
  1 -5.3% -5.6% -1.1% 
  Med 2.1% 3.7% 3.6% 
  3 10.8% 12.2% 8.5% 
  Max 491.5% 30.9% 141.6% 

Table 6: Quartile statistics of monthly strategy; all portfolios 
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Overall, the returns of the L/S portfolio showcase the benefits of hedging. This is 

especially evident in the yearly minimums. For example, the minimum average monthly return in 

2015 was -14.6% and -15.4% in the long and short portfolios, respectively, However, the 

combined portfolio only had a minimum of -0.2%. Similarly, in 2018 the minimum returns were 

-7.4% and -43.1% for the long and short but only -1.6% for the combined. The maximum returns 

per year, however, were not as equally reduced, coming in at a return approximate to one of the 

other portfolios or close to average of the two. 

Without adjusting for risk, the returns do seem abnormally large. The long-term monthly 

average of the S&P 500 is 0.66% / month, giving a hedged vol arb strategy, which returned an 

average of 6.6% per month, about 10 x the return of the market. However, this brings up the 

question of riskiness. Is the high return justified by its corresponding level of risk or are the 

returns still high even adjusting for the level of risk?  

The next section discusses the risk and distribution of returns over time. The standard 

deviation of monthly returns was multiplied by the square root of 12 to annualize. Table 7 shows 

the annualized standard deviation of the portfolios for each year in the study.  

Year Long SD Short SD L/S SD 
2015 72.7% 38.1% 28.1% 
2016 35.7% 40.4% 24.2% 
2017 14.3% 18.6% 12.7% 
2018 99.4% 61.9% 28.3% 
2019 44.3% 34.4% 19.4% 
2020 490.2% 223.7% 139.5% 
Total 216.5% 101.2% 65.5% 

Table 7: Standard deviation of returns, monthly strategy 
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The long portfolio tended to have similar or higher standard deviation than the short portfolio, 

indicating a possibility that its stronger returns came with a higher risk profile. The L/S portfolio 

showcased the true function of hedging. Every year, the standard deviation of returns was 

significantly reduced by hedging the two portfolios together. For instance, in 2018 the long 

portfolio has a SD of 99.4% and the short portfolio had a SD of 61.9%, but the L/S portfolio only 

had a SD of 28.3%.  

The figures below show the distribution of all monthly returns, 2015-2020, for each 

portfolio. The red bar indicates the bin with the sample mean. We can highlight a few things. 

From a first glance, it appears the long distribution is positively skewed (right-tailed) while the 

short distribution is negatively skewed (left-tailed). The L/S portfolio is not as strongly skewed 

as the two parent portfolios but still has a clear positive skew. The tighter clustering of returns of 

the L/S portfolio around the mean is a reflection of its lower standard deviation compared to the 

component portfolios.  
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Figure 1: Distribution of all monthly returns, long portfolio 

 

 

Figure 2: Distribution of all monthly returns; short portfolio 
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Figure 1: Distribution of all monthly returns, L/S portfolio 

 

The tables below show the yearly and total skew and kurtosis of the monthly returns. These 

confirm that the long portfolio and short portfolio are skewed in opposite directions and that the 

L/S portfolio follows the skew of the long portfolio more than the short. The kurtosis of a normal 

distribution is 3. Since the kurtosis in the table rarely crosses 3, individually, most years for both 

portfolios are platykurtic – the strategy produces few returns that are extreme. However, on an 

aggregate scale that looks at kurtosis from the entire set of returns 2015-2020, the distribution is 

highly leptokurtic with significant fat tails that could results in a greater chance of extreme 

events. This supports the theory that vol arb has high returns that are often distorted by large 

extreme movements. However, given the fact that the L/S portfolio is right-tailed with no returns 
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below three standard deviations of the mean, the evidence does not support the hypothesis that 

these returns have significant negative fat tails.  

Year Long Skew Short Skew L/S Skew 
2015 1.60 -0.54 1.31 
2016 0.08 -1.95 0.47 
2017 0.29 0.23 -0.17 
2018 1.45 -1.03 2.27 
2019 -0.52 0.08 -0.26 
2020 3.18 -3.00 2.83 
Total 6.96 -5.60 5.69 

Table 8: Skewness of all monthly returns; all portfolios 

Year Long Kurtosis Short Kurtosis L/S Kurtosis 
2015 2.13 1.13 0.92 
2016 -1.34 4.50 -0.10 
2017 -1.41 -0.49 -1.01 
2018 1.11 1.22 6.54 
2019 -0.33 -1.34 -1.19 
2020 10.31 9.42 8.62 
Total 52.98 39.20 39.60 

Table 9: Kurtosis of all monthly returns; all portfolios 

Finally, how does the risk and return of these portfolios compare to the risk and return of 

the broader market? To do this, I turned to the CAPM model, comparing the expected return of 

the portfolio to its actual return. The beta of the L/S portfolio compared to the S&P 500 for the 

same time period was -2.34. Compared to the VIX, it was 0.036. The risk-free rate was set as the 

10-year treasury which yielded 1.72% as of time of writing. The S&P returned 11.19% per year 

over the last six years while the VIX grew by an average of 16.69%. The CAPM model 

calculations are below.   

𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑓𝑓 +  𝛽𝛽𝑖𝑖�𝐸𝐸𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑓𝑓� 

𝑆𝑆&𝑃𝑃 500: 𝑅𝑅𝑖𝑖 = 0.0172 − 2.34(0.1119 − 0.0172) = −20.5% 

𝑉𝑉𝑉𝑉𝑉𝑉: 𝑅𝑅𝑖𝑖 = 0.0172 +  0.036(0.1669 − 0.0172) = 2.3% 
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Because the CAPM assumes that higher returns have to be associated with higher betas, 

the L/S portfolio overperformed for its level of systematic risk. Since its beta against the S&P 

was high and negative, it means it had significantly higher volatility and moved against the 

market. And since its beta against the VIX was almost zero, it moved with similar magnitude to 

the VIX but had no correlation with its movements.  

Next, the standard deviation of market returns was calculated as the SD of returns over 

the same investment periods as the options portfolio, annualized. This was set as the input into 

the CML, from which the Sharpe ratio was then derived.  

𝑅𝑅𝑝𝑝 = 𝑟𝑟𝑓𝑓 +  𝑅𝑅𝑇𝑇−𝑟𝑟𝑓𝑓
𝜎𝜎𝑇𝑇

𝜎𝜎𝑝𝑝  

𝑆𝑆&𝑃𝑃: 𝑅𝑅𝑝𝑝 = 0.0172 +  0.1119−0.0172
0.1917

0.6551 = 34.1%  

𝑉𝑉𝑉𝑉𝑉𝑉: 𝑅𝑅𝑝𝑝 = 0.0172 +  0.1669−0.0172
1.797

0.6551 = 7.2%  

Compared to the expected portfolio return given the level of risk in the market, the options 

portfolio still outperformed, but the bar for expected return was also set much higher. The actual 

CAGR for the L/S portfolio was 79.5% for the period, doubling the expected return. The Sharpe 

ratio is the slope of the CML, providing an easy way to compare risk and return. The Sharpe 

ratio is captured by the formula 𝑆𝑆(𝑥𝑥) = (𝑟𝑟𝑥𝑥−𝑅𝑅𝑓𝑓)
𝑆𝑆𝑆𝑆(𝑟𝑟𝑟𝑟)

 where 𝑟𝑟𝑟𝑟 is the average rate of return for the 

investment and 𝑅𝑅𝑓𝑓 is the risk-free rate. Below is the Sharpe ratio calculation for the L/S portfolio.  

𝑆𝑆(𝐿𝐿/𝑆𝑆) =
(.795 − 0.0172)

0.6551
= 1.19 

In this context, the Sharpe ratio can be used to judge this as a good investment since it is 

above 1, but it is not considered very good or excellent because it is not above 2 or 3. It is 
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interesting to note that the high standard deviation of the long portfolio, despite its higher 

returns, makes it a poor investment in isolation. Its Sharpe ratio is only about 0.5, which means 

its return is overpriced for its level of risk.   

𝑆𝑆(𝐿𝐿) =
(1.125 − 0.0172)

2.165
= 0.512 

However, these estimates are distorted by the fact that returns are heavily skewed and so 

standard deviation of the portfolio is not a perfectly accurate measure of risk. CAPM and, by 

proxy, the Sharpe ratio assumes returns are normally distributed. In reality, since returns are 

positively skewed, the standard deviation is likely an overestimate of the true riskiness of the 

portfolio. However, adjusting for higher moments would still not likely make an isolated long 

portfolio a viable investment.  

Weeklies Strategy 

For the sake of brevity, the remaining tests will have a condensed analysis consisting of 

CAGR, standard deviation, distribution, skew & kurtosis, and Sharpe ratio.  

The second variant of options arbitrage is weeklies, modifying the length of a portfolio from 1 

month to 1 week. Hypothetically, weeklies isolate volatility risk better than monthly strategies. 

Options were ranked into deciles and portfolios were created and opened on every Monday of 

the year, expiring the upcoming Friday.  
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Year Long Avg Weekly Return Short Avg Weekly Return L/S Avg Weekly Return 
2015 14.0% 1.9% 8.0% 
2016 8.3% -2.7% 2.8% 
2017 8.5% -2.7% 2.9% 
2018 16.5% -13.8% 1.3% 
2019 4.1% -12.4% -4.2% 
2020 11.7% -1.6% 5.0% 
Total 10.5% -5.3% 2.6% 

Table 10: Average Weekly Returns; all portfolios. Return values are expressed as the average of each portfolio’s total weekly 
returns for each year. The “total” row averages the return for all weeks for the 6-year period. 

 

Year Long CAGR Short CAGR L/S CAGR 
2015 3905.79% 28.59% 1591.49% 
2016 181.40% -94.97% 114.27% 
2017 1785.51% -84.48% 161.74% 
2018 39500.34% -99.99% 27.06% 
2019 134.65% -100.01% -92.76% 
2020 3214.7% -96.6% 520.9% 
Total 1907.6% N/A 94.5% 

Table 11: Compound Average Growth Rate; weekly strategy; all portfolios. Yearly CAGR is calculated as percent return 
assuming all profits/losses at the end of each week are reinvested at the beginning of the following week. The “total” column 

CAGR is calculated through the formula 𝐶𝐶𝐴𝐴𝐴𝐴𝑅𝑅 = �𝑉𝑉𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑓𝑓
𝑉𝑉𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖𝑛𝑛

�
1
𝑡𝑡
− 1 where 𝑉𝑉𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑓𝑓 is the final value, 𝑉𝑉𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖𝑛𝑛 is the beginning value and 

t is time in years. The profits/losses at the end of each year are reinvested at the beginning of the following year. The value of the 
portfolio at end of 2020 is 𝑉𝑉𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑓𝑓 . 

From a first glance, it does appear that the patterns observed in the monthly portfolios 

were magnified in the weekly portfolios. The long portfolio CAGR has some unusually high 

returns for the time period including an almost 40,000% return in 2018 and a 4,000% return in 

2015. What is surprising is that the long portfolio did not have a single year where it did not at 

least double its investment. On the other hand, the short portfolio lost almost all of its investment 

every single year. As a result of these two extremes, the L/S portfolio had significant fluctuations 

in its return, ranging from a 92.8% drop in 2019 to a 1591.5% gain in 2015.Most of these high 

returns or losses are simply the result of more periods for compounding. A few weeks of median 

(5%) returns followed by a few abnormally high returns (>100%) will compound to large 
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numbers very quickly. A table of summary statistics including min, 1Q, med, 3Q, and max is 

found in the appendix.  

 The next section considers the risk as measured by standard deviation, skew, and 

kurtosis. Below are histograms representing the distribution of all returns, 2015-2020, for the 

long, short, and L/S portfolios. The red bin contains the mean of returns. By the law of large 

numbers, because of a larger sample size, the distribution looks much more fitted to the 

characteristics described in the monthly portfolios. The long portfolio is clearly right tailed while 

the short portfolio is clearly left tailed. The combined portfolio has fat tails on both sides as a 

result but not does not have a strong skew. It is also much more clustered around the mean, 

indicating a lower standard deviation.  

 

Figure 2: Distribution of all weekly returns; long portfolio 
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Figure 3:  Distribution of all weekly returns; short portfolio 

 

Figure 4: Distribution of all weekly returns; L/S portfolio 
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These findings are confirmed by the indicators below, showing annualized SD, skewness, 

and kurtosis. As is expected, there is a higher standard deviation of returns per year than one 

would find in the monthly portfolio. And again, the combined L/S portfolio has significantly 

lower SD than either one of the component portfolios are a result of hedging.  

Year Long SD Short SD L/S SD 
2015 290.2% 111.6% 122.2% 
2016 261.5% 158.0% 107.3% 
2017 142.0% 115.2% 87.2% 
2018 203.3% 179.5% 92.9% 
2019 156.6% 157.7% 108.0% 
2020 214.2% 191.0% 91.0% 
Total 218.9% 160.9% 105.5% 

Table 12: Standard deviation of returns, weekly strategy 

As evidenced by the histogram, the long portfolio is skewed to the right while the short portfolio 

is skewed to the left. The major difference between this and the monthly portfolio is that returns 

in the L/S portfolio are not highly skewed right. The hypothesis being, the larger the sample size, 

the more the long and short portfolios average out.  

Year Long Skew Short Skew L/S Skew 
2015 3.01 -1.05 2.11 
2016 0.81 -1.36 0.18 
2017 0.58 0.23 0.23 
2018 2.70 -0.81 0.57 
2019 0.47 -0.66 0.31 
2020 1.53 -1.54 -0.26 
Total 2.05 -1.27 0.46 

Table 13: Skewness of all weekly returns; all portfolios 

The long portfolio is much more highly kurtotic than the short portfolio, which appears to have 

very little fat-tails at all (a normal distribution has a kurtosis of 3). The L/S portfolio, as a result, 

has only slight kurtosis. 
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Year Long Kurtosis Short Kurtosis L/S Kurtosis 
2015 13.04 1.24 8.18 
2016 1.53 3.01 -0.39 
2017 0.06 0.45 0.59 
2018 9.18 1.26 2.05 
2019 -0.95 -0.22 -0.98 
2020 3.68 2.00 0.16 
Total 9.13 2.74 3.89 

Table 14: Kurtosis of all weekly returns; all portfolios 

The higher moments of the distribution of L/S portfolio returns are therefore quite normal, a 

stark contrast to the sizable skewness and kurtosis of the monthly L/S portfolio. This gives the 

following CAPM analysis more validity as some of the bias is removed. However, as seen by the 

returns and standard deviation of the weekly portfolios, if the long portfolio has strong enough 

return for its level of risk, it could be the case that hedging is unnecessary. In that case, the skew 

and kurtosis would play a role in determining the strategy’s risk profile.  

𝑆𝑆(𝑥𝑥) =
(𝑟𝑟𝑟𝑟 − 𝑅𝑅𝑓𝑓)
𝑆𝑆𝑆𝑆(𝑟𝑟𝑥𝑥)

 

L/S: 𝑆𝑆 �𝐿𝐿
𝑆𝑆
� = (.945−.0172)

.1055
 = .88 

Long: 𝑆𝑆(𝐿𝐿) = (19.07−.0172)
2.19

  = 8.71 

The Sharpe ratio of the L/S portfolio is 0.88, making the level of return unjustified for the 

amount of risk undertaken. However, the long portfolio, despite having twice as much risk as the 

L/S portfolio, has a Sharpe ratio of 8.71, making it an excellent investment given its level of risk. 

This is, of course, still biased because of the leptokurtic distribution of long portfolio returns, 

possibly underestimating the true riskiness of the investment.  
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Hedge Ratio 

The third variation on this form of vol arb explores the impact of changing the hedge 

ratio. To do so, I solved optimization problems to maximize the Sharpe ratio, maximize the total 

6-year CAGR, and minimize the annualized standard deviation of the L/S portfolio in separate 

tests by changing the weights of the long and short portfolios. The only constraint was that the 

sum of the weightings had to be 1 (could not use leverage).   

For the monthly strategy, the optimal weighting to maximize the Sharpe Ratio was 0.33 

in the long portfolio and 0.67 in the short portfolio. This more than halved the annualized 

standard deviation from 65.5% to 29.6% but only reduced the CAGR from 79.5% to 62.8%. As a 

result, the Sharpe Ratio increased from 1.19 to 2.06. A maximization of CAGR yielded a full 

100% allocation to the long portfolio. The Sharpe ratio was reduced to 0.43, however, because 

the SD increased to 216.5%. An optimal minimization of SD resulted in a 0.69 allocation in the 

short portfolio and a 0.31 allocation in the long. This reduced standard deviation to 28.9% but 

decreased the CAGR to 59.7%. As a result, the optimal Sharpe ratio is very close to the 

minimum standard deviation (minimum variance) portfolio.  

For the weekly strategy, the optimal weighting to maximize the Sharpe ratio was a full 

100% allocation to the long portfolio, increasing the ratio from 0.88 to 8.71. This also 

maximized the CAGR. Minimizing standard deviation resulted in a 0.61 allocation to the short 

portfolio and a 0.39 allocation to the long portfolio. This reduced SD from 105.5% to 99.7% but 

reduced the CAGR from 94.5% to -8.4% and the Sharpe ratio from 0.88 to -0.10. This barely 

decreased the risk but greatly decreased the return, making it an inviable strategy.  
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Liquidity Analysis 

The final test relaxes the assumption that one can buy and sell options at the average of 

the bid and ask. It first compares the returns of a liquidity-adjusted portfolio with a mid-price 

assumption and the returns of the same portfolio with unfavorable market conditions. The same 

process is then done with the original baseline strategy. The goal is to compare how much of a 

difference unfavorable purchasing/selling price makes on returns and how much a liquidity-

adjusted portfolio can offset these differences.  

The hypothesis in creating liquidity-adjusted portfolios is that the long portfolio would 

benefit from higher liquidity while the short portfolio would benefit from lower liquidity. Tables 

15 and 16 below show the results of the analysis, short portfolio on top, long portfolio on bottom. 

The first column shows the average monthly return for a liquidity-adjusted portfolio using the 

average of the bid and ask. The second column shows the same average monthly return for a 

liquidity-adjusted portfolio using unfavorable liquidity conditions when buying and selling. The 

third column provides the percentage difference between the average and the biased columns. 

The next three columns repeat this process but for the baseline strategy instead of the liquidity-

adjusted portfolio. The final column provides a multiple between the differences. For example, in 

the 2015 short portfolio, there was a 42x multiple between the difference in the baseline results 

and the difference in the liquidity-adjusted results. This means the liquidity-adjusted portfolio 

experienced only 1/42 of the decrease between the average and the unfavorable conditions that 

the baseline portfolio experienced.  

From the “short baseline bias” column in the short portfolio, it is easy to see that without 

a liquidity adjustment, the bid-ask spread has a significant impact on the performance of the 

portfolio, returning a monthly average of -35.0% over the time period compared to 3.1% using 
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the midpoint. Choosing straddles from a portfolio of highly illiquid securities reduces the 

average return to -2.0% (using the mid-price). However, it also stifles the negative effective of a 

poor bid-ask spread as the percent change is not nearly as large as with the baseline portfolio.  

 

 

The patterns in the long portfolio are not as clearly defined as in the short portfolio. While the 

liquidity-adjusted portfolio did stifle some of the decrease from the mid-price to the 25% mark, 

both performed so poorly, it is not worth justifying this change.   

Year 

Long 
Liquidity 
Average 

Long 
Liquidity 
Bias 

Average-
Bias 
Difference 
(Liquid) 

Long 
Baseline 
Average 

Long 
Baseline 
Bias 

Average-Bias 
Difference 
(Baseline) 

Difference 
Multiple 

2015 6.2% -8.3% -233.9% 9.6% -10.0% -204.7% 0.88 
2016 -9.5% -24.0% -353.9% -3.6% -25.0% -799.5% 2.26 
2017 -4.9% -18.1% -272.3% -1.8% -21.8% -1114.0% 4.09 
2018 7.1% -10.0% -241.3% 17.8% -6.7% -137.5% 0.57 
2019 -3.6% -18.0% -397.0% 8.1% -14.3% -275.9% 0.70 
2020 42.4% 22.3% -47.6% 49.42% 18.75% -62.1% 1.31 
Average 6.3% -9.4% -257.7% 13.3% -9.8% -432.3% 1.63 

Table 16: Comparison of mid-price and 25% mark between baseline and liquidity-adjusted portfolios; long portfolio. Return 
values are expressed as the average of each portfolio’s total monthly returns for each year 
  

Table 15: Comparison of mid-price and 25% mark between baseline and liquidity-adjusted portfolios; short portfolio. Return 
values are expressed as the average of each portfolio’s total monthly returns for each year. 

Year 

Short 
Liquidity 
Average 

Short 
Liquidity 
Bias 

Average-
Bias 
Difference 
(Liquid) 

Short 
Baseline 
Average 

Short 
Baseline 
Bias 

Average-Bias 
Difference 
(Baseline) 

Difference 
Multiple 

2015 10.6% 9.8% -7.7% 9.1% -20.6% -326.5% 42.32 
2016 5.3% 5.5% 3.4% 7.0% -26.0% -469.2% -137.37 
2017 -11.9% -12.0% -0.3% -2.3% -31.7% -1304.6% 3814.77 
2018 -17.4% -19.6% -12.7% -1.7% -37.7% -2176.7% 171.03 
2019 -21.0% -23.7% -13.0% -3.4% -41.7% -1125.0% 86.46 
2020 22.5% -97.2% -532.4% 9.7% -52.1% -637.7% 1.20 
Average -2.0% -22.9% -93.8% 3.1% -35.0% -1006.6% 663.07 
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VI. Conclusion 

Given the analysis of risk and return with perspectives given on maturity, hedging, and 

liquidity, what is there to make of options volatility arbitrage as an investment strategy and its 

implications for the efficiency of the options market?  

The analysis for the monthly portfolio provides a good summary for the vol arb strategy 

as a whole. On the surface, the returns are enticing. A 79.5% CAGR over the last 6 years would 

make any investor happy. However, digging below the surface brings out potential risks. For 

one, there is a high standard deviation and high chance of extreme events given the level of 

kurtosis. Adjusting for standard deviation using the Sharpe Ratio classifies the L/S monthly 

portfolio as a barely passable investment. There is a high return, but that return is justified given 

the high level of risk.  

There is another way to look at it, however. First, the beta of the portfolio is high and 

negative against the S&P and 0 against the VIX. This means the strategy can be used to reduce 

correlations as part of a broader portfolio, allowing it to be used as a diversification tool. 

Secondly, the 50/50 hedge can be lifted to create more optimal returns. As we saw in the results 

of the optimization problem, increasing the weight of the short portfolio to about 2/3 slightly 

reduces the CAGR but greatly reduces the risk, making the L/S strategy a great investment based 

on its Sharpe Ratio of greater than 2. The performance of the component long and short 

portfolios also raises interesting questions. The short portfolio had significantly worse CAGR 

than the long portfolio, but it provided the hedging to reduce the standard of the overall portfolio 

and improve its ratio of risk to return. As a result, despite all desire to just use the long portfolio 

for the monthly strategy, it is still optimal to hedge it correctly.  
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The initial hypothesis for the hedge strategy was that a short vol portfolio would be more 

effective than a long vol portfolio and that “a smaller proportion long hedge (not 50-50) would 

be more effective than a 50-50 hedge, resulting in higher returns but likely more significant 

drawdowns.” The evidence indicates that a short vol monthly strategy is not more effective than 

a long vol strategy as returns are significantly smaller, but that a smaller long hedge is more 

effective than a 50-50 hedge. However, this is not because of higher returns but because of a 

higher return/risk ratio.  

The weekly strategy, despite following a similar distribution of returns to the monthly 

portfolio, resulted in a different conclusion. For the weekly strategy, the long portfolio 

outperformed the short portfolio to the point where, despite its function in risk reduction, the 

optimal allocation was to avoid it completely. While it is difficult to make a broad generalization 

with only 6 recent years of data, the long weekly portfolio seems to be an outperformer, 

generating extremely high returns for its level of risk. These returns are, however, still biased by 

the higher moments in the distribution.  

Relating back to the original hypothesis, the evidence points in favor of weeklies as 

having more consistent returns. The distribution of returns for a weekly L/S strategy is much 

more normal than for a monthly strategy with less skew and kurtosis. However, consistency does 

not translate to profitability as the combined weekly portfolio assumed a higher ratio of risk to 

return than the combined monthly portfolio. An isolated long weekly portfolio, however, is both 

more consistent and more profitable than a combined monthly portfolio as its distribution has 

less skew, less kurtosis, and no years of negative return. Although more research needs to be 

conducted, this provides some evidence that weeklies are better suited for isolating volatility risk 

from jump risk.  
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The strong return-generating ability of the long portfolio also generates evidence to 

weaken my initial hypothesis that IV more often than not falls towards HV rather than rise to 

meet it. It also raises the question why the long portfolio is an outperformer to such an extent. 

One possibility is that any option in the long portfolio has limited risk but unlimited profit 

potential while options in the short portfolio have unlimited risk but limited profit potential. 

Future testing would require a different strategy that does not share the limitations of a short 

straddle.   

Conclusions arising from liquidity requirements/adjustments are unconvincing. There is 

evidence to support that creating liquidity restrictions on the short side might reduce the impact 

of a large bid/ask spread but placing this restriction also reduces the number of viable candidates 

and might hurt the overall return. No conclusion can be drawn on the long side as both the mid-

price return and the 25% mark have similarly high negative return.  

Finally, the strategy thrived in one of the largest stock market crises in the last decade, 

having its best year in the study period be 2020. While it is a single moment, it is a strong 

example of a black swan event. The strategy’s strong performance in this time could be an 

indicator of its resistance in times of crises but additional research needs to be conducted. 

Overall, I think with proper risk management, both the weekly and monthly strategies can be 

highly effective parts of a portfolio of an investor with a tolerance for above average risk.  

Although there does seem to be some alpha-generating potential, I do not think there is 

enough strong evidence to support the theory that the market is not efficient. Risk is priced into 

many forms with this strategy that are difficult to untangle.  
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Appendix 

 

Year Quartile Long Short L/S 
2015 Min -40.6% -45.0% -18.9% 

 1 -10.7% -4.5% -2.0% 

 Med 4.2% 6.0% 5.4% 

 3 24.0% 10.3% 14.5% 

 Max 212.6% 31.1% 83.8% 
2016 Min -55.3% -78.4% -27.8% 

 1 -12.4% -11.1% -5.9% 

 Med 7.8% 2.0% 1.3% 

 3 25.6% 9.9% 14.7% 

 Max 121.4% 38.0% 37.0% 
2017 Min -25.4% -40.0% -22.6% 

 1 -7.8% -15.1% -7.6% 

 Med 6.1% -3.9% 5.0% 

 3 21.5% 6.3% 9.2% 

 Max 59.4% 35.0% 35.4% 
2018 Min -14.3% -81.8% -25.7% 

 1 0.9% -23.0% -6.3% 

 Med 7.0% -9.5% 2.7% 

 3 22.7% 1.0% 7.2% 

 Max 143.9% 42.1% 45.1% 
2019 Min -35.1% -103.9% -57.3% 

 1 -11.9% -21.7% -9.8% 

 Med 1.3% -9.3% -2.6% 

 3 17.7% 1.1% 6.7% 

 Max 66.7% 25.9% 27.8% 
2020 Min -30.5% -76.8% -29.6% 

 1 -5.9% -11.7% -2.6% 

 Med 4.5% 3.4% 3.0% 

 3 25.9% 15.9% 13.0% 

 Max 123.7% 28.6% 28.1% 
Total Min -55.3% -103.9% -57.3% 

 1 -9.1% -16.1% -6.2% 

 Med 5.2% -1.8% 2.4% 

 3 23.0% 8.2% 10.5% 

 Max 212.6% 42.1% 83.8% 
Table 17:  Quartile statistics of weekly strategy; all portfolios 

 


