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Abstract 

This thesis develops a new Multi-Horizon Moment Conditions test for evaluating multi-horizon 

forecast optimality. The test is based on the variances, covariances and autocovariances of 

optimal forecast errors that should have a non-zero relationship for multi-horizon forecasts. A 

simulation study is conducted to determine the test’s size and power properties. Also, the effects 

of combining the Multi-Horizon Moment Conditions test and the well-known Mincer-Zarnowitz 

and zero autocorrelation tests into one forecast optimality test are examined. Lastly, an empirical 

study evaluating forecast optimality for four multi-horizon forecasts made by the Survey of 

Professional Forecasters is included. 

JEL classification: G1; G17; G00 

Keywords: Forecast optimality; Forecast errors; Multi-horizon forecast; Squared error loss; 

Simulation study; Combined test; Survey of Professional Forecasters 
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1. Introduction 

 Financial and economic forecasting is an extremely important field in the world today, as 

it plays a vital role in both policy making and financial planning for individuals, corporations and 

governments. For example, the Federal Reserve’s forecasts for variables such as GDP, CPI and 

inflation not only give the economic outlook for the United States, but help the members of this 

organization make policy decisions to try and keep the economy strong and stable. Along the 

same lines, forecasts of company’s earnings carry a lot of weight, as they are important in both 

guiding management and giving individual investors an indication of the strength of a business 

they may invest in. Having shown that these forecasts play an important role in society today, it 

should now be evident that it is crucial to be able to assess whether these forecasts are optimal 

and doing a good job. For this reason, the field of financial and economic forecast evaluation and 

the development of tests looking for forecast optimality is essential. It would be problematic to 

do something, such as set the United States economic policy, based on faulty forecasts. By being 

able to accurately forecast certain financial metrics, individuals, firms and governments will be 

able to guide their financial and economic choices to set them up best for success in the future.  

 There is lot of research that has been done in the field of financial forecast evaluation that 

focuses on testing for forecast optimality and rationality. This will be discussed in much more 

detail below, but, at a general level, an optimal forecast is one that minimizes a forecaster’s 

expected loss for the variable that they are forecasting. One of the most widely used theories in 

this discipline dates all the way back to 1987 when William Nordhaus (1987) introduced the idea 

of “weak efficiency.” Nordhaus (1987) suggested that optimal forecast errors should have no 

correlation to past forecast errors or forecast information that was available on or before the date 

of the forecast. In the conclusion of his paper, Nordhaus (1987) writes, “A baboon could 
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generate a series of weakly efficient forecasts by simply wiring himself to a random-number 

generator…Hence we should look at weak efficiency as but one attribute of well-constructed 

forecasts.” This quote is extremely meaningful and demonstrates why literature has continued to 

come through the pipeline regarding testing for forecast rationality. Economists continue to 

develop conditions that should exist for ideal forecasts and create new tests to complement 

existing ones. The idea is that an ideal forecast should be able to pass all the different tests 

looking at forecast optimality and not just one.  

 Although the field of financial forecast evaluation has been around for a while, it 

continues to grow and develop. More recently, there has been a strong focus in evaluating multi-

horizon forecasts. In a paper by Carlos Capistran (2014) focused on developing a test to evaluate 

financial forecast optimality, he mentions the importance of multi-horizon forecasts. He goes as 

far as to say that forecasts for just one horizon are “…in sharp contrast with the way forecasts are 

produced” (Capistran, 2014). With a multi-horizon forecast, the defining characteristic is that 

forecasters make predictions at multiple time horizons (represented by h), as opposed to just one. 

An example of a multi-horizon forecast is a forecast for GDP that is made 1, 2, 3 and 4 quarters 

before its value is realized. If the date that the actual GDP value is known is 2018 Q1, the 1 

quarter out forecast would be made 2017 Q4 (h = 1), the 2 quarter out forecast would be made 

2017 Q3 (h = 2), the 3 quarter out forecast would be made 2017 Q2 (h = 3) and the 4 quarter out 

forecast would be made 2017 Q1 (h = 4). Along with this example, Figure 1 below should help 

give a picture of the different forecasts included within a multi-horizon forecast when the 

maximum forecast horizon (represented by hmax) is 2, 3 and 4. It is important to note that the date 

that the forecasted variable is realized remains fixed and the horizon defines the date when the 

forecast was made.      



6 

 

 

 

 

 

 

 

FIG. 1.–Image showing three different multi-horizon forecasts and the horizons they include 

 

 Since my thesis focuses on evaluating multi-horizon forecasts, it is not only critical to 

understand what they are, but also the notation associated with them. A target variable’s realized 

value at time t+h is represented by 𝑌𝑡+ℎ and the forecast made at time t for a value realized at 

time t+h is written as 𝑌̂𝑡+ℎ|𝑡. The forecast error is then denoted as 𝑒𝑡+ℎ|𝑡 and defined by the 

following expression:  

                                                            𝑒𝑡+ℎ|𝑡 =  𝑌𝑡+ℎ − 𝑌̂𝑡+ℎ|𝑡.                                                     (1) 

It will be important to remember this notation, particularly during the more technical sections of 

this piece.  

 Now that the idea of multi-horizon forecasts should be clear, it is appropriate to talk 

about how they can be evaluated. The concept of “weak efficiency” described above has been 

implemented in a regression that is well-known and frequently used to test for the optimality of 

these types of forecasts. In particular, for a given forecast horizon h at time t it is common to run 

a regression of that forecast error on the forecast errors for the forecasts made for time t or earlier 
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to test for forecast optimality. In this regression, the dependent variable is the forecast error for 

the forecast made at time t, h periods in the future. On the right-hand side of the forecast is an 

intercept and several explanatory variables. The explanatory variables are the forecasts made for 

time t or earlier. To give a clearer picture of this regression, it can be represented by the 

following expression (looking at lags between h and K): 

                     𝑒𝑡+ℎ|𝑡 = 𝛼0 + 𝛼ℎ𝑒𝑡|𝑡−ℎ + 𝛼ℎ+1𝑒𝑡−1|𝑡−ℎ−1 + ⋯ + 𝛼ℎ+𝐾𝑒𝑡+ℎ−𝐾|𝑡−𝐾 + 𝑢𝑡.        (2) 

The null hypothesis, which says that the forecast is optimal, tests whether  𝛼𝑖 = 0 for all 𝑖 =

0, ℎ, ℎ + 1, … ℎ + 𝐾. If there is a relationship between any forecast errors made at or before time 

t and the forecast error for a forecast made at time t then the expected value of the forecast error 

for the forecast made at time t is not zero, which is a critical condition of forecast optimality.  

 Notice in the regression just mentioned, that the forecast error at time t+h is regressed on 

the forecast errors of the forecasts for time t and earlier. This says nothing about the relationship 

between the forecast errors for the forecasts made for 1 and h-1 periods in the future. The idea of 

“weak efficiency” implies that there should be no relationship between a forecast error and any 

variable available at the time the forecast was made. However, this gives no insight into the 

relationship between forecast errors that should have a non-zero relationship.  

 For example, imagine that forecasts for the stock price of a restaurant chain are made in 

2017 Q2 (h = 3) and 2017 Q3 (h = 2) for 2018 Q1. Then, in 2017 Q4, a report emerges that 

numerous people got a foodborne illness from eating at this restaurant, resulting in a large 

decline in its stock price. The stock price is now much lower than anticipated, impacting the 

forecast errors for both the h = 2 and h = 3 forecasts. The news was not available at the time of 

either forecast, which is why it will affect both forecast errors. This should be reflected in the 
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relationship between these forecast errors. The relationships between these multi-horizon 

forecast errors for an optimal forecast have not yet been formally detailed and explored. 

 In an attempt to add to the pipeline of literature and tests that exist to evaluate multi-

horizon financial forecasts, I detail how these forecast errors should relate to each other under 

squared error loss. I derive what these relationships should be for an optimal forecast, 

particularly looking at variances, covariances and autocovariances, and then I implement them in 

a test that looks at whether these relationships hold for a given forecast. I have named this new 

multi-horizon forecast optimality test the Multi-Horizon Moment Conditions test. I find this 

name appropriate as the relationships that I derive for the optimal forecast errors are known as 

“moment conditions” and this optimality test is meant to examine multi-horizon forecasts.  

 The purpose of the Multi-Horizon Moment Conditions test is to serve as a complement to 

other existing tests that have already been designed to evaluate forecast optimality. There are 

many ways that a forecast can be irrational and this test is meant to be one additional checkpoint 

to make sure that a forecaster is not doing a suboptimal job. Even though different tests evaluate 

different properties of an optimal or rational forecast, they all have the same objective. 

Ultimately, a forecaster’s goal is to be able to find and develop optimal forecasts for whatever 

variable is being looked at. These tests are a critical step in the process. If it is identified that a 

forecast is not optimal, the forecaster should go back and see what they can change in their 

forecast and how they can improve it to give the best predictions possible. Since these tests have 

the same goal and serve as complements to each other, that also opens the idea of combining the 

Multi-Horizon Moment Conditions test with several other existing tests. This should result in a 

more efficient way to test for forecast optimality and I examine the effectiveness of doing so in 

this thesis.   
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 The following is the outline of this paper. Section 2 gives an overview of relevant 

literature, which should both motivate this paper and give background in the field of evaluating 

financial forecasts. In Section 3, I outline how I derive the properties that I use for the Multi-

Horizon Moment Conditions optimality test and discuss how I use Generalized Method of 

Moments (GMM) to test for those properties. Section 4 provides a simulation study that gives 

insight into the quality of the Multi-Horizon Moment Conditions test, outlining its size and 

power properties. In Section 5, I discuss the effectiveness and results from combining several 

forecast optimality tests. Lastly, Section 6 shows several evaluations of real-world forecasts and 

Section 7 concludes the paper and provides possible extensions.  

2.A. Literature Review 

 In this section, I review two related, but distinct, subject areas: developing tests to 

determine the rationality of a forecast and the importance of loss functions in financial forecast 

evaluation. The main goal of this Literature Review is to put into context where the Multi-

Horizon Moment Conditions test fits into the existing field of financial forecast evaluation. I also 

hope to give background on loss functions and the role they play in testing for financial forecast 

optimality.   

2.B. Development of Tests to Evaluate Forecast Rationality  

 I will start by detailing the findings and contributions of the relevant literature on 

developing tests for financial forecast evaluation. I will first discuss the findings of Mincer and 

Zarnowitz (1969). These authors performed an “Absolute Accuracy Analysis” of economic 

forecasts and they proposed the following regression to test for forecast optimality:   

                                              𝑌𝑡+ℎ = 𝛼0 + 𝛼1𝑌̂𝑡+ℎ|𝑡 + 𝑣𝑡.                                 (3)                                     
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By testing the joint hypothesis of 𝛼0 = 0 and 𝛼1 = 1, the authors proposed that one can 

determine whether the forecasted values are close to the realized values. If the null is rejected, 

Mincer and Zarnowitz suggested that this test allows for an individual to check if the rejection of 

rationality is caused by a biased forecast (𝛼0 ≠ 0), inefficient forecast (𝛼1 ≠ 1) or both. This test 

is extremely informative, as it not only gives insight into the rationality of a forecast, but also 

provides intuition for potential reasons why a forecast might not be rational.  

 Next, I will once again mention the concept of “weak efficiency,” which was developed 

by William Nordhaus (1987). The big idea behind “weak efficiency” is that a forecaster should 

minimize the expected loss function that is being used, given the forecast information available 

at the time of the forecast. With almost all optimality properties, this one can be represented in 

several ways, and it is equivalent to say that forecast errors should be completely uncorrelated to 

the forecast errors or revisions available at the time of the forecast (Nordhaus, 1987). Michael 

Clements (1997) presented a method to correct for the issues that Nordhaus’s test can have when 

only a few forecasts are available. He proposed pooling together and simultaneously testing 

multiple forecast dates and testing for any correlation with past forecast errors. It is important to 

note that these tests focus on a forecast for a single horizon.   

 There is also literature focusing on forecast optimality for multi-horizon forecasts. In the 

paper by Carlos Capistran (2014) that is mentioned in the Introduction, he proposes a new test 

for multi-horizon forecast optimality based on the “decreasing precision” property. He says that 

the variance of forecast errors should be greater for longer horizon forecasts. The author 

mentions that this concept is not new, but that there is no test for it, and is able to develop one. 

Patton and Timmermann (2012) also noticed a gap in the literature surrounding multi-horizon 

forecast optimality. They put together general inequality tests for an optimal forecast, as well as 
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a regression, which were all based on the assumption of mean squared error loss. For example, 

one of their tests is based off the idea that the covariance of a short-horizon forecast and the 

realized value should be greater than the covariance of a long-horizon forecast and the realized 

value. From the work of economists like Capistran, Patton, Timmermann and others, this class of 

multi-horizon forecasts started to develop a more specific set of optimality tests looking at the 

internal consistency among the forecasts made at different horizons.  

 My research, as mentioned earlier, fits in the world of testing for multi-horizon forecast 

optimality. The work done by Capistran, Patton and Timmermann tests for general conditions 

that should hold true for multi-horizon forecasts. They look at greater than or less than 

relationships for different variances, covariances and expected values. To develop the Multi-

Horizon Moment Conditions test, I look at exact relationships (meaning equalities instead of 

inequalities) between certain forecast errors. The relationships that I test are not necessarily a 

direct extension of the properties derived in these papers, but the literature serves as a great 

resource for deriving the exact relationships that I evaluate. In particular, I look at variances, 

covariances and autocovariances of optimal forecast errors. I focus on developing precise 

relationships that should hold true between certain forecast errors for an optimal multi-horizon 

forecast.  

 Additionally, with the current optimality tests looking at exact relationships between 

forecast errors, they only focus on the relationship of a given forecast error with those that are 

available on or before the time of the forecast. These conditions do not mention anything about 

the relationships between forecast errors that should hold for optimal forecasts with overlapping 

periods of time between when they were made and realized. By looking at the exact relationships 
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between optimal forecast errors in the time period that is currently being overlooked when 

testing for forecast optimality, I am able to fill a gap in the existing research in this field.  

2.C. Importance of Loss Functions in Evaluating Financial Forecasts  

 Another important aspect of forecasting are the loss functions used when evaluating 

financial forecasts. An optimal forecast, denoted as 𝑌̂𝑡+ℎ|𝑡
∗ , is defined by the following equation:  

                                                 𝑌̂𝑡+ℎ|𝑡
∗ ≡ arg  min

𝑦̂𝜖𝑌
𝐸[𝐿(𝑌𝑡+ℎ, 𝑦̂)|𝐼𝑡]                                               (4) 

(Patton, 2013). In words, this says that the optimal forecast is the one that minimizes the 

expected loss function, conditional on the information set 𝐼𝑡. This demonstrates that the loss 

function plays a critical role in the definition of an optimal forecast. The loss function that the 

Multi-Horizon Moment Conditions (MHMC) test is based on is squared error loss, which is 

defined in the following way:  

                                                          𝐿(𝑌𝑡+ℎ, 𝑦̂) = (𝑌𝑡+ℎ − 𝑦̂)2                                                    (5) 

(Patton, 2013). All the moments and conditions that I derive for forecast optimality assume 

squared error loss.  

 Having detailed the role of loss functions in defining an optimal forecast, I will now 

speak to how the chosen loss function can impact the conclusion that is made when determining 

the optimality of a forecast. In an article by Patton and Timmermann (2007), they mention 

several properties, such as the non-decreasing variance of the forecast errors with the forecast 

horizon and the lack of correlation between a forecast error and the forecast errors from on or 

before the date the forecast was made, that should hold under mean squared error loss. They then 

go on to say these properties are not too useful “because they do not generally hold under the 
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other loss functions” (Patton and Timmermann, 2007). Elliot, Kumunjer and Timmermann 

(2005) echo this idea in a separate piece of literature focused on loss functions. The three authors 

state in their introduction that although mean squared error loss is commonly used, it is “often 

difficult to justify on economic ground and is certainly not universally accepted” (Elliot, 

Kumunjer and Timmermann, 2005). The main takeaway from all of this is that a loss function is 

crucial to determining the properties of an optimal forecast, and that the conditions that exist for 

one loss function do not always hold true for other loss functions.  

  I will now detail the findings from relevant literature focused on asymmetric loss 

functions. Asymmetric loss functions are loss functions where positive and negative loss are 

penalized differently. One example where this seems to be the case is with the Federal Reserve’s 

forecast for real GDP. It seems that the Fed penalizes overpredictions of real GDP much more 

than underpredictions. The intuition behind this is that if the Fed overpredicts real GDP and 

bases monetary policy on that forecast, then they will be falsely signaling growth in the economy 

and will not have monetary policy properly aligned to handle the actual GDP growth (Patton and 

Timmermann, 2007). Another example involves forecasts by the IMF and OECD on government 

budget deficits. Generally, these forecasts overpredict budget forecasts, as underpredictions are 

seen as more costly than overpredictions and are penalized harsher in the loss function being 

used by the forecasters. It is noted in the piece detailing this asymmetric loss that, in some 

countries, an underprediction is penalized three times more than overpredictions of this variable 

(Elliot, Kumunjer and Timmermann, 2005).  

 Additionally, another example of where asymmetric loss can be found is in analyst’s 

forecasts of a company’s earnings. One paper finds that, not only is the loss function for the 

forecast of this variable asymmetric, but that it changes depending on the forecast horizon. For 



14 

 

long horizon forecasts, it is found that analysts penalize underpredictions greater than 

overpredictions, and that the forecasted value is generally greater than the realized value. An 

intuitive explanation is that optimistic predictions keep a firm’s leaders happy and that the loss 

from an underprediction, which could lead to a negative reputation for a forecaster, is greater 

than the loss from an overprediction (Christodoulakis, Stathopoulos and Tessaromatis, 2012).  

However, for short horizon forecasts, data shows that an analyst’s loss function penalizes 

overpredictions more than underpredictions. The reasoning being that the cost of a negative 

earnings surprise for a company is worse than the cost of a positive earnings surprise 

(Christodoulakis, Stathopoulos and Tessaromatis, 2012).  

 Through these examples, it is shown that there are certainly situations where asymmetric 

loss functions are used by forecasters. Using conditions that are derived from a separate loss 

function to determine the optimality of these forecasts is not valid and could result in the 

rejection of forecast optimality, when the forecasts are actually optimal under the loss function 

they are using (Patton and Timmermann, 2007). This concept becomes extremely relevant in the 

Empirical Application section of this thesis. I must justify that the forecasts that I evaluate are 

created by forecasters with a symmetric loss function, since the MHMC test operates under the 

assumption of squared error loss.  

3. Theoretical Framework  

 To understand the derivations of the optimal properties that characterize the Multi-

Horizon Moment Conditions (MHMC) forecast optimality test, it is important to first understand 

what defines an optimal forecast and the theory on how it differs from one that is not optimal. As 

mentioned in the Introduction, an optimal forecast is one that minimizes a forecaster’s expected 

loss function for the data that they are forecasting. Two important variables that are used when 
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outlining the properties that should hold for an optimal forecast are the optimal forecast itself, as 

well as the optimal forecast error. The optimal forecast, written as 𝑌̂𝑡+ℎ|𝑡
∗ , was defined in 

Equation (4) in the Literature Review. This value can be used to get the optimal forecast error, 

𝑒𝑡+ℎ|𝑡
∗ , by using the following equation:  

                                                               𝑒𝑡+ℎ|𝑡
∗ = 𝑌𝑡+ℎ − 𝑌̂𝑡+ℎ|𝑡

∗ .           (6) 

This expression is the same as what is written in Equation (1) above, except the forecasted value 

is replaced by the optimal forecast.  

 For the MHMC test, I focus on forecast optimality under squared error loss. Under 

squared error loss, the following property can be derived:  

                                                                   𝐸[𝑒𝑡+ℎ|𝑡
∗ |𝐼𝑡] = 0.                                                        (7)                                                 

This condition says that the expected value of the optimal forecast error for a forecast made at 

time t and realized at time t+h, which is represented by 𝑒𝑡+ℎ|𝑡
∗ , given the information set 𝐼𝑡, 

should equal zero. This property must hold for a forecast to be optimal and is used when deriving 

the relationships that should hold between optimal forecast errors.  

 I will only assume that the variables studied in this thesis are covariance stationary. A 

time series is said to be covariance stationary if its expected value, or mean, and variance do not 

change with time. Hamilton (1994) states that any covariance stationary process can be written 

as:  

    𝑌𝑡 =  𝜀𝑡 + ∑ 𝜃𝑗𝜀𝑡−𝑗, 𝜀𝑡~𝑊𝑁(0, 𝜎2)∞
𝑗=1 .                                      (8) 
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This representation, which is referred to as the “Wold Decomposition” involves an infinite 

number of parameters, the 𝜃𝑗  values, but I show below that the optimal forecast errors will only 

depend on a small number of these. As I only have data on the realized values and the forecasts, I 

do not know the parameters of the Wold Decomposition. However, I demonstrate that I can 

obtain moment conditions that allow me to estimate these parameters and, more importantly, to 

test the optimality of the forecasts. 

 Using the Wold Decomposition, the optimal forecast and optimal forecast error can be 

derived for each forecast horizon. Under squared error loss, the optimal forecast is the 

conditional expectation of the Wold Decomposition h periods in the future and the optimal 

forecast error is found by subtracting the optimal forecast from the actual value of the forecast at 

time t+h. For example, in the case where the forecast horizon is 1 (h = 1), 

                 𝑌̂𝑡+1|𝑡
∗ = 𝐸𝑡[𝑌𝑡+1] = ∑ 𝜃𝑗𝜀𝑡+1−𝑗

∞
𝑗=1 ,                                            (9) 

which means that  

        𝑒𝑡+1|𝑡
∗ = 𝑌𝑡+1−𝑌̂𝑡+1|𝑡

∗ = 𝜀𝑡+1.                                                   (10) 

By performing this derivation for enough forecast horizons, a general equation can be found for 

the optimal forecast error. For any forecast horizon h greater than or equal to 1,  

           𝑒𝑡+ℎ|𝑡
∗ =  ∑ 𝜃𝑗𝜀𝑡+ℎ−𝑗

ℎ−1
𝑗=0 .                                                      (11) 

 The forecast optimality conditions that I derive focus on the variances, covariances and 

autocovariances of the optimal forecast errors. To give a better sense of what these properties 
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are, I will walk through how I derive the moment conditions that should hold for an optimal 

multi-horizon forecast when hmax = 2. To do this, I start by finding the optimal forecast errors for 

both h = 1 and h = 2. In the case where h = 1, the optimal forecast error is 

                                                        𝑒𝑡+1|𝑡
∗ =  𝜀𝑡+1,                                                                      (12) 

and in the case where h = 2, the optimal forecast error is 

                                                      𝑒𝑡+2|𝑡
∗ =  𝜀𝑡+2 + 𝜃1𝜀𝑡+1.                                                        (13) 

After deriving these optimal forecast errors, I then look at several variances and covariances that 

focus on these expressions and determine the values that they should equal if the forecast is truly 

optimal. The first conditions that I derive are the variance of each individual forecast error:  

                                      𝑉[𝑒𝑡+1|𝑡
∗ ] = 𝑉[𝜀𝑡+1] =  𝜎2                                    (14) 

and  

                           𝑉[𝑒𝑡+2|𝑡
∗ ] = 𝑉[𝜀𝑡+2 + 𝜃1𝜀𝑡+1] =  (1 + 𝜃1

2)𝜎2.                                              (15) 

These are the optimal variance values for these forecast errors. Next, I derive the first-order 

autocovariance, which is  

                           𝐶𝑜𝑣[𝑒𝑡+2|𝑡
∗ , 𝑒𝑡+1|𝑡−1

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2 + 𝜃1𝜀𝑡+1, 𝜀𝑡+1 + 𝜃1𝜀𝑡] =  𝜃1𝜎2.               (16) 

Lastly, I look at the covariances between the different forecast horizons. In the h = 2 case, this is 

the covariances that exist between the h = 1 and h = 2 forecast errors, which are 
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                             𝐶𝑜𝑣[𝑒𝑡+2|𝑡+1
∗ , 𝑒𝑡+2|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1] =  𝜎2                              (17) 

and  

                 𝐶𝑜𝑣[𝑒𝑡+1|𝑡
∗ , 𝑒𝑡+2|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1] = 𝜃1𝜎2.                              (18) 

  The derived variance and covariance conditions are a function of 𝜎2 and 𝜃1. These 

parameter values are unknown to whoever is evaluating the forecast and it will always be the 

case that there are more derived moments than parameters. In the case where hmax = 2, I derived 

five properties as a function of 𝜎2 and 𝜃1. Since there are more properties or moments than 

unknown parameters, a tool known as Generalized Method of Moments (GMM) can be used to 

estimate the parameter values (Hansen, 2017). The parameters estimated are the variables on the 

right-hand side of the equality in the moment conditions. Thus, the 𝜎2 and 𝜃1 terms are estimated 

using GMM. GMM also gives a value known as the J-statistic, which provides insight into how 

well the estimated parameter values fit the conditions that should hold for an ideal forecast. The 

J-statistic is the number that is compared to a critical value and used to reject or fail to reject 

forecast optimality based on how well the estimated parameter values satisfy the moment 

conditions that should hold for an optimal forecast.  

 Above, I derived the moment conditions in the case where hmax = 2. As part of this study, 

I also derive the variances, covariances and autocovariances when hmax = 3 and hmax = 4. These 

results are included in the Appendix. The derivations are done the same way, yet there are more 

variances, covariances and autocovariances that need to be derived as the maximum forecast 

horizon increases. When hmax = 3, 15 moment conditions exist and three parameter values must 

be estimated (𝜎2, 𝜃1 and 𝜃2). When hmax = 4, 34 moment conditions exist and four parameter 
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values must be estimated (𝜎2, 𝜃1, 𝜃2 and 𝜃3). I only derive properties for an optimal forecast up 

to hmax = 4 in this thesis. Going to this horizon gives a good sense of the performance of this test 

for several horizons, and can also be used to evaluate the many real-world multi-horizon 

forecasts that are done 1, 2, 3 and 4 quarters out.  

 Although I derive 5 moment conditions when hmax = 2, 15 moment conditions when hmax 

= 3 and 34 moment conditions when hmax = 4, I do not use all these moments in the GMM test 

that I implement for each maximum forecast horizon for the MHMC optimality test. All the 

variances, covariances and autocovariances that I derive for each maximum forecast horizon 

should hold for an optimal multi-horizon forecast under squared error loss. However, when 

trying to implement the GMM test in practice, I found that at least one or more moments are 

redundant for each maximum forecast horizon. This means that they are represented by some 

linear combination of other moments that should hold for an optimal forecast, and that the 

moment itself does not need to be included, or else it will result in an unreliable GMM test. By 

removing the redundant moment, the GMM test is still testing whether that conditions holds and 

is now reliable. I say that including the redundant moment makes the test unreliable as, when 

they are included, they blow up the J-statistic and, generally, result in a test statistic that always 

strongly rejects forecast optimality and does not appear to follow its asymptotic distribution in 

finite samples. Removing these redundant moments fixes this issue, which is why I do not 

include them in each GMM test.  

 As the maximum forecast horizon increases, I remove, at the very least, the same 

redundant moments that were removed in the GMM tests for forecasts with a shorter maximum 

forecast horizon. This means, for example, that the hmax = 4 GMM test removes the redundant 
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moments from hmax = 3 test and any additional moments that were found to be linear 

combination of other moments for this test. When removing these redundant moment conditions, 

there are choices of what moment conditions to remove. If I found that moments 1, 2 and 3 were 

a linear combination of each other, for example, I could have removed moment 1, 2 or 3 and kept 

the other two. In making these choices, I always strived to remove the redundant moments that 

best fixed the issue of the J-statistic blowing up and consistently resulting in strong rejection of 

rationality in all cases. In the case where hmax = 2, I only use the 4 moments outlined in 

Equations (14-17) in the GMM test. When hmax = 3, I use 9 of 15 moments and when hmax = 4 I 

use 16 of 34 moments. In the Appendix, I identify the moment conditions that I use in the 

MHMC GMM test for these two maximum forecast horizons.  

 To see if the MHMC forecast optimality test that I implement using GMM can be used as 

a valid way to support or reject forecast optimality, I measure its size and power properties. The 

size of a test is the percentage of the time it rejects forecast optimality when the forecast is 

known to be optimal. When testing for size, the goal is to see if the asymptotic distribution of the 

test statistic is a good approximation to its distribution with a finite sample size. With a GMM 

test, the calculated J-statistic is χ2 with the degrees of freedom for each test being equal to the 

number of moment conditions minus the number of parameters that are being solved for. If the 

size of a test with these type of distributions is close to the significance level, then it can be said 

that the asymptotic χ2 results hold for the sample size being evaluated. If this result does not 

hold, then the test is not reliable to use at the sample size that the size is being calculated at.  

 Second, the power of this test is the percentage of the time it rejects forecast optimality 

when the forecast is known to not be optimal. For a good test, it is expected for the power to 
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continually increase and eventually reach an asymptote of 100 % as the forecast gets worse. 

When a forecast is slightly not optimal, a test will not always capture this fact and will not reject 

optimality for every single forecast. But, as a forecast gets worse, it is expected for the test to 

capture this a greater percentage of the time and eventually reach a point where it rejects 

optimality close to, if not exactly, 100 % of the time.  

4.A. Simulation Study of Size and Power  

 To analyze the quality of the Multi-Horizon Moment Conditions (MHMC) forecast 

optimality test, I created ideal and non-ideal forecasts for a generated data set, and then used that 

information to determine both its size and power properties. To produce data, I used a first order 

autoregressive process defined by the following equation:  

                                                     𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝑢𝑡 ~ 𝑊𝑁(0, 𝜎𝑢
2).                                             (19) 

I chose to use this data generating process as it allows for me to see how the performance of the 

MHMC test changes as the autocorrelation, or phi (𝜙) value, of the time series changes. By 

varying this parameter, I gain interesting insight into how it impacts the size, power and 

ultimately the effectiveness of the MHMC test. I keep the 𝜎𝑢
2 term constant and set it equal to 1 

for each data set that I generate.  

 When determining the size of the MHMC test, I evaluate it for sample sizes of 50, 100, 

250 and 500. Using this range of data points, I can see how the size varies as a function of the 

sample size. The size of the test should get closer and closer to the significance level as the 

sample size increases, as it should start to behave more and more like its asymptotic distribution. 

For this reason, I vary the sample size when evaluating this property to see if this expected 

behavior holds. When evaluating the power property of the MHMC test, each data set that I 
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generate has 150 data points. I chose this sample size because it is a value that resembles the 

sample size that I have when evaluating real-world forecasts, for variables such as the Consumer 

Price Index (CPI) Inflation Rate and Real GDP Growth, in the Empirical Application section. 

With power, I want to know the effectiveness of the test near the actual sample size of forecasts 

that I evaluate, which is why I only analyze this property at one sample size.  

 After I generated data using Equation (19), the next step was to develop an optimal 

forecast for the data generating process. In developing an ideal forecast, it is known that the 

forecast is rational and I used that information to find the size of the MHMC test. To develop an 

optimal forecast, I set the value of the forecast equal to the expected value of the data generating 

process conditional on time t. This means that for any value of h that the optimal forecast is the 

following:  

                                                              𝑌̂𝑡|𝑡−ℎ
∗ = 𝐸𝑡[𝑌𝑡] = 𝜙ℎ𝑌𝑡−ℎ.                                            (20) 

After generating the forecast, I input the forecasted and realized values into the MHMC test. 

With each test, I obtain a J-statistic from GMM, which I then use to determine whether or not the 

null hypothesis should be rejected, using a significance level of 5 %. By simulating this process 

1,000 times and counting how many times I reject the null hypothesis, I obtain the finite-sample 

size of this test. I first examine the size of the MHMC test to make sure that it is behaving as 

expected. I then move on and examine the more interesting power properties, that demonstrate 

how effective the test is at rejecting irrational forecasts.  

 Next, I will discuss how I analyzed the power of the MHMC test for forecast optimality. 

To calculate the power of the test in finite samples, I created a non-ideal forecast for the data 
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generating process mentioned earlier by adding noise to the optimal forecast value. This process 

is represented by the following equation: 

                                                           𝑌̃𝑡|𝑡−ℎ = 𝑌̂𝑡|𝑡−ℎ
∗ + 𝜎𝑛𝑛𝑡.                                                    (21) 

In this expression, 𝑌̃𝑡|𝑡−ℎ is the noisy or suboptimal forecast, 𝑌̂𝑡|𝑡−ℎ
∗  is the optimal forecast used 

for calculating size in Equation (20), 𝑛𝑡 is a generated value that is independent and identically 

distributed that is normal with a mean of 0 and variance of 1, and 𝜎𝑛 is what I refer to as the 

“noise multiplier.” By varying the amount of noise added to the ideal forecast, which is the 𝜎𝑛 

value in the equation above, I can see how this parameter can affect the power of the test. The 

larger the value of 𝜎𝑛, the greater amount of noise that is added to the optimal forecast. By 

simulating this process 1,000 times and counting how many times I rejected the null hypothesis 

of optimality for the non-ideal forecast, I calculated the power by dividing the total number of 

rejections by the number of simulations.  

 I developed a MATLAB script that can find the size and power values for the MHMC 

optimality test in the cases where the maximum forecast horizon is 2, 3 and 4. Not only can this 

MATLAB script find the size and power properties for the MHMC test, but it also does this for 

the Mincer-Zarnowitz and zero autocorrelation forecast optimality tests. The reason I generate 

this information is so that I can compare the same properties of the MHMC test to established, 

well-known tests used in the field of evaluating financial forecasts. The following, as a reminder, 

is the Mincer-Zarnowitz regression used to test for forecast optimality: 

                                                                𝑌𝑡+ℎ = 𝛼0 + 𝛼1𝑌̂𝑡+ℎ|𝑡 + 𝑣𝑡.                               (22)                                                                  
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This test regresses the realized value on the forecasted value and an intercept, with the null 

hypothesis of forecast optimality testing if 𝑎 = 0  and 𝑏 = 1 (Mincer and Zarnowitz, 1969). This 

test specifically looks at whether or not the realized value, 𝐴𝑡, is close to the forecasted value, 𝑃𝑡.  

 Another well-known way to evaluate forecast optimality is with the zero autocorrelation 

test, which was discussed in the Introduction. This test looks at whether the forecast errors 

available to the forecaster on their forecast date have any relationship to forecasts made on that 

date for some date in the future. The following is the regression used for this test when looking at 

four lagged forecast errors (for any forecast horizon, h): 

              𝑒𝑡+ℎ|𝑡 =  𝛽0 +  𝛽1𝑒𝑡|𝑡−ℎ +  𝛽2𝑒𝑡−1|𝑡−ℎ−1 +  𝛽3𝑒𝑡−2|𝑡−ℎ−2 + 𝛽4𝑒𝑡−3|𝑡−ℎ−3 + 𝑢𝑡.       (23) 

This test regresses a forecast error on a certain number of forecast errors available to the 

forecaster at the time of the forecast and an intercept. The null hypothesis of forecast optimality 

tests if 𝛽0, 𝛽1, … , 𝛽4 = 0, as there should be no correlation between these forecast errors for an 

optimal forecast (Nordhaus, 1987).  

4.B. Size Discussion 

 Looking at Panel A in Tables 1, 2 and 3 at the end of this subsection, which are split up 

by the maximum forecast horizon for the generated multi-horizon forecasts, it is evident that the 

Multi-Horizon Moment Conditions (MHMC) test has size properties not too far from what is 

expected. The significance level used when testing was 5 %. If the size is equal or close to this 

value, then it can be said that the test appears to have good size properties. Although the MHMC 

test generally has size values close to what is expected, there is an issue for low phi, which is 

apparent in the column where phi = .1 in all three tables. In this case, particularly when there is a 

longer maximum forecast horizon, the MHMC test is severely oversized. This means that in the 
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case where a data set is not very persistent (has a low phi value), that the MHMC test would not 

be reliable.  

 I also want to discuss the size values for the Mincer-Zarnowitz and zero autocorrelation 

tests across these horizons, which can be found in Panel B and C respectively in the three tables 

below. This is important, as these are two well-known and widely-used forecast optimality tests. 

They can give a sense of what these values typically are for current forecast optimality tests and 

also show how well the MHMC test performs compared to them. To start, the zero 

autocorrelation test appears to be a bit undersized, particularly in the case where hmax = 2. This 

means that the test does not reject as many rational tests that would be expected. Next, the 

Mincer-Zarnowitz regression has great size properties. Across all horizons and all phi, the size 

values are extremely close to the significance level. Except for the case where phi = .1, the size 

values are similar for the MHMC test and these existing optimality tests. This is a great result for 

the MHMC forecast optimality test, as it means that, except for the case of very low phi, it has 

comparable finite-sample size properties to well-known existing tests.  

 

 

 

 

 

 

 

 

 

 

 



26 

 

TABLE 1: 

Size values for the three tests when hmax = 2 

Size Values: hmax = 2 

T ϕ 

  0.1 0.25 0.5 0.75 0.9 

Panel A: Multi-Horizon Moment Conditions 

50 10.8 6.4 3.2 3.8 4.1 

100 9.2 4 3.1 5 4.4 

250 5.8 2.7 2.5 3.6 4.4 

500 2.7 2.8 2.7 4.7 4.3 

Panel B: Mincer-Zarnowitz 

50 3.9 5.1 5.4 6.4 4.5 

100 4.7 4.3 5.3 6.4 6.5 

250 4.1 4.2 3.6 5.2 5.2 

500 3.5 2.6 4 4.7 5.1 

Panel C: Zero Autocorrelation 

50 2.5 3.8 4.6 2.9 4.5 

100 3 4.9 3.1 3.8 2.4 

250 3.8 3.3 4.8 4.2 4.5 

500 3.3 1.4 2.7 3.2 3.4 
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TABLE 2: 

Size values for the three tests when hmax = 3 

Size Values: hmax = 3 

T ϕ 

  0.1 0.25 0.5 0.75 0.9 

Panel A: Multi-Horizon Moment Conditions 

50 22.5 12.6 5.1 3.9 5.1 

100 19.6 8 4.3 5.1 5.3 

250 13.7 3.2 3.4 5.9 6.5 

500 9.8 2.6 3.5 5.2 6.9 

Panel B: Mincer-Zarnowitz 

50 5.4 3.5 5.7 3.5 4.1 

100 4.4 4.5 4.3 5.7 6.1 

250 4.5 3.3 4.6 6.1 7.1 

500 3.2 3.1 2.8 5.7 6.4 

Panel C: Zero Autocorrelation 

50 2.9 2.1 2.8 2.9 3.5 

100 5.1 3.7 3.6 3.1 4.9 

250 4.7 4.4 3.9 4.1 3.9 

500 3.7 3.7 3.7 4.2 4.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

TABLE 3: 

Size values for the three tests when hmax = 4 

Size Values: hmax = 4 

T ϕ 

  0.1 0.25 0.5 0.75 0.9 

Panel A: Multi-Horizon Moment Conditions 

50 38.5 7.6 6.1 4.2 2.5 

100 39.7 9.9 4.8 4 3.7 

250 39.5 8.5 3.8 4.4 4.2 

500 38.7 9.8 4 4 3.1 

Panel B: Mincer-Zarnowitz 

50 4.8 3.7 3.2 3.1 4 

100 4.2 5.1 4.1 4.9 4.7 

250 4.8 4.2 4.9 5.6 6.1 

500 3.3 4.4 4 5.4 5.2 

Panel C: Zero Autocorrelation 

50 2.5 2.2 2.8 2 2.7 

100 4.3 4.2 4.4 4.4 3.1 

250 5 4.3 4.5 5.1 3.6 

500 4.1 3.5 4.2 3.9 3.5 

 

4.C. Power Discussion 

 Having established that the Multi-Horizon Moment Conditions (MHMC) test generally 

has size values close to what is expected for a respectable multi-horizon forecast optimality test 

when hmax = 2, 3 and 4, it is appropriate to move on and analyze the power of this test. Based on 

the size tables from the last subsection, the first value where the MHMC test appears appropriate 

to use for all maximum forecast horizons is when phi = 0.25. Keeping this in mind, I chose to 

start my power analysis at this value. I do not analyze the power of the MHMC test for lower phi 

values since it could appear that the test is extremely powerful, however, that will not be due to 

the effectiveness of the test. The test statistic was shown to be oversized when phi = 0.1 and the 
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power from this test would be from the erratic behavior of the test statistic and not its 

effectiveness. Along with the case when phi = 0.25, I also perform the power analysis when phi 

= 0.5 and 0.75, to demonstrate how the power of the test changes relative to the Mincer-

Zarnowitz and zero autocorrelation test as phi changes.   

 When plotting the power curves, which is done in Figures 2, 3 and 4 below, I have the 

power on the y-axis and the noise multiplier on the x-axis. As talked about earlier, the noise 

multiplier is the variable that controls how poor and noisy the suboptimal forecast is. The larger 

the value of 𝜎𝑛 in Equation (21), the larger the magnitude of the noise that is added to the 

optimal forecast and the worse the forecast is. On this graph, the y-axis is showing what 

percentage of suboptimal forecasts are rejected, for a given level of noise. The forecasts are 

getting noisier as the noise multiplier increases, which is why the power is expected to increase, 

eventually reaching a max value of 100 %. The plots also all include a reference line, when the 

power is equal to 5 %. When the noise multiplier is equal to zero, the power is the same as the 

size and the reference line can help show how close the size of each test is to the ideal value of 5 

%. This line can also help show tests that lack power for this study and always have power of 

around 5 % for all noise multiplier values.  

 Now having established how to interpret Figures 2, 3 and 4 below, I would like to discuss 

the important findings from these plots. To begin, the zero autocorrelation test always has a 

power value of around 5 % and this value does not increase as the forecast gets worse or come 

close to 100 %. That means that this test cannot be used to reliably reject optimality for this type 

of noisy, suboptimal forecast. The property of zero autocorrelation between certain forecasts still 

holds for both the optimal and non-optimal forecasts in this case.  
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 Next, the power curves for the MHMC test have the anticipated shape for all horizons 

and phi values that are tested. The Mincer-Zarnowitz test also has power curves that look as one 

would expect. Interestingly enough, the MHMC test has less power than the Mincer-Zarnowitz 

in certain cases, while in others it has more. Whether or not the MHMC test is more or less 

powerful is dependent upon the phi value and maximum forecast horizon.  

 The results across phi for the cases where hmax = 2 and hmax = 3 are extremely similar. For 

these maximum forecast horizons, when phi = 0.25, the Mincer-Zarnowitz’s power curve is 

above that of the MHMC test, which indicates better performance. Next, when phi = 0.5, the 

Mincer-Zarnowitz’s power curve is still above that of the MHMC test, but the two curves are 

closer together than when phi = 0.25. When phi = 0.75, the result changes and the MHMC test’s 

power curve is above that of the Mincer-Zarnowitz. The conclusion that can be drawn from this 

is that the MHMC test becomes more powerful relative to the Mincer-Zarnowitz test as the value 

of phi increases for this type of suboptimal forecast. There is some value between phi = 0.5 and 

phi = 0.75 where these two tests should have around the same power. For all values of phi 

greater than this value, the MHMC test is more powerful, while for all values less than this value, 

the Mincer-Zarnowitz test is more powerful for this type of suboptimal forecast.  

 The reason I use the Mincer-Zarnowitz as a reference is because this test is well-known 

for its strong power. In having similar, or even better performance, the MHMC test can be said to 

be performing really well. As noted, for certain phi values, when hmax = 2 and hmax = 3, the 

MHMC test performs better. This means that for forecasts with a large enough phi value, it can 

be argued that the MHMC test is more reliable at rejecting forecast optimality for noisy, non-

optimal multi-horizon forecasts than the Mincer-Zarnowitz test.   
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 When hmax = 4, the MHMC test performs as well as the Mincer-Zarnowitz test when phi 

= 0.25 and better when phi = 0.5 and 0.75. This is a great result to see for this test, as it does a 

better job of rejecting this type of suboptimal multi-horizon forecast for a larger range of phi 

values. The intuition behind this result has to do with the total number of conditions being tested 

to look at forecast optimality. In the case where hmax = 4, 16 unique conditions are tested, while 

this number is 9 when hmax = 3 and 4 when hmax = 2. With 16 conditions, the test has more 

information available to it and more opportunity to determine that a condition is violated and 

conclude that a forecast is not optimal. With this result, it is evident that the MHMC test appears 

to perform better than the Mincer-Zarnowitz forecast optimality test for both higher values of phi 

and longer time horizons for this type of suboptimal multi-horizon forecast.  
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FIG. 2.–Power curves when hmax = 2, T = 150 and a. Phi = 0.25, b. Phi = 0.5 and c. Phi = 0.75 
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FIG. 3.–Power curves when hmax = 3, T = 150 and a. Phi = 0.25, b. Phi = 0.5 and c. Phi = 0.75 
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FIG. 4.–Power curves when hmax = 4, T = 150 and a. Phi = 0.25, b. Phi = 0.5 and c. Phi = 0.75 
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 Before moving on to general conclusions about these results, I want to get across an 

extremely important point about the analysis of the power for these tests. In this case, I am 

specifically looking at the power for the type of non-optimal forecasts that I generated. I 

generated suboptimal forecasts by adding noise to the optimal forecast, which is detailed in 

Equation (21) above. There are many ways that a forecast can fail to be optimal, which is why 

multiple tests exist looking at forecast optimality, and this is just one of those ways. The 

conclusions that I am drawing about the power properties of these tests applies to how reliably 

they can reject this type of suboptimal forecast. This is important to understand, as it puts into 

context some of the results, such as what was found for the zero autocorrelation test. For this 

type of suboptimal forecast, it has no power, but that does not mean that it has no power for all 

types of irrational forecasts. Although this power study does not cover the realm of all possible 

types of irrational forecasts, it still gives strong insight into how the tests perform and compare to 

each other.  

 Overall, the MHMC test’s power curves, across all maximum forecast horizon and phi 

values looked at, show the quality of this test. A key component of any test evaluating forecast 

optimality is that it can reject forecasts that are not optimal and these results demonstrate that the 

MHMC test has this ability. Also, now that it is evident that the MHMC test can stand on its own 

and that the moment conditions that it evaluates are legitimate, there is now the possibility to 

combine this test with the Mincer-Zarnowitz and zero autocorrelation tests. These tests evaluate 

different properties that should hold for forecast optimality. A combination of these tests would 

be expected to have both stronger power curves and reject a wider breadth of different types of 

irrational forecasts. I explore this idea in the next section.  
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5.A. Combining Forecast Optimality Tests 

 In the previous section, I claim that a combination of the Mincer-Zarnowitz, zero 

autocorrelation and Multi-Horizon Moment Conditions (MHMC) forecast optimality tests should 

result in a test that will have stronger power curves and reject a wider breadth of different types 

of irrational forecast. I now evaluate the validity of this statement. By combining these three tests 

in two separate manners, I can use the same suboptimal forecasts that I did in the last section to 

see how the new power curves compare to the power curves of each individual test.  

 As mentioned, I combine the three individual tests in two different ways. The first way 

that I combine these tests is by combining all their moment conditions into one big GMM test. 

Each test’s associated moments are put into one test, from which I obtain a J-statistic and p-

value. The second way that I combine these tests is with a method known as Bonferroni bounds. 

With this method, I perform each test individually with a significance level that is one-third that 

of the significance level for the overall test. This means that if the significance level that I use for 

the overall test is 5 %, that I use 1.67 % as the significance level for each individual test to see if 

it rejects or fails to reject forecast optimality. I then use an “or” statement between all the 

individual tests that says, if any of them reject optimality, then optimality should be rejected 

overall by the combined test.  

 With the combined moments test, I once again have the situation where there are 

redundant moments. I handle this issue in the same manner that I did earlier, by including only 

the unique moments in the GMM test. I make sure that I include at least one moment from the 

Mincer-Zarnowitz, zero autocorrelation and MHMC test so that the combined test includes 

moments from the three complementary forecast optimality tests. Removing these redundant 

moments is necessary so that the GMM test is reliable and does not always produce an extremely 
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large J-statistic that strongly rejects forecast optimality, indicating that the asymptotic 

distribution does not hold in finite samples.    

5.B. Combined Tests Size Discussion 

 I first evaluated the size of the combined tests, to make sure the asymptotic distribution of 

the test statistic is a good approximation in a finite sample, before moving on to evaluate the 

tests’ power properties. I perform this size analysis the same way that I did earlier. I look at 

different sample sizes and values of phi, using a significance level of 5 %, and see how those 

parameters impact the size value of the combined tests.  

 The size of the combined tests can be found in Tables 4, 5 and 6. I will first focus on the 

results from Panel A. Just as with the Multi-Horizon Moment Conditions (MHMC) test, the 

combined moments test generally has size values close to what is expected for a reliable test. 

This means that the size is consistently close to the 5 % significance level used when evaluating 

forecast optimality for most phi and sample sizes. The problematic values are found at low phi, 

for all maximum forecast horizons, and very high phi when hmax = 2. In these cases, the 

combined moments test is oversized and has a size value noticeably greater than the 5 % 

significance level. It is not surprising that this is the case for low phi values. The MHMC test 

was oversized for low phi and this issue is not mitigated by combining this test with the Mincer-

Zarnowitz and zero-autocorrelation test. It is interesting to see that the combined moments test is 

now slightly oversized when phi = 0.9 and hmax = 2. None of these tests appeared to be 

individually oversized at these values, however, it appears that this phi is impacted when the 

tests are combined.  



38 

 

 Next, I will discuss the size results from combining the individual tests with the 

Bonferroni bounds method, which can be found in Panel B in the tables below. For each 

maximum forecast horizon, the Bonferroni bounds combined test is oversized when phi = 0.1 

and then has values reasonably close to the 5 % significance level across the other phi values and 

sample sizes. These results are in agreement with what would be expected based on the size 

values from each individual test. The values for the higher phi are slightly oversized, particularly 

in the cases where hmax = 3 and hmax = 4, but there are no substantial issues. Just as with the 

combined moments combined test, these size values are reasonable and it appears valid to move 

on and evaluate the power of both of these tests.   

 By combining the three individual tests in two different ways, my goal was to determine 

the best way to combine these tests into one. In doing this size analysis, I have gained valuable 

information into solving this problem. By seeing that the Bonferroni bounds test and combined 

moments test have similar size values, it is apparent that there is no obvious advantage to using 

one test over the other, in terms of finite-sample size. If there is any difference, it appears that the 

Bonferroni bounds test generally has more issues with being oversized than the combined 

moments test. However, this difference is not substantial enough to make any conclusions about 

what is the better way to combine the Mincer-Zarnowitz and zero autocorrelation test, along with 

the MHMC test.  
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TABLE 4: 

Size values for the combined tests when hmax = 2 

Size Values: hmax = 2 

T ϕ 

  0.1 0.25 0.5 0.75 0.9 

Panel A: Combined Moments 

50 3.2 4.1 3.2 5.2 7.8 

100 6.5 6.3 6.5 7.1 11.4 

250 6.7 6.1 9 10 9.2 

500 5.8 7.6 8.3 8.6 9.7 

Panel B: Bonferroni Bounds 

50 13.5 11.4 6.3 8.5 7.4 

100 10.9 5.8 6.2 7.4 8.4 

250 5.3 4.2 5.5 6.8 7 

500 3.1 3.5 2.9 5.2 5.6 

 

TABLE 5: 

Size values for the combined tests when hmax = 3 

Size Values: hmax = 3 

T ϕ 

  0.1 0.25 0.5 0.75 0.9 

Panel A: Combined Moments 

50 28.9 10.5 4 5.3 4.4 

100 30.7 14.9 8.5 8.6 8.3 

250 26.5 14.8 7 8.8 9.2 

500 18.7 13.2 8.1 8.9 11.1 

Panel B: Bonferroni Bounds 

50 25.7 15.6 8.1 7.7 8.1 

100 21.8 15.7 8.7 9.7 8.9 

250 17.9 8.3 7.4 9.6 11.1 

500 13.9 5 5.8 7.6 9.5 
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TABLE 6: 

Size values for the combined tests when hmax = 4 

Size Values: hmax = 4 

T ϕ 

  0.1 0.25 0.5 0.75 0.9 

Panel A: Combined Moments 

50 22.4 8.2 6.9 6.1 6 

100 34.7 12.4 6.9 6.6 7.8 

250 34.6 12.1 7.1 5.9 6.2 

500 27.4 13.2 7.6 6.7 6.7 

Panel B: Bonferroni Bounds 

50 35.4 10.5 6 5.3 5.3 

100 37.3 12.1 8.5 10 8.7 

250 38 12.5 6.9 9.1 8.9 

500 36.8 11.2 7.5 8.5 8.1 

 

5.C. Combined Tests Power Discussion 

 When generating results for the combined power curves, I used a sample size of 150, just 

as I did for the earlier power study. On these graphs, I include the following curves: combined 

moments, Bonferroni bounds, Mincer-Zarnowitz and Multi-Horizon Moment Conditions 

(MHMC). I do not include the zero autocorrelation curve in these figures, as it is shown in the 

last section that this test does not have any power and hovers around 5 % for this type of 

suboptimal forecast.   

 I will start by discussing the relevant findings from when phi = 0.25 for all maximum 

forecast horizons. In looking at the first plot in Figures 5, 6 and 7, both combined tests perform 

better than the MHMC test alone. This demonstrates that, by combining the three tests, the power 

of the combined tests is stronger than the weakest link that has power, which is the MHMC test. 

In two cases, when hmax = 2 and hmax = 4, the combined moments power curve is above all other 
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curves, which means that it has more power than the most powerful individual test. Also, these 

plots demonstrate that the combined tests do reject a wider breadth of suboptimal forecasts. As 

mentioned, the zero autocorrelation test has no power for this type of irrational forecast. Both 

combined tests, however, do have power and are able to reject forecast optimality for a greater 

number of forecasts as they get worse. These initial findings when phi = 0.25 confirm my 

original hypothesis regarding the benefits of combining the Mincer-Zarnowitz, zero 

autocorrelation and MHMC test into one.  

 Looking at the second and third plots in Figures 5, 6 and 7, it is evident that the results 

hold across phi. The combined moments test is consistently more powerful than the most 

powerful individual test when hmax = 2 and hmax = 4. When hmax = 3, the combined moments test 

consistently tracks the most powerful individual test for all values of phi. With the Bonferroni 

bounds test, it consistently lines up with the most powerful test for all maximum forecast 

horizons and values of phi. These results demonstrate that the findings when phi = 0.25, hold 

when phi = 0.5 and phi = 0.75 and that the same benefits from combining the three individual 

tests into one apply in these cases.  

 The last piece is to touch on what combined test appears to be doing the best job. There 

does not appear to be a substantial difference between the size values for the Bonferroni bounds 

and combined moments tests. However, when looking at each tests’ power curves, the combined 

moments test appears to be doing a better job. For most combinations of phi and maximum 

forecast horizon, the combined moments test has more power than the Bonferroni bounds 

combined test. In the very worst case for the combined moments test (when hmax = 3), it has 

about the same power as the other combined test. Thus, it appears to be pretty consistently more 

powerful than the Bonferroni bounds combined test. My conclusion from this is that the 
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combined moments test is the better way to combine these three forecast optimality tests. I still 

think the Bonferroni bounds method is a solid way to combine these tests, but that it is not as 

effective as the combined moments test.  
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FIG. 5.–Power curves when H =2, T = 150 and a. Phi = 0.25, b. Phi = 0.5 and c. Phi = 0.75 
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FIG. 6.–Power curves when H =3, T = 150 and a. Phi = 0.25, b. Phi = 0.5 and c. Phi = 0.75 
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FIG. 7.–Power curves when H =4, T = 150 and a. Phi = 0.25, b. Phi = 0.5 and c. Phi = 0.75 
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 After going through this analysis, I have explained all the tests that I use to evaluate 

empirical forecasts. I can now see if any of these tests reject forecast optimality of certain 

forecasts from the Survey of Professional Forecasters. I chose to evaluate forecasts from this 

group since they are very well-known and develop numerous multi-horizon forecasts that are 

made quarterly, which means that the MHMC test can be used to test for forecast optimality. The 

reason forecast optimality tests are developed is to evaluate empirical data, with the intention of 

seeing if the forecasters are doing an optimal job. If they are not, then the discussion turns into 

what they could do better and what feature of optimality their forecasts did not pass.  

6.A. Empirical Application 

 Using the Multi-Horizon Moment Conditions (MHMC), Mincer-Zarnowitz, zero 

autocorrelation and combined tests, I evaluate the optimality of multi-horizon forecasts made 

quarterly by the Survey of Professional Forecasters for the following variables: Consumer Price 

Index (CPI) Inflation Rate, Real GDP Growth, Change in the 3-Month Treasury Bill Rate and 

the Percent Change in the Industrial Production Index (“Survey of Professional Forecasters”, 

2018). I chose to evaluate these forecasts because they all look at important macroeconomic 

variables. The Survey of Professional Forecasters provides data for forecasts for each of these 

variables made by certain individuals. Instead of evaluating one individual forecast, I examine 

the “consensus” forecast, which is the mean forecasted value across all survey respondents.  

 For each variable, I evaluate the forecasts that predict how it will change over time. 

Looking at the change or percent change, as opposed to the absolute level, is important because it 

makes it much more likely that the data sets are covariance stationary. It is not possible to prove 

covariance stationarity however, it is possible to reject it for a given time series. For the absolute 

level of all variables, except for the 3-Month Treasury Bill Rate, there is evidence against them 
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being covariance stationary. By converting to the change or percent change, it is much more 

likely that they are covariance stationary, although it cannot be proved. It is essential that these 

data sets are covariance stationary as this is a required condition for the Wold Decomposition, 

which is used to derive the moment conditions for the MHMC test. If this assumption does not 

hold, the Wold Decomposition is not valid, which means that the derived moments for the 

MHMC test are also no longer valid.  

 I also want to discuss how I calculate the phi value for each data set. As seen earlier, this 

value plays an important role in the reliability and effectiveness of the MHMC and combined 

tests when evaluating the size and power with simulated data and forecasts. To calculate this 

value, I run the following regression on the realized values of each data set:  

                                                              𝑦𝑡 = 𝜙0 + 𝜙1𝑦𝑡−1 + 𝑒𝑡.                                                (24) 

In this regression, the coefficient, 𝜙1, is the estimated phi value for the data set. I also run a 95 % 

confidence interval on this coefficient, to find the range of values where I can say that I am 95 % 

certain this phi value lies. I include the results from this regression for each time series in Table 

7. In generating these values, it is evident that the CPI Inflation Rate time series has a lower phi 

value, which leads to poor size properties in the simulation studies. This means that caution is 

needed when I use the MHMC and combined tests to evaluate this data set. However, the three 

other times series have relatively large estimated 𝜙1 values, so I feel confident that the MHMC 

test and combined tests should work well for those.  

 I include the p-values from each multi-horizon forecast evaluation in Table 8. With each 

optimality test, the null hypothesis is that the forecast being evaluated is optimal. The p-value 

can be used to say whether I reject or fail to reject the null hypothesis of optimality. For these 
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tests, I use a significance level of 5 %, as I did with all the simulations. I highlight the forecasts 

where the p-value is less than .05, to indicate that forecast optimality is rejected. As mentioned 

throughout this thesis, the MHMC test, along with the Mincer-Zarnowitz and zero 

autocorrelation tests are meant to serve as complements to each other. They test for different 

properties of an optimal forecast under mean squared error loss. This is why I evaluate each 

multi-horizon forecast with the three individual tests and the combined tests. I can see how many 

properties, if any, these forecasts appear to be violating for a rational forecast. Also, as shown in 

the finite-size simulation study, each test individually has around a 5 % chance of falsely 

rejecting the null hypothesis. This serves as additional motivation for looking at the results with 

all the individual and combined tests, in order to get the full story behind the optimality of each 

multi-horizon forecast.   

TABLE 7: 

Calculation of 𝜙0 and 𝜙1 for all time series  
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TABLE 8: 

P-values from each test used to evaluate forecasts from the Survey of Professional Forecasters 

Survey of Professional Forecasters Forecast Evaluation 

Test Maximum Horizon 

  2 3 4 

Panel A: CPI Inflation Rate (Phi = 0.094, T = 141) 

Mincer-Zarnowitz 0.021 0.046 0.750 

Zero-Autocorrelation 0.030 0.235 1.000 

Multi-Horizon Moment Conditions 0.451 0.481 0.708 

Combined Test: Bonferroni Bounds 0.064 0.137 1.000 

Combined Test: Combined Moments 0.036 0.001 0.000 

Panel B: Real GDP Growth (Phi = 0.389, T = 168) 

Mincer-Zarnowitz 0.070 0.259 0.739 

Zero-Autocorrelation 0.120 0.180 1.000 

Multi-Horizon Moment Conditions 0.953 0.924 0.270 

Combined Test: Bonferroni Bounds 0.211 0.541 0.810 

Combined Test: Combined Moments 0.186 0.007 0.067 

Panel C: Change in the 3-Month Treasury Bill Rate (Phi = 0.310, T = 144) 

Mincer-Zarnowitz 0.000 0.011 0.013 

Zero-Autocorrelation 0.019 0.000 0.472 

Multi-Horizon Moment Conditions 0.001 0.000 0.000 

Combined Test: Bonferroni Bounds 0.001 0.000 0.000 

Combined Test: Combined Moments 0.000 0.000 0.000 

Panel D: Percent Change in the Industrial Production Index (Phi = .581, T = 196) 

Mincer-Zarnowitz 0.252 0.491 0.438 

Zero-Autocorrelation 0.125 1.000 0.541 

Multi-Horizon Moment Conditions 0.030 0.006 0.002 

Combined Test: Bonferroni Bounds 0.089 0.019 0.006 

Combined Test: Combined Moments 0.009 0.003 0.033 

  

Bold = forecast optimality rejected at 5 % significance level 
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6.B. Consumer Price Index Forecast Evaluation  

 The first multi-horizon forecast that I will discuss is the one made by the Survey of 

Professional Forecasters for the CPI Inflation Rate. CPI is defined as the weighted average of the 

prices for a basket of goods and services and is used to get the CPI Inflation Rate by looking at 

the percent change in its level over time (“Consumer Price Index – CPI”, 2018). Being able to 

accurately forecast this variable is important for determining what economic policy to set to keep 

the United States economy healthy and in good standing. For this data set, the estimated phi 

value is .094 and the sample size is 141. Based on the simulation size study that I conducted, it 

was shown that, when phi = 0.1, the Multi-Horizon Moment Conditions (MHMC) test and 

combined tests were oversized when hmax = 3 and hmax = 4. This means that the MHMC test, as 

well as the combined tests, are not reliable ways to evaluate those forecasts. However, when hmax 

= 2, this issue no longer exists. I focus on the results from all tests when hmax = 2 and only the 

results for the Mincer-Zarnowitz and zero autocorrelation forecast optimality tests when hmax = 3 

and hmax = 4.  

 When hmax = 2, forecast optimality is rejected by both the Mincer-Zarnowitz and zero 

autocorrelation tests. The combined test using combined moments also rejects optimality, while 

the combined test using Bonferroni bounds does not. One of the goals of the combined tests is to 

reject optimality when any of the individual tests do, which shows that the combined moments 

test appears to be doing a more effective job than the Bonferroni bounds combined test. These 

results indicate that for the multi-horizon forecast for the CPI Inflation Rate that includes the 1 

and 2 quarter out forecasts that the Survey of Professional Forecasters do not appear to be doing 

an optimal job. The failure of these tests hopefully can give this group insight into why their 

multi-horizon forecast is not optimal in this case and what they can change to improve it.  
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 As mentioned, when hmax = 3 and hmax = 4, the results from the MHMC and combined 

tests are not reliable, due to the low phi value of the data set. It is interesting to note that 

optimality is still rejected by the Mincer-Zarnowitz test when hmax = 3. In this case, the zero 

autocorrelation test fails to reject forecast optimality. When hmax = 4, none of the viable tests 

reject forecast optimality. This demonstrates that the issues in the multi-horizon forecast are 

more heavily focused in the h = 1 and h = 2 forecasts and that the Mincer-Zarnowitz and zero 

autocorrelation criteria for forecast optimality hold more strongly when h = 3 and h = 4.  

 There are two key takeaways from the evaluation of the Survey of Professional 

Forecasters’ multi-horizon forecast of the CPI Inflation Rate. First, this analysis shows the 

effectiveness of the combined moments combined test. One of the goals of this test was to reject 

a wider breadth of forecasts than any individual test. By evaluating the moment conditions of the 

Mincer-Zarnowitz, zero autocorrelation and the MHMC test in one test, it rejected forecast 

optimality when hmax = 2, even though the MHMC test did not. The Bonferroni bounds test, 

which combines the three individual tests in a slightly different way, is unsuccessful in doing 

this. The second takeaway is that the Survey of Professional Forecasters could be doing a better 

job in their forecasts that are made 1 and 2 quarters out for the CPI Inflation Rate. When hmax = 

2, two different tests reject forecast optimality, meaning two different sets of optimal properties 

that should hold under squared error loss do not.  

6.C. Real GDP Growth Forecast Evaluation  

 The Survey of Professional Forecasters’ multi-horizon forecast of Real GDP Growth in 

the US is the second forecast that I evaluated. GDP is the value of all goods and services in a 

country. Real GDP Growth is the percent change in value of GDP over a certain time period, 

adjusted for inflation (“Gross Domestic Product – GDP”, 2018). This is another important 
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macroeconomic variable to forecast accurately. Knowing what GDP is expected to look like in 

the future can help shape policy to make sure the US economy stays healthy and stable. For 

example, if it looks like GDP is going to go down, US policy makers would need to think of a 

strategy that can help limit the issues that could bring or to turn that trend around.  

 When hmax = 2 and hmax = 4, forecast optimality is never rejected, while when hmax = 3, 

there is only one test for which forecast optimality is rejected. This illustrates that, when 

forecasting Real GDP Growth, the Survey of Professional Forecasters are doing a pretty optimal 

job. It is reassuring to see that optimality is only rejected for the combined moments combined 

test when hmax = 3. It means that, overall, the forecasters are doing a good job of forecasting this 

important macroeconomic variable. This is insightful information, as it means that these 

forecasts should be looked at and referenced when setting economic policy, as they are reliable 

and rational forecasts of Real GDP Growth.  

 The only result that I would like to discuss further is the rejection of forecast optimality 

when hmax = 3 by the combined moments test. There are two possible explanations for this. The 

first is that the evaluation of all three tests together results in a rejection of forecast optimality. 

No one test individually rejects forecast optimality, yet, when evaluated together in one test, 

there is enough there to reject the null hypothesis. This would mean that there are some small 

issues with each test that, when combined, result in a rejection.  

 Another possible explanation has to do with the estimation of the phi value. Looking at 

the 95 % confidence interval in Table 7 for the estimated phi value, the lower bound is .21. If the 

phi value was actually closer to this value than the estimated .359, there could be issues with the 

reliability of the Multi-Horizon Moment Conditions (MHMC) and combined tests. As shown, for 

values of phi that are .25 or lower, there are issues with these tests being oversized when hmax = 3 
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and hmax = 4. Being oversized would result in a higher test statistic and lower p-value from the 

test. If this was the case with the phi value for this data set, it could explain the low p-value and 

rejection from this combined test. I find this explanation to be less likely, as this would also 

affect the MHMC test when hmax = 3 and hmax = 4 and the combined tests when hmax = 4. 

Nonetheless, whichever explanation is correct, the moral of the story is the same. The Survey of 

Professional Forecasters do a good job of forecasting Real GDP Growth in the US.  

6.D. Change in the 3-Month Treasury Bill Rate Forecast Evaluation  

 The third multi-horizon forecast that I will discuss is the one made by the Survey of 

Professional Forecasters for the Change in the 3-Month Treasury Bill Rate. This value is the 

change in the yield of 3-month treasury bill in the US over time (“Treasury Bill - T-Bill”, 2018). 

Being able to forecast this change is important to investors. The price of a treasury bill is related 

to its yield and being able to know how the yield will change over time can give insight into how 

the price will change. This forecast must also take into account variables that impact yield, such 

as the interest rate in the United States and can give insightful information into those variables. 

 For these multi-horizon forecasts, optimality is rejected for all tests when hmax = 2 and 

hmax = 3. When hmax = 4, the zero autocorrelation test is the only test where forecast optimality is 

not rejected. This demonstrates that for this forecast, the Survey of Professional Forecasters are 

really doing a suboptimal job. This is the opposite of what was just found for this group’s 

forecasts of Real GDP Growth. In two cases, three different individual tests reject forecast 

optimality and in one case two different individual tests reject forecast optimality for this multi-

horizon forecast. These individual tests all evaluate different properties of optimal forecasts 

under squared error less, which means that there is a lot that the Survey of Professional 
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Forecasters need to think about when trying to improve their forecast for the Change in the 3-

Month Treasury Bill Rate.  

 These results indicate that these multi-horizon forecasts for the Change in the 3-Month 

Treasury Bill Rate are not optimal to use when trying to predict the future value of this variable. 

The fact that forecast optimality is so strongly rejected in so many cases demonstrate that these 

forecasts are far from optimal. The Survey of Professional Forecasters need to think about what 

could cause such strong rejections. They should start by trying to find out if there is one 

consistent issue that leads to so many tests rejecting forecast optimality or if there are there a 

plethora of different issues that need to be corrected for. Nonetheless, this analysis should result 

in one principal conclusion with regard to this forecast. The Survey of Professional Forecasters 

are not doing an optimal job of forecasting the Change in the 3-Month Treasury Bill Rate and 

should consider why this is the case.  

6.E. Percent Change in the Industrial Production Index Forecast Evaluation  

 The final multi-horizon forecast that I will discuss is the one made by the Survey of 

Professional Forecasters for the Percent Change in the Industrial Production Index. The 

Industrial Production Index level measures real output of all facilities involved with 

manufacturing, mining and electric and gas utilities in the United States (“Board of Governors of 

the Federal Reserve System: Industrial Production Index”, 2018). By looking at how this level 

changes over time, the Percent Change in the Industrial Production Index can be computed. Just 

as with the three other variables that have been evaluated, accurately forecasting this variable is 

important. Knowing how this value is expected to change over time can give a sense of how this 

sector is expected to perform, which could help indicate the future strength of the US economy, 

as well as shape investment decisions.  
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 For this forecast of the Percent Change in the Industrial Production Index, forecast 

optimality is rejected by the Multi-Horizon Moment Conditions (MHMC) test and both 

combined tests when hmax = 3 and hmax = 4.  When hmax = 2 forecast optimality is rejected by the 

MHMC test and just the combined moments combined test. This is an extremely meaningful and 

exciting result for the MHMC test, as it is the only individual test where forecast optimality is 

rejected. This means that if I had not developed the MHMC test and only evaluated forecast 

optimality of this multi-horizon forecast with the Mincer-Zarnowitz and zero autocorrelation 

tests, that I would have failed to reject the null hypothesis of forecast optimality in all cases. The 

goal of the MHMC test is to serve as a complement to existing tests and to evaluate new features 

of forecast optimality. In developing this test, I wanted to be able to identify a wider breadth of 

suboptimal forecasts, with the intent of trying to give forecasters as many tools as possible to 

make rational and optimal forecasts. In this case, it appears that the Survey of Professional 

Forecasters are doing a pretty good job of satisfying the properties of an ideal forecast tested by 

the Mincer-Zarnowitz and zero autocorrelation test, but not as great of a job with the properties 

that the MHMC test evaluates.  

 I will now try and give the intuition behind this result and explain why forecast 

optimality is rejected by the MHMC test, but not by the Mincer-Zarnowitz and zero 

autocorrelation tests. The Mincer-Zarnowitz test evaluates the regression in Equation (22) above, 

which looks at whether a forecast is biased or inefficient. This test ultimately is evaluating the 

absolute accuracy of a forecast and looking at how the forecasted values compare to the realized 

values of a variable. Since the test fails to reject forecast optimality, it can be said that 𝛼0 is not 

statistically different from 0 and 𝛼1 is not statistically different from 1 in the Mincer-Zarnowitz 

regression. The zero autocorrelation test evaluates the regression in Equation (23) above, looking 
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at specific correlations in forecast errors. There should be no relationship between the forecast 

errors available at the time a forecast is made and forecast errors from forecasts made on that 

day. For this forecast, there is no indication that there are correlations in these forecast errors, as 

forecast optimality is never rejected by the zero autocorrelation test.  

 Lastly, the MHMC test looks at the variances, covariances and autocovariances between 

particular forecast errors made for a multi-horizon forecast. Specifically, it looks at the optimal 

forecast errors for forecasts that have an overlapping period of time between when the forecast is 

made and realized and should have a non-zero relationship. In each case, these relationships 

between optimal forecast errors do not appear to hold. A plausible explanation for this is that the 

information available to forecasters is not being used efficiently across all horizons. The 

relationship between the forecast errors that I have derived for the MHMC are not holding, 

which means the forecasts are being differently impacted by news that results in them deviating 

from the actual value. The main takeaway from this analysis should be that the Survey of 

Professional Forecasters could do a better job of forecasting the Percent Change in the Industrial 

Production Index over multiple horizons and that the MHMC test was the tool used to discover 

this.  

6.F. Empirical Application Conclusion 

 Before concluding this section, I must justify one important assumption that I made for 

all these forecasts. As a reminder, the moment conditions for the Multi-Horizon Moment 

Conditions (MHMC) test are all based on squared error loss, which is a symmetric loss function. 

This means that forecasters do not penalize being above or below the forecasted value 

differently. If forecasters do not follow this type of loss function, then the tests that I am using to 

evaluate forecast optimality are not reliable. For these four multi-horizon forecasts, a strong case 
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can be made that the Survey of Professional Forecasters follow a symmetric loss function. From 

the Literature Review, it is evident that most times asymmetric loss exists, it is when forecasts 

are related to developing policy or when companies are trying to give off certain indications 

about its future performance. With the Survey of Professional Forecasters, these individuals are 

not pushing policy or trying to influence anyone with their forecasts. They are simply a group of 

people trying to do their best job to forecast the values of certain variables. There are no clear 

indications that they would have asymmetric loss for any of the variables that I evaluated and I 

think it is appropriate to assume squared error loss for these forecasters.  

 I will conclude this section by summarizing the main points and results. First, it appears 

that the Survey of Professional Forecasters do an optimal job of forecasting Real GDP Growth, 

but that there are improvements that can be made with their multi-horizon quarterly forecasts of 

the CPI Inflation Rate, Change in the 3-Month Treasury Bill Rate and the Percent Change in the 

Industrial Production Index. Second, the MHMC test demonstrated its usefulness in the forecast 

evaluation of the Percent Change in the Industrial Production Index forecast, as it was the only 

individual test to reject forecast optimality. Lastly, the combined moments combined test showed 

its effectiveness in practice. For the multi-horizon forecast evaluation of the CPI Inflation Rate, it 

rejected forecast optimality when hmax = 2 and only the Mincer-Zarnowitz and zero 

autocorrelation tests rejected optimality. In this empirical evaluation, this combined test proved 

that it can reject a wider breadth of forecasts than any individual test, which was shown in the 

simulation study earlier. This section hopefully provided interesting intuition into how good of a 

job the Survey of Professional Forecasters are doing forecasting several important 

macroeconomic variables, while showing the effectiveness and usefulness of the developed 

MHMC and combined tests in practice.  
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7. Conclusion 

 In this thesis, I develop the Multi-Horizon Moment Conditions (MHMC) test for 

evaluating multi-horizon forecast optimality under squared error loss. The test is meant to serve 

as a complement to other existing tests that evaluate forecast rationality. It tests for conditions 

that should hold for an optimal forecast, but are not currently tested for. The MHMC test 

specifically looks at the variances, covariances and autocovariances of optimal forecast errors 

that should have a non-zero relationship for multi-horizon forecasts. The zero autocorrelation 

forecast optimality test says that there should be no correlation between forecast errors available 

at the time a forecast was made and any forecast errors for forecasts made on that same date for 

some point in the future. However, there is no test that is currently based on the relationships 

between optimal forecast errors with overlapping time between when the forecast is made and 

realized. I derive what these relationships should be when the maximum forecast horizon is 2, 3 

and 4 for a multi-horizon forecast.  

 After deriving the moment conditions for each maximum forecast horizon, I implemented 

them into a test using Generalized Method of Moments (GMM). I developed a script in 

MATLAB that can perform the MHMC test and then conducted a simulation study to evaluate 

its size and power properties. My initial analysis involved looking at the size of this test, along 

with the well-known Mincer-Zarnowitz and zero autocorrelation tests. When evaluating size, I 

found that the MHMC test is typically oversized for series with low autocorrelation, but that it 

generally behaves as anticipated for series with autocorrelation above 0.25. I then performed a 

power analysis, specifically looking at how powerful the MHMC test is for a noisy, suboptimal 

forecast. It was found to have power for these types of irrational forecasts and it was shown that 

there are cases where the MHMC test is more powerful and less powerful than the Mincer-



59 

 

Zarnowitz test, depending on the phi value of the data generating process and the maximum 

forecast horizon. The results from the simulation studies that I ran showed that the MHMC test is 

an effective way to test for forecast optimality and that it would be appropriate to use to evaluate 

empirical forecasts. 

 Before moving on to evaluate empirical forecasts using the MHMC test, I developed two 

different combined forecast optimality tests. Since the Mincer-Zarnowitz, zero autocorrelation 

and MHMC tests all evaluate different properties of forecast optimality under mean squared 

error loss, I thought it would be more effective to implement all the properties that they test for 

into one combined test. The first way that I do this is by combining all the different moments 

from each test into one big GMM test. Next, the second way that I do this is with a method 

known as Bonferroni bounds. In this case, I perform each test separately and use a significance 

level that is one-third of the total significance level chosen for each individual test. After doing 

this, I evaluate the size and power of these two combined tests. I conclude that the combined 

moments test is more effective and reliable, as the Bonferroni bounds test is slightly more 

oversized and typically not as powerful.  

 I then evaluate the forecast optimality of four different multi-horizon forecasts made by 

the Survey of Professional Forecasters. These forecasts are all made at 1, 2, 3 and 4 quarter time 

horizons. I evaluate three multi-horizon forecasts, each with a different maximum forecast 

horizon, for each test and evaluate each forecast with the three individual forecast optimality 

tests and two combined tests. The four different forecasts that I evaluate are those for the CPI 

Inflation Rate, Real GDP Growth, Change in the 3-Month Treasury Bill Rate and the Percent 

Change in the Industrial Production Index.  
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 There were several interesting results from this analysis. First, for all variables forecasted 

by the Survey of Professional Forecasters, the only one where I failed to consistently reject 

optimality was for Real GDP Growth. For all other variables, it appears that the forecasters are 

violating at least one property of an optimal forecast under squared error loss. Second, I found 

the combined moments combined test to be more effective in practice when compared to the 

Bonferroni bounds combined test. It rejected the optimality of forecasts when not all individual 

tests did, which was specifically the case for the CPI Inflation Rate when hmax = 2. Lastly, for the 

forecast evaluation of the Percent Change in the Industrial Production Index, the only individual 

test to reject forecast optimality was the MHMC test, demonstrating its usefulness. If only 

evaluated with the Mincer-Zarnowitz and zero autocorrelation test, forecast optimality would not 

have been rejected. However, when evaluating this forecast with the MHMC test, rationality was 

rejected, meaning that it appears that the Survey of Professional Forecasters could be doing a 

better job.  

 I believe that I have developed a solid foundation for the MHMC test looking at multi-

horizon forecast optimality. However, there are some interesting extensions that exist and further 

analysis that could be done. To start, I only derive moment conditions under squared error loss 

for the MHMC test. Not all forecasts can be justified to use this symmetric loss function, which 

means it is worth seeing if similar moment conditions can be derived from a general loss 

function. Also, it would be interesting to complete more power studies on different simulated, 

suboptimal forecasts. I perform one power study where the forecast is suboptimal because it is 

noisy. There are many ways that a forecast can be irrational and it would be interesting to 

complete more power studies to see how effective this test is at rejecting different types of 

irrational forecasts. Lastly, it would be interesting to further examine the issue of the MHMC test 
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being oversized for series with low autocorrelation. It would be insightful to perform a full 

analysis of where this test starts to become oversized. With this, it could be worthwhile to see if 

there is a better way besides GMM to test if the derived moment conditions hold and whether 

that could mitigate or fix the issue. These are three possible extensions that I have thought about 

that could continue the development of the MHMC test and help it become as effective as 

possible in identifying irrational and suboptimal forecasts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

Appendix 

A. Optimal forecast errors for all horizons  

1. 𝑒𝑡+1|𝑡
∗ =  𝜀𝑡+1                                                         

2. 𝑒𝑡+2|𝑡
∗ =  𝜀𝑡+2 + 𝜃1𝜀𝑡+1     

3. 𝑒𝑡+3|𝑡
∗ =  𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1 

4. 𝑒𝑡+4|𝑡
∗ =  𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1         

B. 15 moment conditions when hmax = 3 for the Multi-Horizon Moment Conditions test (A bold 

number means that the moment condition was included in GMM test)                                                                                                   

B.1. Variances 

1. 𝑉[𝑒𝑡+1|𝑡
∗ ] = 𝑉[𝜀𝑡+1] = 𝜎2 

2. 𝑉[𝑒𝑡+2|𝑡
∗ ] = 𝑉[𝜀𝑡+2 + 𝜃1𝜀𝑡+1] = (1 + 𝜃1

2)𝜎2 

3. 𝑉[𝑒𝑡+3|𝑡
∗ ] = 𝑉[𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = (1 + 𝜃1

2 + 𝜃2
2)𝜎2 

B.2. Autocovariances 

4. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡
∗ , 𝑒𝑡+1|𝑡−1

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2 + 𝜃1𝜀𝑡+1, 𝜀𝑡+1 + 𝜃1𝜀𝑡] = 𝜃1𝜎2 

5. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡
∗ , 𝑒𝑡+2|𝑡−1

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1 + 𝜃2𝜀𝑡] = 𝜃1(1 + 𝜃2)𝜎2 

6. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡
∗ , 𝑒𝑡+1|𝑡−2

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1, 𝜀𝑡+1 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1] = 𝜃2𝜎2 

B.3. Covariances 
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7. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡+1
∗ , 𝑒𝑡+2|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1] = 𝜎2 

8. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡
∗ , 𝑒𝑡+2|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1] = 𝜃1𝜎2 

9. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡+2
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜎2 

10. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡+1
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃1𝜎2 

11. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃2𝜎2 

12. 𝐶𝑜𝑣[𝑒𝑡+4|𝑡+2
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+4 + 𝜃1𝜀𝑡+3, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃1𝜎2 

13. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡+1
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3 + 𝜃1𝜀𝑡+2, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = (1 + 𝜃1
2)𝜎2 

14. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2 + 𝜃1𝜀𝑡+1, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃1(1 + 𝜃2)𝜎2 

15. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡−1
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1 + 𝜃1𝜀𝑡, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃2𝜎2 

C. 34 moment conditions when hmax = 4 for the Multi-Horizon Moment Conditions test (A bold 

number means that the moment condition was included in GMM test)                                                                                                   

C.1. Variances                                                                                           

1. 𝑉[𝑒𝑡+1|𝑡
∗ ] = 𝑉[𝜀𝑡+1] = 𝜎2 

2. 𝑉[𝑒𝑡+2|𝑡
∗ ] = 𝑉[𝜀𝑡+2 + 𝜃1𝜀𝑡+1] = (1 + 𝜃1

2)𝜎2 

3. 𝑉[𝑒𝑡+3|𝑡
∗ ] = 𝑉[𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = (1 + 𝜃1

2 + 𝜃2
2)𝜎2 

4. 𝑉[𝑒𝑡+4|𝑡
∗ ] = 𝑉[𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = (1 + 𝜃1

2 + 𝜃2
2 + 𝜃3

2)𝜎2 

C.2. Autocovariances 
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5. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡
∗ , 𝑒𝑡+1|𝑡−1

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2 + 𝜃1𝜀𝑡+1, 𝜀𝑡+1 + 𝜃1𝜀𝑡] = 𝜃1𝜎2 

6. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡
∗ , 𝑒𝑡+2|𝑡−1

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1 + 𝜃2𝜀𝑡] = 𝜃1(1 + 𝜃2)𝜎2 

7. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡
∗ , 𝑒𝑡+1|𝑡−2

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1, 𝜀𝑡+1 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1] = 𝜃2𝜎2 

8. 𝐶𝑜𝑣[𝑒𝑡+4|𝑡
∗ , 𝑒𝑡+3|𝑡−1

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1 +

     𝜃3𝜀𝑡] = (𝜃1 + 𝜃2𝜃1 + 𝜃3𝜃2)𝜎2 

9. 𝐶𝑜𝑣[𝑒𝑡+4|𝑡
∗ , 𝑒𝑡+2|𝑡−2

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1 + 𝜃2𝜀𝑡 +

     𝜃3𝜀𝑡−1] = (𝜃2 + 𝜃3𝜃1)𝜎2 

10. 𝐶𝑜𝑣[𝑒𝑡+4|𝑡
∗ , 𝑒𝑡+1|𝑡−3

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1, 𝜀𝑡+1 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1 +

       𝜃3𝜀𝑡−2] = 𝜃3𝜎2 

C.3. Covariances 

11. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡+1
∗ , 𝑒𝑡+2|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1] = 𝜎2 

12. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡
∗ , 𝑒𝑡+2|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1, 𝜀𝑡+2 + 𝜃1𝜀𝑡+1] = 𝜃1𝜎2 

13. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡+2
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜎2 

14. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡+1
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃1𝜎2 

15. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃2𝜎2 

16. 𝐶𝑜𝑣[𝑒𝑡+4|𝑡+3
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+4, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = 𝜎2 

17. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡+2
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = 𝜃1𝜎2 

18. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡+1
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = 𝜃2𝜎2 
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19. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = 𝜃3𝜎2 

20. 𝐶𝑜𝑣[𝑒𝑡+4|𝑡+2
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+4 + 𝜃1𝜀𝑡+3, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃1𝜎2 

21. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡+1
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3 + 𝜃1𝜀𝑡+2, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = (1 + 𝜃1
2)𝜎2 

22. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2 + 𝜃1𝜀𝑡+1, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃1(1 + 𝜃2)𝜎2 

23. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡−1
∗ , 𝑒𝑡+3|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1 + 𝜃1𝜀𝑡, 𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1] = 𝜃2𝜎2 

24. 𝐶𝑜𝑣[𝑒𝑡+5|𝑡+3
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+5 + 𝜃1𝜀𝑡+4, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = 𝜃1𝜎2 

25. 𝐶𝑜𝑣[𝑒𝑡+4|𝑡+2
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+4 + 𝜃1𝜀𝑡+3, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = (1 +

       𝜃1
2)𝜎2 

26. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡+1
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3 + 𝜃1𝜀𝑡+2, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = 𝜃1(1 +

       𝜃2)𝜎2 

27. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2 + 𝜃1𝜀𝑡+1, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = (𝜃2 +

       𝜃1𝜃3)𝜎2 

28. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡−1
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1 + 𝜃1𝜀𝑡, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] = 𝜃3𝜎2 

29. 𝐶𝑜𝑣[𝑒𝑡+6|𝑡+3
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+6 + 𝜃1𝜀𝑡+5 + 𝜃2𝜀𝑡+4, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] =

       𝜃2𝜎2 

30. 𝐶𝑜𝑣[𝑒𝑡+5|𝑡+2
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+5 + 𝜃1𝜀𝑡+4 + 𝜃2𝜀𝑡+3, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] =

       𝜃1(1 + 𝜃2)𝜎2 
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31. 𝐶𝑜𝑣[𝑒𝑡+4|𝑡+1
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] =

       (1 + 𝜃1
2 + 𝜃2

2)𝜎2 

32. 𝐶𝑜𝑣[𝑒𝑡+3|𝑡
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+3 + 𝜃1𝜀𝑡+2 + 𝜃2𝜀𝑡+1, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] =

       (𝜃1 + 𝜃1𝜃2 + 𝜃2𝜃3)𝜎2 

33. 𝐶𝑜𝑣[𝑒𝑡+2|𝑡−1
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+2 + 𝜃1𝜀𝑡+1 + 𝜃2𝜀𝑡, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] =

       (𝜃2 + 𝜃1𝜃3)𝜎2 

34. 𝐶𝑜𝑣[𝑒𝑡+1|𝑡−2
∗ , 𝑒𝑡+4|𝑡

∗ ] = 𝐶𝑜𝑣[𝜀𝑡+1 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1, 𝜀𝑡+4 + 𝜃1𝜀𝑡+3 + 𝜃2𝜀𝑡+2 + 𝜃3𝜀𝑡+1] =

       𝜃3𝜎2 
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